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to Professor A. P. Hillman, Dept. of Mathematics and Statistics, University
of New Mexico, Albuquerque, New Mexico 87106. Each problem or solu-
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on a separate sheet or sheets, in the format used below. Solutions should
be received within three months of the publication date.

Contributors (in the United States) who desire acknowledgement of re-
ceipt of their contributions are asked to enclose self-addressed stamped

postcards.
DEFINITIONS

PROBLEMS PROPOSED IN THIS ISSUE
B-214  Proposed by R. M. Grassl, University of New Mexica, Albuguergue, New Mexico.

Let n be a random positive integer. What is the probability that Ln
has a remainder of 11 on division by 13? [ Hint: Look at the remainders
for n=1,2,3,4,5,6, """, ]

B-215  Proposed by Phil Mana, University of New Mexico, Albuguerque, New Mexico.

Prove that for all positive integers n the quadratic q(x) = x2 -x -1
is an exact divisor of the polynomial

2

_ .2n n
pn(x) = X7 - Lnx

+ (-1)n

and establish the nature of pn(x)/q(x). [Hint: Evaluate pn(x)/q(x) for n =
1, 2, 3, 4, 5. ]

438
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B-216  Proposed by V. E. Hoggatt, Jr., San Jose State College, San Jose, California.

Solve the recurrence Dn 1 = Dn + LZn -1 for Dn’ subject to the
initial condition Dy = 1.

B-217  Proposed by L. Carlitz, Duke University, Durham, North Carolina.

A triangular array of numbers A(n,k) (@ =0, 1, 2, c=+; 0=k =n)

is defined by the recurrence
An + 1, k) = A, k-1) + 0 + k + 1)A(n,k) (1 =k =n)
together with the boundary conditions
An,0) = n! , An,n) =1 .,
Find an explicit formula for A(n,k).

B-218 Proposed by Guy A. R. Guillotte, Montreal, Quebec, Canada.

Let a = (1 + ~5)/2 and show that

e} (2]
Arctanz [1/(aFn+1 + Fn)] = E Arctan (1/F2n+1) .
n=1 n=1

B-219  Proposed by Tomas Djerverzon, Albrook College, Tigertown, New Mexico.
Let k be a fixed positive integer and let a3, a3, <=, ax be fixed real

numbers such that, for all positive integers n,

+n+1+--o+n+k=0.

2] 4 A
n

Prove that ay = a3 = *°° =ak =0,
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SOLUTIONS
INVERTING A CONVOLUTION

B-196  Proposed by R. M. Grassl, University of New Mexico, Albuguergue, Nevw Mexico.

Let a;, aj, ag, "**, and by, by, by, *** be two sequences such that

= n n n e n = s 068
by = (O)an " (1)%-1 * (Z)an-Z * + (n)ao a=0,1,2, .

Give the formula for a, in terms of bn’ seey bO'

Solution by A. C. Shannon, New South Wales, I. T., N.S.W., Australia.

We are given

b= (2o

1=
and so
°0 o0 n
n _ n
2 bnx /n! = Z }: a, X /Tt (n - 1)
n= n=0 r=0
o0
= e Z a, xn/n! ,
=0
Thus

(=) ’ o0
Z a, x/nt e ™ Z b, x/nt

n= n=0

© n

Z Z br(—x)n—r </l (@ - 1)

n=0 r=0
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which gives

0
1}

n
n-r n
n Z (—l) T br
=0

= (I(;)bn - (Ill)bn—l * (Izl)bn-z Tt ('1)n(ﬁ)b0 .

Also solved by J. L. Brown, Jr., T. J. Cullen, Herta T. Freitag, M. S. Klamkin, and the Proposer.

AN IM-PELL-ING FORMULA

B-197  Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico.

Let the Pell Sequence be defined by P, = 0, Py = 1, and Poig =
2P + Pn' Show that there is a sequence Qn such that

n+1
P =@P . - (P
n+2k Qk n+k n '’

and give initial conditions and the recursion formula for Qr

Solution by L. Carlitz, Duke University, Durham, North Carolina.

We have

where «,p are the roots of

ot = 20+ 1,

Since off = -1,



442 ELEMENTARY PROBLEMS AND SOLUTIONS [Oct.

n+2k n+2k n n
A e ey R

P -
o -

n+2k

_ @ s etk gtk

a- B

Thus if we put

Q =+ 8,
we have

_ k
Pn+2k - QkPn+k - (1) Pn *

Clearly,

]
Do

Qk+2 = 2Qk+1 + Qk! QO = Q1

Also,

kK1 1 2-2x
ZQkX‘l-ax+1-Bx"

1-2x - x?

Also solved by Clyde A. Bridger, T. J. Cullen, Herta T. Freitag, M. S. Klamkin, and the Proposer.

PERMUTATIONS, DERANGEMENTS, AND THESE THINGS

B-198  Proposed by Phil Mana, University of New Mexico, Albuguerque, New Mexico.

Let cy be the coefficient of xyxy *** x, in the expansion of

(%) + X + X3+ o0 +X)Xy - Xp + X3+ oo FX)(Xg + Xy - x3+---+xn)

eve (X3 + Xp + Xg + o0 +Xp_ 1 - Xp) .
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For example,

¢g = -1, ¢ =2, cg =-2, ¢4 =8 and c; = 8.
Show that
Coyg = DC .+ 2(n + l)cn, c, =mnc, 4+ 2",
and
nli_r’n00 (cn/n!) -2,

Solution by M. S. Klamkin, Ford Motor Company, Dearborn, Michigan.

Letting x = Zxy, the given produce is a special case of (i.e., for a =
2)

(x - axq)(x - axy) +++ (x - ax ) =

2 3_n-3

Do Imx + 225 ek - 20X SExxx e
i i ik
Then by the multinomial theorem, the coefficient of x;xy ... Xpn is given by
the sum
n n
n! - a(l) [@ - 1)1 + & (2) [ - 2)t] - -
or

= n! - — e — -+
cp(@ n'gl T nt

o (—a)n%

It now immediately follows that

C - nc
n n-1

Cni2 ~ (0 + 2)cn+1 - —a[cn
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Also, since

2
-a a2 o
e =l-atgrogtors
-a
nl1mc/n!—e .

Now let a = 2 to give the desired special case.

Alsa solved by L. Carlitz, Herta T. Freitag, Graham Lord, David Zeitlin, and the Proposer.

A FIBONACCI-PELL INEQUALITY

B-199  Proposed by M. J. Deleon, Florida Atlantic University, Boca Raton, Florida.
Define the Fibonacci and Pell numbers by

= —_ —_ = .
Fy=1, F =1 F_,=F_ +F n=1;

Pr=1 P =2 Py, =2Py n

Prove or disprove that P6k< Fllk for k =1,

Solution by David Zeitlin, Minneapolis, Minnesota.

Let «,B be the roots of x* = x +1, and A,B the roots of x% = 2x + 1.

Now,
_ _ 11k 11k
Y, = Py = @ - B )/ l@- P
satisfies
11 11 = _ - =
(E - dd)E - B )Yk 0, or Yk+2 199Yk+1 Yk 0,

and
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_ .6k 6k
Z, = Py = A™ - B )/(A - B)

satisfies

E - AS)(E - B"')Zk =0,

or

Zyyo = 1982, 4 + 2 = 0,
here EnR = R
w k k-+n
Let
Wi = 2 - Y = P = Fygpe
Then
W Wiss = Zian = Vg = 198 = V) = Vg = Yo = %o
or
Wiegg - 198Wp 0 0, K =0,1,:,

and thus

Wy < (198)k_1 Wy k =2,38,-
Since

Wy = Pg - Fyy =70 -89 = -19< 0,
Wk = P6k - Fllk <0 for k=1, 2, . Thus, the stated inequality is
true.

Also solved by Wayne Vucenic and the Proposer.
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A CLOSE CALL

B-200  Proposed by M. J. DelLeon, Florida Atlantic University, Boca Raton, Florida.
With the notation of B-199, prove or disprove that

F < for k =1.

11k < Pk

Solution by Phil Mana and Wayne Vucenic, University of New Mexico, Albuguerque, New Mexico.
Let

a=(1+ 5)/2, b=@0-4x5)/2, ¢ =1++~2Z, and d =1- 2 .

Then

F - (allk _ bllk)/VE, (c6k+1 _ d6k+1 )/2NZ .

11k Pok+1 =

Since |a| > |b| and |c| > |d|, it can easily be seen that as k—oo the limit
. s . o k
o 11/,6 ;
of Fllk /P6k+l is a positive constant times the limit of (all/c8)™. Since

all = (Ly + FyNB)/2 = (199 + 89NF)/2 99 + TO0N2 = cb,

(a%l/cs)k—* +o0 as k — e« and so ultimately F
culation shows that when k = 128, F

11Kk > P6k+1’ Computer cal-

293 >
11k~ 8%10 Pok+1r

Also solved by the Proposer.

PARITYOF n
B-201  Proposed by Mel Most, Ridgefield Park, New Jersey.

Given that a very large positive integer k is a term Fn in the Fib-
onacci Sequence, describe an operation on k that will indicate whether n is

even or odd.
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1. Solution by F. D. Parker, St. Lawrence University, Canton, New York.

Undoubtedly, there are many possible tests. Here is only one test.
From the identities

we get

F_ + 2F = N5F: + 4(_1)n
n n n

-1

Therefore n is even if 5}3‘fl + 4 is a perfect square; otherwise, n is
odd, with the single exception of n = 1 or n = 2. In this case, no test pre-
vails since Fy = Fy = 1,

11.Solution by Wayne Vucenic, Student, University of New Mexico, Albuguerque, New Mexico.

The ratio between consecutive terms of the Fibonacci sequence, Fn +1/

Fn’ approaches o by oscillation as n approaches infinity, where o is the

Greek golden ratio, or }(1 + ~5), which is 1.61803 .+ . Thus, if n is
even,
Fn+1
(1) T = o + An’ and AI1 decreases as n increases;
n
if n is odd,
n+l _ R
(2) T = o - Bn’ and Brl decreases as n increases.
n

If n is even, from Equation (1),

Fn+1 = Fn(a * An)
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Fn+1 :]y aFn * AnFn

oan . F\n-lﬂl - AnFn;
if n is odd, from Equation (2),

aFn = Fh+1 + BnFn .
These equations show that oan will be less than Fn 41 if n is even, and
ol if n is odd.
As n increases, AJ[1 and Bn decrease fast enough that, if n = 2,
AF <05 and B F < 0.5,
n n n n

Thus, if n =2, itis possible to determine whether n is even or odd

will be greater than F

by multiplying Fn by «, then seeing if the product is greater than or less

than the nearest integer which will be Fn 41+ For example, given that Fn =

1
21, 21 X1.618 = 33.978. This is less than the nearest integer, 34, thus a

is even.,

Alsa solved by the Proposer.

i
[Continued from page 437.] When X and Y sre -ve integers,
X=(2 - qu)/B, Y = (X - F4k)/2 . k=1, 25 3y eces

Ang the genersl solution in +ve integers is:
_ _ 2
X o=@y )5 = Fek-l; y= (X * Fype /2 _Fope 1 Fox

The author found the first set of integral selutions while

others were found by Guy Guillotte
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