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1. INTRODUCTION

Our object of study is the generating series

& TT( +pxu“> - e

n=1

where the coefficients e(n) are polynomials in p, and where {un} is the

sequence defined by

(2) uy =1, u = 2, wo=uo g + W g for n>2 .

Theorem 1. The values assumed by the coefficients €(n) as n = 0,
1, 2, +-+ range over a finite set if and only if p is one of the numbers O,
-1, w, or w?, where w and w? are the complex cube roots of unity.

The theorem has applications to partition theory. It implies the exist-
ence of certain symmetries, which we illustrate in Section 5, among the par-
titions of integers into terms of the sequence {un}, Sections 3 and 4 are
devoted to the proof of Theorem 1. In Section 2, some preliminary recursion
formulas are obtained, which find application in Sections 3 and 4.

For an added comment, see note at conclusion of this article.

2. RECURSION FORMULAS F'OR €(n)

For each natural number n, let v(n) denote the largest index k for

which u = n Thus p{n) is defined by the condition that

@) Y(n) =n= o)1

Writing €(m) = 0 for negative m, we prove that
Lemma 1. For n > 1, €(n) satisfies the recursion
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= - - - p2 -
(4) €n) = €M - u,) +0€m - u, ;) - p%€m - 2u, ,),
where we have written v for v(n).
For a fixed natural number n, write f(x) = g(x) if f(x) and g(x) are
formal power series whose difference contains only terms of degree greater
than n. Then (1) and (3) imply that
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From (2) and (3) it follows that
u \-1 u -1 u u 2u
(1+va) (1+px”"1> e o S BT, 2t

so that
u u 2u n y-2 u
(1 px Y opx V7l 4 o2 v-1)2 €m)x™ = l | (1 + 0x m) .
m=0 m=1
Equating coefficients of xn, we find:that
. - - 2 -
(5) €n) - p€ - u,) - pen - u, ,) +p’eln 2u, ;)

is the coefficient of x" in

Now from the identity
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1971]
(an immediate consequence of (2)), it is clear that

=n-2,

V-2 u
deg]—r 1+px ™ =w, - 2
m=1

so that (5) vanishes, proving the lemma.
a shall denote a natural number and we shall write o for

In sequel,
v(a). From the inequalities
u0+15 Zuo =a+u_ < uo__|_1+u0 = u0+2 ,
uc_‘_2 = uo + uo‘+1 = a + uo‘+1 < 2110_+;L = uo__‘_3 s
u(y+n =a+ uor+1r1 = u(y+1 + uc;+n = Ulor+n+1 for n=32,
we obtain
_jyo+n+1 if 0 =n < 2
) via + ua+n) g+n if 2 =n
Applying the fundamental recursion (4),

= _ - p? -

(7) e(a + uc) pe(a uo_l) + pe(a) - pe(a uo) )
(8) €(a + u0+1) = pe(a - uo) + pe(a) ,
- oY -

€a +u ,,) = pe(a) +pe(a+u ) -piea-u )

from which it follows that
= _ D3 _
(©) €a+u ) =P +pea) - 0% - uy)
Lemma2. For h =1 and p # 1 we have
h+1
_pd-p" ") h+2
TP €a) -p nE(a—uo_) .

(10) €a + U +2h)
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For k > 1, Eq. (6) and Lemma 1 imply that

(11) €(a + u = Pe&(a) + P€(a + u

o+2k) o+2k-2)

since the term 02 €(a - ) vanishes. Multiplying both sides of (11) by

P~ and summing,

u0'+2k-3

h -—

h h-1
-k _p T -p” -k
2, Pl * g ) = EEe@ ¢ 30 P T )
k=2 - k=1

so that, for h = 2,

h-1
6(a+u ) =.0(1-P

) h-1
+2h -——T_—p———e(a) +pP €(a +u

a-+2) ’

An appeal to (9) proves the lemma.
Lemma3. For h=1 and p # 1 we have

, - pa - ph*

+2h+1 Top— €@

(12) €la+u

For k =1, Eg. (16) and Lemma 1 imply that

= p€(a) + P€la + u

€a + o2k+1)

ua-+2k+1 )

Treating this in the same manner as (11), we get

) — p(l - ph—l)

= B )

€(a) + ph—le(a + u

(13) &a + u o+3

o+2h+1

for h = 2. But (6), (8) and Lemma 1 imply that

€a + ua+3) = pe(a) + pe(a + uo_+1) - ple(a - ug) = p(1 + p)e(a) .
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Inserting this identity in (13), we arrive at (12), which is seen tohold for h =
1 as well.

3. NECESSITY THAT p = 0, -1, W, or w?

We can now prove that if the coefficients €(1), €(2), €(3), **° range
over a finite set of values, then P must be one of the numbers 0, -1,wW, or
w2,

From (1) and (2), it is clear that €(1) = p and V(1) = 1. Taking a =
1 and ¢ = V(a) = 1 in (12),

, _pa -p™

€+ uy 0 T-p

for h = 1. If these values all lie in a finite set, then 0 must be either zero
or a root of unity.
Taking h = 1 in (12), we get for a = 0,

(14) €(a + uo_+3) = p(1 +p)e(a)
Letting a', a", aM, ..., and ¢', ¢", ¢'"', - be defined by
al = g + u0_+3, o! = V(al) ,
at = ga' + u0'+3, o' = v(m ,
am = a" + u(y"+3 , 0"" = V(a'") ,

etc. , we obtain by iterating (14),
e@®) = ot + p)le(a) ;

since these values all lie in a finite set, P(1 +P) must either be zero or a
root of unity. Thus, either p = 0, p = -1, or both 0 and 1 +0Q are roots

of unity, in which case it is a simple deduction that p = W or p = w?,
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4. SUFFICIENCYOF p =0, -1,w, or w? THE METHOD OF DESCENT

If p =0, itfollows directly from (1) that €(0) = 1 and €(n) = 0 for
n#0. For the case 0 = -1, W, or W%, we shall employ a method of descent.

The next lemma is needed only for 0 = W or w2, It is valid, however,
for all p.

Lemma 4. For each natural number n, €(n) -P €(n - uv) either van-
ishes or is of the form Phe(m) for some h =0 and some m <n.

We define a finite descending chain of natural numbers n(o) = n(l) =

n(z) > ... as follows:

n‘“o)

= n, v =V = V).
If
n(k) = 2u (k) ,
-1
the chain terminates at n(k) ; if, on the other hand,
k) -
n 2u s
1
define n(k+1) and V(kﬂ) by
n(k+1) = n(k) -u & .’ V(k+1) = V(k) - 1.
[ |
First, we show by induction on k that V.(k) = V(n(k)), for if the chain
extends to n(k+1), then
(k) (k+1)
u = Uu < n - u = n
Sy T ) L
and

A (k)

- u =u -u = u =u .
& p® i &) )y
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(k)

Next, applying (4) to n*’, we arrive at

RCR () _

€(

- pe(n ge(n(kﬂ)) - pe(n(k+1)

u ) =0 -u )}
o) () ;
it follows that

€n) - pe@ - u,) = sze(n(k)) - Pe(n(k) -u (k))s
v

If n(k) is the last term in the chain, then (4) applied to n(k) yields

pe(m(k) -u g ) if n(k)<. 2u
v )1
v P {€(u -p0 if n = 2u
V(k)—l v(k)—l
Hence, in the first case,
_ k+1l_, (k)
€(n) - pe(n - uV) =p €(n - uv(k)_l) .
Finally, (4) applied to u, yields
€w,) =p +pew ,) »
50 that
0ift=1o0r t=2
(15) e(ut) -p = pe(ut_z) otherwise
Therefore, the second case results in
{ 0 if V(k) =3
€M) - p€(n - u ) = 9
pk+26(u &) ) otherwise

vr-2
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and the lemma is proved.

Lemma5. If k=2 and p = -1,w, or w?, then e(a+uo+k) either
vanishes or is of the form :tpt €(m) for some t =0 andsome m < a + u0'+k'
If k is odd, the result is a direct consequence of Lemma 3.

If k is even and p = -1, then Lemma 2 implies that e(a+uo_+k)
equals either €(a - uc) or -€(a) - €(a - uo) which, according to (8), inturn
equals €&(a + uo+1) .

If is isevenand p = w or P =w?, then Lemma 2 implies that

p{e(@ -pe@-u)l if k=0 (mod3)
0+k) ={ -€(a) - €(a - uo) if Kk =2 (mod 3)
PE(a - uc) if k =1 (mod 3)

In the first case, Lemma 4 yields the desired form; in the third case, the re-

sult is manifest. Finally, in the second case, Eq. (8) gives

-€(a) - €(a - u ) = P2e(a + Uy

).

To complete the proof of the theorem, we show by a method of descent

that if 0 = -1, W, or w?, then for every n, either
€n) = :t,t
for some t =0, or

€n) = 0 .
Suppose this were false. Then choosing the smallest positive n for which

the theorem fails, we need only apply Lemma 5 to arrive at a contradiction.

Hence, it suffices to show that n admits a representation

= a +
n a+ ug

with k = 2. We may assume that n # u;, since (15) easily implies that
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p(l ~p[%1_]> .

e(ut) =

which is of the required form for p = -1, W, or w2 Taking

we therefore have a > 0. Now

so that

Therefore,

where k = 2,

5. APPLICATIONS AND GENERALIZATION

Theorem 1 can be interpreted as a statement about partitions of natural
numbers as sums of distinct terms of the sequence {un} defined by (2).
Letting Ak d(N) denote the number of ways N can be written as a

sum
N =u + u + coe + U
ny ny l’lh ?

where h = d (mod k) and

n1<n2<"'<nhw

Theorem 1 asserts that
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AZ,O(N) - AZ,I(N) 3
Ag o) = Ay (),

A, (N) - A

3,2
are all bounded as N varies over the natural numbers; moreover, if k = 3,
then there exists d such that the difference

A oM = AL 4(N)

is not bounded.

Theorem 1 can be proven in the same way for any sequence {Vn} such
that

oo o+ .
ny ny Vnp

Lemma 5, however, has more precise consequences for the sequence
{un} defined by (2). It is easy to see that €(N) = 0 or +1 if p = -1, and
that €(N) = 0, +1, 2w, or +w?* if p = W% The partition-theoretic conse-

quence of this observation is that for each N,
| 85,000 - 4, 00| =1
and

A3 0(N) - A, N+ + N - A, N} =1,

Ag 1(N) - Ag 4 (N)

3,1 Ag g 3,0

NOTE: The truth of Theorem 1 for the special case P = 1 is a consequence
of results found in [4]. The special case p = 1 is also a consequence of re-
sults found in later papers (see [5] and [1]). The interest in series (1) for

[Continued on page 511. ]



