ADDITIONS TO THE SUMMATION
OF RECIPROCAL FIBONACCI AND LUCAS SERIES

WRAY G. BRADY
Slippery Rock State College, Slippery Rock, Pennsylvania

1. In two recent papers [1], [2], Brother U. Alfred Brousseau sur-
veyed the status of the summation of infinite reciprocal Fibonacci series. In
this paper, we will add a few summations to those of Brother Brousseau.

We will use the notations Ln and Fn for the nth Lucas and Fibonacci
numbers.

2. We have from Bromwich [3]
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The left-hand expression of (1) can be converted to
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if one substitutes x = er withYan integer and multiplies by NG. We then
have
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Clearly (2) gives rise to the infinite formula
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3. One can easily show
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(Jolley [4] gives this formula for the infinite case.) Equation (4) can be con-
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verted by the substitution x = r into
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Since the final term of (5) goes to zero as n —00, Eq. (5) gives rise to
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4. The author has not found the following summation formula in the
literature:
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If in (7) we set x = r(4m+2), we obtain
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while if in (7) we set x = r( m)’
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4, Formula (7) suggests the following generalization:
k-1 . -1
n \ 3 LU )
g f=m—
1
=1\ 1- x(k )
(10) n i i
5> KD L&)y 1
i) i - - m
i=1 [1 - X(Hl)][l - < ‘1)] 1-x 1-x%)
In (10), if x = ¢,
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In (10) with k odd and x = r(4n+2), we have
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Both (11) and (12) become infinite in an obvious way.
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