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Lame's theorem [1] asserts that the number of divisions n required 
to find the greatest common divisor (a,b) of a and b (a ^ b) using the 
Euclidean algorithm does not exceed five times the number of digits p in b. 
More precisely, 

n < ** + l where £ = J^-— . 
log f ^ 2 

It is also known [2], [3] that the number of divisions required to find (JU - , 
a ) is n and that 

(1) u o g j - 1 1 " 1 " Liognf J 
where p is the number of digits in \x and \xt - 1, JU2 = 2 and \x = ju -. 
+ jit o (n > 2) are the Fibonacci numbers* Thus the upper bound given by 
Lame's theorem is about the best possible and it has been shown [3], [4] that 
the upper and lower bounds in (1) are attained for infinitely many n. 

We recall that the remainders in the ordinary Euclidean algorithm are 
always positive but that shorter algorithms may be obtained by allowing neg-
ative remainders. A well known result of Kronecker [1] asserts that the 
least-remainder algorithm (L. R. A.) is never longer than any other Euclidean 
algorithm. The purpose of this note is to derive results analogous to (1) for 
the L. R. A. To do this, we define vt 1, v2 = 2 and v m = 2v m _i + v m _ 2 

( m > 2). This sequence has been applied to a similar problem by Shea [5], 
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be the L. R. A. for (a ,b ) , where a = ±1 (k = 1, • • • , m) and a > b ^ 2b* 
m > 4b2 > • • • > 2 b ^ 0. Then the requ i red number of divis ions is m + 1 

and [1] 

b > 1 = Vi, b - > 2b > 2 = v2 , m l' m - 1 m L ' 

b 0 > 2b - + b > 2v2 + Vi = VQ, • • • . m - 2 m - 1 m <s i «*> 

Hence 

b _ . > v, + 1 and b ^ v , -m - k k m+1 

Now le t N = 1 + N/2 . Then 

N<= | - 5 = i v 3 , 

N2 = 2N + 1 < i ( 2 v 3 + v2) = | v 4 , ••• 

Hence, 

A T m-l ^ 1 ^ 1 , 
2 m+1 2 

If p is the number of digits in b , then b < l ( r and 

i o g b - l o g 2 < P - i o g 2 m + 1 < 2 + r p . - l o i 2 i 
log N log N [_ log N J 

Also , 

N > 2 = v2, N2 = 2N + 1 > 2v2 + vt = v3, 

Hence N > v . If q i s the number of digi ts in v , then n ln & n 

q - 1 n v > 10 n 
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and 

q - 1 
n - 1 ^ log N 

The L. R. A. for (v - , v ) is n+1 n 

n+1 n n-1 
v = 2v n + v 0 n n-1 n-2 

v3 = 2v2 + Vi 

v2 = 2v4 

and the required number of divisions is n. Thus 

(2) [ikw\ s n - 2 4 q C 2 ] 
and the upper bound for the required number of divisions in the L. R. A. is 
about the best possible. 

We now show that both the upper and lower bounds in (2) are attained 
for infinitely many n, Using standard difference equation techniques, it is 
easily shown that 

v = _ ± _ r(i + ^ 2 ) n - (1 - ^ 2 ) n ] 
n 2^2 L 

and it follows that 

Nn 

n 2N/2 

Let <j> be the fractional part (mantissa) of log v . Then, since 
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we have 

THE LEAST REMAINDER ALGORITHM 

q = 1 + [ log v ] j H n
 L & n 
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Hence 

(3) 

But (3) impl ies that 

q = 1 + log v - 0 

q = 1 + n log N - log 2 ^ 2 - 0 + o(l) 

q - log 2 (p - — 
n > JL + n 4 

log N log N 

for all sufficiently l a rge n. Thus 

n - 2 
Q - log 2 1 P log N 

If cp > 1/4 + log N and n is sufficiently l a r g e . Also , (3) impl ies that 

q - 1 (P + 7y 
^ n , n 2 

n < -T ^r- + log N log N 

for all sufficiently l a rge n. Thus 

n - 2 < logN J 

if 0 ^ 2 log N - 1/2 and n is sufficiently l a r g e . 

The des i r ed r e su l t s will follow when it is shown that the sequence {log v } 

i s uniformly dis t r ibuted modulo one [6 ] , The proof i s a lmost identical to that 
of a s i m i l a r r e su l t [3] and is therefore omit ted. Also , fur ther d iscuss ion of 

such r e s u l t s occurs e l sewhere [ 7 ] , 
[Continued on page 401. ] 


