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1. In two recent papers [1] , [2] , Brother U. Alfred Brousseau sur-
veyed the status of the summation of infinite reciprocal Fibonacci series. In 
this paper, we will add a few summations to those of Brother Brousseau. 

th We will use the notations Ln and Fn for the n Lucas and Fibonacci 
numbers. 

2. We have from Bromwich [3] 
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The left-hand expression of (1) can be converted to 
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r(2jm) _ r(-2jm) 

if one substitutes x = r with fan integer and multiplies by <s/5. We then 
have 

(2) ^ F ( 2 L ) == ^ ( r ^ - l " r(m2n'1) _ J 

Clearly (2) gives rise to the infinite formula 

<3> £-4- = -i&-
~ F ( 2 J m ) r - 1 
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30 One can easily show 

1 ^ 2 , 4 2n 
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(4) 
,n+l 

x - 1 x 2 ( n + 1 ) - 1 

(Jolley [4] gives this formula for the infinite casee) Equation (4) can be con-
4m verted by the substitution x = r into 

(5) V 2Js
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j = 0 L<2JTim) r - 1 r(2"m) _ 1 

Since the final term of (5) goes to zero as n —»009 Eq. (5) gives rise to 

j = 0 L(2 J T i
m ) r * m - 1 

4. The author has not found the following summation formula in the 
li terature: 

,(3n) M x2(3n) 
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Z ^ (3n+1) , x ^ 1 (3n+1) 

If in (7) we set x = r , we obtain 
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while if in (7) we set x = r , 

(9) 
n 

j ^ L(2m3J) ~ r 1 2 m - 1 " r ( 1 2 m 3 n + 1 ) _ 1 

4. Formula (7) suggests the following generalization: 

i=l 
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In (10), if x = r ( 4 n ) , 

(ID " ' 
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In (10) with k odd and x = r , we have 

m . 
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Both (11) and (12) become infinite in an obvious way. 
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