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Shah [1] and Bruckner [2] have considered the problem of determining
which moduli m have the property that the Fibonacci sequence {un}, de-
fined in the usual way, contains a complete system of residues modulo m.,
Following Shah we say that m is defective if m does not have this property.

The results proved in [1] include: () If m is defective, so is any
multiple of m; in particular, 8n is always defective. (II) if p is a prime
not 2 or 5, p is defective unless p = 3 or 7 (mod 20). (II) If p is a
prime =3 or 7 (mod 20) and is not defective, thenthe set {0, =1, #ug, tuy,
Flg, oo 0y '_Hln }, where h = (p +1)/2, is a complete systemlof residues
modulo p. In [2], Bruckner settles the case of prime moduli by showing that
all primes are defective except 2, 3, 5, and 7.

In this paper we complete the work of Shah and Bruckner by proving the
following result, which completely characterizes all defective and nondefective
moduli.

Theorem. A number m is not defective if and only if m has one of

the following forms:

55, 2.55, 455,
3.5, 65,
k k

757, 145,

where kK =0, j =1,

Thus almost all numbers are defective. We will prove a series of lem-
mas, from which the theorem will follow directly, We first make some use-
ful definitions.

We say a finite sequence of integers (ay, &, °*+, a,) is a Fibonacci

cycle modulo m if it satisfies a; + 8. 5 modm), i =1, ¢, r -2,

i+2
aswell as a, ; +a, = a (mod m) and a,+ta; = g (mod m), and further-

more (aj, a, *++, ag) does not have these properties for any q <r. (As
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the name implies, it is convenient to regard the cycles as circular.) We say
r is the length of the cycle. For any m, we also call (km) a Fibonacci
cycle modulo m of length 1. We call two Fibonacci cycles equivalent if one
is congruent termwise modulo m to a cyclic permutation of the other. Fin-

ally, we define a complete Fibonacci system modulo m to be a maximal set

of pairwise inequivalent Fibonacci cycles modulo m. Note that the total num-
ber of terms appearing in such a system is m?.

The idea behind this definition is simple; it is a compact way of repre-
senting all possible Fibonacci sequences modulo m. Forexample, the follow-

ing are complete Fibonacci systems modulo 2, 3, 4, and 5, respectively:

{0, 1, 1), 0},
{(0’ 1’ 1, 2’ Os 2: 23 1)9 (0)},
{0, 1,1, 2, 3, 1), (0, 3, 3, 2, 1, 3), (0, 2, 2), (0},

{(O’ 1, 1’ 2, 3’ 03 3a 3: 1, 4’: O’ 49 4’ 3: 2, 03 23 2, 4: 1), (19 3: 4, 2)9 (0)} .

For larger m the structure of these systems can become quite intri-
cate and is worthy of study in itself. We will not undertake such a study here.
Instead, we will proceed to thelemmas. The first lemma gives another proof
of the result of Bruckner; it is included to illustrate the above ideas..

Lemma 1. If p is a prime which is not defective, then p = 2, 3, 4,
or 7.

Proof. Assume the contrary, and let p = 7 be a nondefective prime.
Then p = 3 or 7 (mod 20), and (II) holds. From this it is easily seen either
directly or from (5.5) and (5.6) of [1] that

Cy = 0, 1,1, *°,u

h-2’ Yp-17 Yh? “Up-1? hepe T b 7D

0, -1, -1, -u

h-1? “Uh Yho1? pepe 7t 71 D

H "'uh_z,
is a Fibonacci cycle of length 2p + 2 modulo p.

Let Cy, k=1, ««+, (p-1)/2, be the finite sequence formed by mul-
tiplying the terms of C; by k. Clearly each Ck is a Fibonacci cycle mod-
ulo p. But they are all inequivalent, since Cj equivalent to Ck implies
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j = tk (mod p), which implies j = k. Since all the (p - 1)/2 sequences C
are inequivalent, the set

k

{Cis f00y C(p—l)/z’ (0)}

is a complete Fibonacci system (modulo p) because the total number of terms
appearing is

p;1-(2p+2)+1=p2.

Consider the finite sequence of integers 5, -2, 3, 1, 4, 5. This satis-
fies the Fibonacci difference equation, and hence must be congruent term-by-
term to a portion of some Ck (possibly wrapped end around). Thus some
Ck has two congruent terms five steps apart. Therefore, multiplying each
term by the inverse of k, we see that C; hastwo congruent terms five steps
apart. But examination of the definition of C; shows that this implies that
for some 3 =j =h either uj = +1 (mod p) or u.j = :l:uk (mod p) for some
k #j, 3=k =h. (Note that here we have used p > 7.) But this contra-
dicts (III), so the lemma is proved.

By property () it suffices to consider moduli divisible only by 2, 3, 5,
and 7. We first deal with the powers of 3.

Lemma 2. No power of three is deficient.

Proof. We begin by determining a complete Fibonacci system modulo
3%, 1t is well known that the rank andperiod of 3" are 4 - 3h-1 and 8. 301
respectively. That is, the smallest m = 0 for which 3" W is 4. 3n,—1’

and for all m,

(mod 3t ) .

el
i
[

m-+8. 3n—1

Thus
C =1(0,1,1,2, -, us’sn_l)

is a Fibonacci cycle modulo 3", But it is eagsily from the above facts that
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u = -1 (mod 3"),
2301

so that

Cy (0, 1,1, 2, 00, 0, =1, =1, =2, +o+, ug.sn_1_1>
is an equivalent Fibonacci cycle.

For each integer k prime to 3 in the range 0 <k'< %-311, let Ck
be the sequence formed by multiplying each term of C; by k. As inthepre-
vious lemma, the Ck are all inequivalent Fibonacci cycles. The total num-
ber of such C, is -%-(l)(Sn) = 301

the total number of terms appearing in the C

» where ¢ is the Euler function. Hence,
| is 8- 3™-2 Consider also
the sequences formed by multiplyingby 3 every term of a complete Fibonacci

n-1

system modulo 3 This clearly forms a set of inequivalent Fibonacci

cycles modulo 3n, and the total number of terms appearing in the cycles is
32n—2. Furthermore, none of these cycles is equivalent to any Ck' There-

fore, these cycles, together with the C,, form a complete Fibonacci system

k!
modulo 3n, since the total number of terms is then

2n-2 + 32n—2 _ 3211 .

8¢3

It is well known that the expression |a® + ab - b?|, where a and b
are two consecutive terms of a sequence satisfying the Fibonacci difference
equation, is an invariant of the sequence. Consequently, an invariant of any
such sequence modulo m is the pair of residue classes corresponding to
+(a% + ab - b?), and the same applies to Fibonacci cycles.

We now show that any Fibonacci cycle modulo 3" with invariant cor-
responding to +1 is equivalent to Cy. Certainly such a cycle must be equiva-
lent to some Ck’ since the invariants of the other cycle are divisible by 3.
Such a C, must satisfy K? = 41 (mod 3"). But

K2 = -1 (mod 3%)

is impossible, so (k + 1)k ~ 1) = 0 (mod 3n), so that k = 1 and the cycle

is equivalent to Cj.
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From this, we see that thelemma will be proved if it can be shown that

for any a there is a b such that

2 +ab - b% = 41 (mod 3%).
In fact, we will even show this for
a2 +ab - b2 = -1.

This is obvious for n = 1. Now suppose the above to have been proved for
some value n 2 1, and let b be such that

a2 + ab - b?

let

a’ + ab -

We will determine an x = 3nt + b

a® + ax - X

We have

a* + ax - X

Il
W
—~
0

1]
wW
[=]
—_
[

]
B
+

= -1 (mod 3%) ,
o= A3t -1
such that

= -1 (mod 3n+1) .

+ 2b)t + 3"A - 1(mod 3

3%t + ab + 2.3%bt + b2

+ 2b)t + (a2 + ab - b?)

Thus x will have the desired property if

(a + 2b)t +

But 3 # a + 2b, for otherwise a

A

b,

0 (mod 3) .

and
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22 = g% +ab - b = -1 (mod 3) ,

which is impossible. Therefore, the above congruence has a solution and the
lemma is proved.

We now consider the effect of the prime 5. We will prove a general
lemma which is of some interest in itself.

Lemma 3. Suppose that the Fibonacci sequence {un} has period k
modulo m, and that it has period 5k modulo 5m. For some n and a let
u

n k+n’ *
cee, 4m + a (mod 5m) in some order.

a (mod m). Then u,u tes Uy are congruent to a, m + a,

Proof. We consider two cases, depending on whether or not 5|m. We
first assume 5 £ m. Then the period of 5m is the g.c.d. of k and the per-
iod of 5, which is 20, Since this period is to equal 5k, we have k = 4, 8,
12, 16 (mod 20). Now, a cycle modulo 5 which corresponds to the standard

Fibonacci sequence is

(0, 1’ 1! z’ 3’ 09 3? 3’ 1’ 4’ 0! 4, 4’ 31 2’ 0’ 21 2, 4’ 1)'

From this it maybe verified that w. are congruent mod-

Yean® "7 70 Yaip
ulo 5to 0, 1, 2, 3, 4 in some order. For instance, if n = 0 (mod 20) they
are congruent respectively to 9, 3, 1, 4, 2. Since each of theseis congruent
to a modulo m, they are congruent in some order to a, m +a, =+, 4m +
a. This completes the first case.

We now assume 5|m. Since the Fibonacci sequence has period k mod-

ulo m, are all congruent to a modulo m and hence

Yo’ Yk T Mk
are each congruent to im + a modulo 5m for some choice of 0 =i = 4,
Our object is to show that the value of i is differentfor eachof the five terms.
Set Wo.q = b (mod m). Then Wit Ynanet? 0 Ymantd
gruent to jm +b for some 0 = j =4. Speaking in terms of the concept we

are each con-

have defined, there are 25 pairs congruent modulo 5m to (im + a, jm + b)
appearing within a complete Fibonacci system modulo 5m, of which 5 ap-
pear in the cycle corresponding to the standard Fibonacci sequence. Our ob—
ject isto show that each of these 5 gives a different value of i.

Since
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a® +ab - b2 = +1 (mod m) ,
we may set
a® +ab - b = mA +1.
Applying this same invariant to the pair (im +n, jm +b), we have

(im + 2)? + (im + a)(jm + b) - (jm + b)?

1l

Zm? + ijm? - #m? + ((2a + b)i + (a - 2b)j)m + 2% + ab - b?

m?(i® + ij - ) + m((2a + b)i + (a - 2b)j) + mA + 1 .

Il

This last expression will be congruent to +1 (modulo 5m) if and only if
(2a + b)i + (a - 2b)j + A = 0 (mod 5).
However, 2a+b # 0 (mod 5) since otherwise
41 = 2% - ab - b = a - 2a% - 422 = 0 (mod 5);

similarly a - 2b # 0 (mod 5).

Consequently, for each of the 5 possible choices of i, there is exactly
one j satisfyingthe above congruence. Hence onlythese 5pairs could appear
as consecutive pairs in the Fibonacci sequence. Since i is different in each
case, the lemma is proved.

We now deal with the other primes, and combinations thereof.

Lemma 4. The numbers 8, 12, 18, 21, 28, and 49 are deficient; the
numbers 4, 6, 14, and 20 are nondeficient.

Proof. The arithmetic involved in verifying these facts is left to the
reader.

We now can easily prove the main result.

Proof of Theorem. Lemmas 1 and 4, along with (I), show that the num—

bers of the theorem are the only possible nondeficient numbers. All numbers
3 are nondeficient by Lemma 2. Furthermore, the periods of 6, 14, 20,
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and 30 are 24, 48, 60, and 8- 3j—1, respectively, so that by Lemma 3,
all numbers 6 - 5k, 14 - Eik, 20 - 5k, Sj . 5k are all nondeficient.  Apply-
ing (I) again we see that all numbers of the theorem are nondeficient. Thus,
the theorem is proved.

It would be interesting to extend this work by considering more general—
ly the problem of characterizing, at least partially, the residue classes that
appear in the Fibonacci sequence with respect to a general modulus, as well
as their multiplicities. A small start on this large problem has been made
by [1], [2], and the present work, especially Lemma 3. Also of interest,
both as an aid to the above and for itself, would be a systematic study of com—
plete Fibonacci systems, whose structure can be quite complicated. In par-
ticular, it would be useful to know the set of lengths and multiplicities of the
cycles. Considerable information, especially for prime moduli, bearing on
this problem exists in various places; see for instance [3], [4]. Of course,
these problems can be generalized to sequences satisfying other recurrence

relations.
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