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DEFINITIONS 

F0 = 0, Fi = 1, F _,_0 = F ^ + F ; L0 = 2, Li = 1, L , = L ,- + L . u ' I n+2 n+1 n u 1 n+2 n+1 n 

PROBLEMS PROPOSED IN THIS ISSUE 

B-214 Proposed by R. M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let n be a random positive integer. What is the probability that L 
has a remainder of 11 on division by 13? [Hint- Look at the remainders 
for n = 1, 2, 3, 4, 5, 6, 8 o e . ] 

B-215 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Prove that for all positive integers n the quadratic q(x) = x2 - x - 1 
is an exact divisor of the polynomial 

p (x) = x - L x + (-1) *n n 

and establish the nature of p (x)/q(x). [Hint; Evaluate p (x)/q(x) for n = 
X , Z ; O j 4t , D» J 

438 
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B-216 Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California. 

Solve the recurrence D ( i = D + L n - 1 for D , subiect to the 
n+1 n 2n n J 

Initial condition Dj = 1. 

B-217 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

A triangular array of numbers A(n,k) (n = 0, 1, 2?
 e • *; 0 ^ k — n) 

Is defined by the recurrence 

A(n + 1, k) = A(n, k - 1) + (n + k + l)A(n,k) (1 ^ k < n) 

together with the boundary conditions 

A(n,0) = n! , A(n,n) = 1 . 

Find an explicit formula for A(n?k)„ 

B-218 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada. 

Let a = (1 + \/5)/2 and show that 

oo oo 

A r c t a n E ^l/(aFn+l + F n } ] = E A r c t a n ( 1 / F 2n + 1 ) ° 
n=l n=l 

B-219 Proposed by To mas Djerverzon, Al brook College, Tigertown, New Mexico. 

Let k be a fixed positive integer and let a^ ai, e s ° 9 % be fixed r ea l 
number s such that , for all posi t ive In tegers n9 

ao at a. 
n n + 1 n + k 

Prove that ao = ai = 8 e e - \ ~ ° * 
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SOLUTIONS 
INVERTING A CONVOLUTION 

B-196 Proposed by R. M. Grass/, University of New Mexico, Albuquerque, New Mexico. 

Let ao> ai, a29 • • • , and b0, b^, b^, ••• be two sequences such that 

bn = ( s k + (;)vi+ (n
2)v2

 + •••+ (ih a = °'x*2> - • 
Give the formula for a in terms of b 9 • • • , b 0 . 

Solution by A. C. Shannon, New South Wales, I. T., N.S.W., Australia. 

We are given 

n 

\ - £ M> 
r=0 

and so 

n 
X > n x n / n ! = £ £ ^ x n / r . (n - r>! 
n=0 n=0 r=0 

oo 

= eX 12 an xI1/n! ' 
n=0 

Thus 

2^ an xn/nS = e~X ^ \ xn/ni 
n=0 n=0 

oo n 

£ 2 b r ( - x ) n " r x r / r ! (n - r)! 
n=0 r=0 
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which gives 

\ - z : «-»>"; K 
r=0 

- ( ! K - ( i K i + ( ; ) v . + - + <-«"i:K-
Also solved by J. L Brown, Jr., T. J. Cull en, Herta T. Freitag, M. S. K/amkin, and the Proposer. 

AN IM-PELL- ING FORMULA 

B-197 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let the Pell Sequence be defined by P0 = 0, V\ = 1, and P + 2 = 
2P + 1 + P e Show that there is a sequence O such that 

Pn+2k = % P n + k - ( - 1 ) k p n ' 

and give initial conditions and the recursion formula for Q , 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

We have 

n a - p 9 

where a9 /3 are the roots of 

a2 = 2a + 1 . 

Since afi = - 1 , 
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, n+2k 0n+2k , , n 0n 
P + 9 1 + ( - l ) k P = -2 ~-4 + a

kf°L-ZJ-
n+2k n a - fi ^ a - p 

= fak + ^ ) ( a n + k - f + k ) 
a - /3 

Thus if we put 

we have 

% = ak + 

Pn+2k = % P n + k " ( - ^ n 

Clearly, 

SkH-2 = 2\+l + \ 9 Qo = Ql = 

Also, 

00 ' ' 2 - 2x 
jL . " * 1 - ax 1 - 0x J _ 2 x _ x , 

>4/s0 solved by Clyde A. Bridger, T. J. Cull en, Herta T. Freitag, M. S. Klamkin, and the Proposer. 

PERMUTATIONS, DERANGEMENTS, AND THESE THINGS 

B-198 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Let c be the coefficient of x^x2 • • • x n in the expansion of 

(-xt + x2 + x3 + • • • + xn)(Xi - x2 + x3 + • • • + xn)(x1 + x2 - x3 + • • • + x n ) 

• • • (Xj + X2 + X3 + • • • + X n _ l - X n ) . 
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For example, 

Cj = - 1 , c2 = 2, c3 = - 2 , c4 = 8 and c5 = 8 . 

Show that 

c ^0 = nc ,., -i- 2(n + l)c , c = nc . + (~2)n , n+2 n+1 n n n-1 9 

and 

__2 lim (c /n!) = e 

Solution by M. S. Klamkin, Ford Motor Company, Dearborn, Michigan. 

Letting x * Sx l s the given produce is a special case of (L e., for a = 
2) 

(x - axi)(x - ax2) ••• (x - axn) = 

n n-L- , 2 n-2^ 3 n - 3 ^ 
x - ax ^x. + a x ^x.x. - a x ^x.x.x. + • • • . 

Then by the multinomial theorem, the coefficient of xtx2 • • • x n is given by 
the sum 

ni - a ( ; ) [ ( n - 1)!] + a » ( 5 ) [ < A - 2)t] 

o ( a ) = n ! a - a + | - ^ + - +
( - a ) 

n w J 2! 3! n! 

It now immediately follows that 

c - nc - = (-a) , n n-1 
c f0 - (n + 2)c ,- = -afc , - - (n + l)c 1 
n+2 n+1 L n+1 nJ 
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Also, since 

-a ., , a2 a3 , 
e = X - a + 2 T - 3 f + 

lim c /n! = e" 
n —• oo i r 

Now let a = 2 to give the desired special case. 

Also solved by L Carlitz, Herta T. Freitag, Graham Lord, David Zeitlin, and the Proposer. 

A FIBONACCI-PELL INEQUALITY 

B-199 Proposed by M. J. DeLeon, Florida Atlantic University, Boca Raton, Florida. 

Define the Fibonacci and Pell numbers by 

Fi = 1, F2 = 1, F ^Q = F ^ + F n ^ 1 ; 
1 ^ ' n+2 n+1 n 

Pi = 1, P2 = 2, P ± = 2P ± 1 + P n ^ 1 . 
1 > & ' n+2 n+1 n 

Prove or disprove that P f i i< F i i k "^or ^ ~ 1 D 

Solution by David Zeitlin, Minneapolis, Minnesota. 

Let a, (3 be the roots of x2 = x + 1, and A,B the roots of x2 = 2x + 1. 
Now, 

Yk = F n k = (allk - (3llk)/(a - |8) 

satisfies 

(E - or")(E - iS11)Yk = 0, or YR+2 - 199Yk + 1 - Yfe = 0, 

and 
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Z k = P 6 k = (A 6 k - B 6 k ) / ( A - B) 

sa t i s f ies 

o r 

(E - A6)(E - B 6 ) Z k = 0 , 

Z k + 2 - 1 9 8 Z k + l + Z k = °> 

where EnR. = R. , . k k+n 
Let 

W k s Z k " Y k 5 P 6 k " F l l k ' 

Then 

« W k + 2 = Zk+2 " Y k+2 = 1 9 8 ( Z k + l - W ' Y k + 1 - Y k " Z k ' 

o r 

and thus 

Wk+2 " 1 9 8 W k + l °> k = °> *> " 

W, < (198)k X Wi k = 2, 3 , 

Since 

W4 = P 6 - F u = 70 - 89 = -19 < 0 , 

w = p / , l - F ^ , < 0 for k = 1, 2 , • • • . T h u s , the s ta ted inequality is 
k 6k i l k 

t rue . 

Also solved by Wayne Vucenic and the Proposer. 
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A CLOSE CALL 

B-200 Proposed by M. J. DeLeon, Florida Atlantic University, Boca Raton, Florida. 

With the notation of B-199, prove o r d isprove that 

F l l k < P6k+1 f 0 r k ^ X ' 

Solution by Phil Mana and Wayne Vucenic, University of New Mexico, Albuquerque, New Mexico. 

Let 

a = (1 + <s/5)/2, b = (1 - AS/5 ) /2 , c = 1 + sj2, and d = 1 - N/2 . 

Then 

_ . I l k . H k v / J-E -̂  / 6 ^ + l , 6 k + l W o /7r 
I l k = ^ " b " ^ 5 » P 6 k + 1 = *C ) /2V2 . 

Since |a | > | b | and | c | > | d | , i t can eas i ly be seen that as k—>oo the l imi t 

of F - - . / P 6 k - i s a posit ive constant t imes the l imi t of ( a ^ / c 6 ) . Since 

a11 = (Ln + F l t \ / "5) /2 = (199 + 8 9 ^ 5 )/2 99 + 7(W2 = c6 , 

( a ^ / c 6 ) -++°° as k—>«> and so ul t imately F - - . > P ^ . i - Computer c a l -

culation shows that when k = 128, F - - . > 8X 10293 > PC I , - . 
I l k 6k+l 

Also solved by the Proposer. 

PARITY OF n 

B-201 Proposed by Mel Most, Ridgefield Park, New Jersey. 

Given that a ve ry l a r g e posi t ive in teger k i s a t e r m F in the F i b -

onacci Sequence, de sc r ibe an operat ion on k that will indicate whether n is 

even o r odd. 



1971] ELEMENTAEY PROBLEMS AND SOLUTIONS 447 

/. Solution by F. D. Parker, St. Lawrence University, Canton, New York. 

Undoubtedlys t he re a r e many poss ib le tests* Here is only one tes t , 
F r o m the ident i t ies 

F 2 = F - F ^ - ( - l ) n 
n n - 1 n+1 

F _Ll = F + F 1 , n-fl n n - 1 9 

we get 

F + 2F - = V 5 F 2 + 4 ( - l ) n 
n n - 1 n 

There fo re n is even if 5F2 + 4 is a perfec t square ; o the rwise , n is 

odd, with the single exception of n = 1 o r n = 2. In this c a s e , no t e s t p r e -

va i l s s ince FA = F 2 = 1. 

VI.Solution by Wayne Vucenic, Student, University of New Mexico, Albuquerque, New Mexico. 

The ra t io between consecutive t e r m s of the Fibonacci sequence , F - / 

F , approaches a by osci l la t ion as n approaches infinity, where a i s the 

Greek golden r a t i o , o r \ (1 + \ f5) , which is 1.61803 •• • . Thus , if n i s 

even, 

F 
(1) ^ • = a + A , and A decreases as n increases; N F n n 

if n i s odd, 

F 
(2) J^+' = a - B , and B d e c r e a s e s as n i n c r e a s e s . 
v ' F n n 

n 

If n is even, from Equation (1), 

F ,- = F (a + A ) n+1 n n 
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F _,_- = aF + A F 
n+1 n n n 

\ 
aF = F • .L - A F ; 

n \n^X n n 
if n is odd, from Equation (2), 

aF = F , - + B F . n n+1 n n 

These equations show that aF will be less than F ,- if n is even, and 
n n+i 

will be greater than F , - if n is odd. 
to n+1 As n increases, A and B decrease fast enough that, if n ^ 2, n n & 

A F < 0.5 and B F < 0.5. n n n n 
Thus, if n ^ 2, it is possible to determine whether n is even or odd 

by multiplying F by a, then seeing if the product is greater than or less 
than the nearest integer which will be F -. For example, given that F = 
21, 21X1.618 = 33.978. This is less than the nearest integer, 34, thus a 
is even. 

Also solved by the Proposer. 

[Continued from page 437. ] When X and Y a r e - v e i n t e g e r s , 

X = ( 2 - L ^ k ) / 5 , I = (X - F 4 k ) / 2 , k = 1 , 2 , 3 , . . . . 

And tfhe g e n e r a l s o l u t i o n i n +ve i n t e g e r s i s : 

X - (2 + \ k . 2 ) / 5 = i f ^ j y= (X + 1^/2^2^1*2* 

Tim a u t h o r found t h e f i r s t s e t o f i n t e g r a l s o l u t i o n s w h i l e 

otherLS were found by Guy G u i l l o t t e 
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