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Shah [1] and Bruckner [2] have considered the problem of determining 
which moduli m have the property that the Fibonacci sequence {u }, de-
fined in the usual way9 contains a complete system of residues modulo m, 
Following Shah we say that m is defective if m does not have this property, 

The results proved in [1] includes (I) If m is defective, so is any 
multiple of m; in particular, 8n is always defective. (II) if p is a prime 
not 2 or 5, p is defective unless p = 3 or 7 (mod 20). (in) If p is a 
prime = 3 or 7 (mod 20) and is not defective^ thenthe set {0, ±1, =tu3, ±u49 

±u5, • • • , ±u }9 where h = (p + l ) /2 ? is a complete system of residues 
modulo p„ In [2], Bruckner settles the case of prime moduli by showing that 
all primes are defective except 2, 3S 5, and 7. 

In this paper we complete the work of Shah and Bruckner by proving the 
following re suit f which completely characterizes all defective and nondefective 
moduli. 

Theorem. A number m is not defective if and only if m has one of 
the following forms: 

5 k , 2 *5 k
f 4»5k , 

33*5k
5 6«5k , 

k k 
7-5 , 14* 5* , 

where k ^ 0S j — 1. 
Thus almost all numbers are defective. We will prove a series of lem-

mas , from which the theorem will follow directly, We first make some use-
ful definitions. 

We say a finite sequence of integers (al9 ag? 9 a • > a r ) is a Fibonacci 
cycle modulo m if it satisfies a. + a.+1 = ai + 2 (mod m), i = 1, ° * * , r - 29 

as well as a - + a = at (mod m) and a + ai = a2 (mod m), and further-
more (alf a2§

 e 9 e i aq) does not have these properties for any q <. r. (As 
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the name implies, it is convenient to regard the cycles as circular.) We say 
r is the length of the cycle. For any m, we also call (km) a Fibonacci 
cycle modulo m of length 1. We call two Fibonacci cycles equivalent if one 
is congruent termwise modulo m to a cyclic permutation of the other. Fin-
ally, we define a complete Fibonacci system modulo m to be a maximal set 
of pairwise inequivalent Fibonacci cycles modulo m. Note that the total num-
ber of terms appearing in such a system is m2. 

The idea behind this definition is simple; it is a compact way of repre-
senting all possible Fibonacci sequences modulo m. For example, the follow-
ing are complete Fibonacci systems modulo 2, 3, 4, and 5, respectively: 

{(0, 1, 1), (0)1, 

{(0, 1, 1, 2, 0, 2, 2, 1), (0)1, 

{0, 1, 1, 2, 3, 1), (0, 3, 3, 2, 1, 3), (0, 2, 2), (0)}, 

{(0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1), (1, 3, 4, 2), (0)} . 

For larger m the structure of these systems can become quite intri-
cate and is worthy of stafy in itself. We will not undertake such a study here. 
Instead, we will proceed to the lemmas. The first lemma gives another proof 
of the result of Bruckner; it is included to illustrate the above ideas. . 

Lemma 1. If p is a prime which is not defective, then p = 2, 3, 4, 
or 7. 

Proof. Assume the contrary, and let p > 7 be a nondefective prime. 
Then p = 3 or 7 (mod 20), and (III) holds. From this it is easily seen either 
directly or from (5.5) and (5.6) of [1] that 

Ci = (0, 1, 1, . . . , uh_2 , u n _ l f uh , -u h _ 1 , uh_2 , • " , 1 , - 1 , 

0, - 1 , . 1 , . . . , -u h _ 2 , - V l § -u h , V l , - u h - 2 , . " , - 1 , 1) 

is a Fibonacci cycle of length 2p + 2 modulo p. 
Let C, , k = 1, • • • , (p - l ) / 2 , be the finite sequence formed by mul-

tiplying the terms of Cj by k. Clearly each C, is a Fibonacci cycle mod-
ulo p. But they are all inequivalent, since C. equivalent to C. implies 
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j = ±k (modp), which implies j = ke Since all the (p - l ) /2 sequences C, 
are inequivalentf the set 

^ • • • • • V D / 2 * ( 0 ) } 

is a complete Fibonacci system (modulo p) because the total number of terms 
appearing is 

E ^ i . (2p + 2) + 1 = p2 

Consider the finite sequence of integers 59 - 2 , 3S 1, 49 58 This sat is-
fies the Fibonacci difference equation* and hence must be congruent term-by-
term to a portion of some C, (possibly wrapped end around). Thus some 
C, has two congruent terms five steps apart, Therefore, multiplying each 
term by the inverse of k, we see that Cj has two congruent terms five steps 
apar t But examination of the definition of Cj shows that this implies that 
for some 3 ^ j ^ h either u. = ±1 (mod p) or u. = ±u, (mod p) for some 
k ^ j , 3 == k ^ h* (Note that here we have used p > 7e) But this contra-
dicts (in), so the lemma Is proved. 

By property (I) It suffices to consider moduli divisible only by 2, 3S 5, 
and 7* We first deal with the powers of 3* 

Lemma 2, No power of three is deficient 
Pro of. We begin by determining a complete Fibonacci system modulo 

3n
B It is well known that the rank and period of 3 are 4 * 3 " and 8 . 3 

,n| • „ 0n.-l u is 4 • 3 ,. m respectively* That is9 the smallest m > 0 for which 3 
and for all m§ 

Thus 

u = u - (mod 3 ) 
m l 0 0 n - l 

m+8*3 

C = (0, 1, 1, 2, • • • , u n„x) 
8.311 

is a Fibonacci cycle modulo 3n
s But It Is easily from the above facts that 
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u 1 = -1 (mod 3 n ) , 
4.3n x+l 

so that 

Ct = fo , 1, 1, 2, • - . , 0, - 1 , - 1 , - 2 , " 9 U - ] 

is an equivalent Fibonacci cycle. 
For each integer k prime to 3 in the range 0 < k ' < £• 311, let C, 

be the sequence formed by multiplying each term of Cj by k. As in the p re -
vious lemma, the C, are all inequivalent Fibonacci cycles. The total num-
ber of such C, is -|</>(3 ) = 3 " , where $ is the Euler function. Hence, 

m—2 the total number of terms appearing in the C. is 8 • 3 . Consider also 
the sequences formed by multiplying by 3 every term of a complete Fibonacci 
system modulo 3 "" . This clearly forms a set of inequivalent Fibonacci 
cycles modulo 3 , and the total number of terms appearing in the cycles is 

2n—2 
3 . Furthermore, none of these cycles is equivalent to any C, . There-
fore, these cycles, together with the C, , form a complete Fibonacci system 
modulo 3 n , since the total number of terms is then 

8>32n-2 + 32n-2 = 32n ^ 

It is well known that the expression |a2 + ab - b2], where a and b 
are two consecutive terms of a sequence satisfying the Fibonacci difference 
equation, is an invariant of the sequence. Consequently, an invariant of any 
such sequence modulo m is the pair of residue classes corresponding to 
±(a2 + ab - b2) , and the same applies to Fibonacci cycles. 

We now show that any Fibonacci cycle modulo 3 with invariant cor-
responding to ±1 is equivalent to Cj. Certainly such a cycle must be equiva-
lent to some C, , since the invariants of the other cycle are divisible by 3. 
Such a C. must satisfy k2 = ±1 (mod 3 ). But 

k2 = -1 (mod 3n) 

is impossible, so (k + l)(k - 1) = 0 (mod 3 ), so that k = 1 and the cycle 
is equivalent to Cj. 
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From this, we see that the lemma will be proved if it can be shown that 
for any a there is a b such that 

a2 + ab - b2 = ±1 (mod 3n) . 

In fact, we will even show this for 

a2 + ab - b2 « -1 . 

This is obvious for n = 1. Now suppose the above to have been proved for 
some value n ^ 1, and let b be such that 

a2 + ab - b2 = -1 (mod 3n) , 

let 

a2 + ab - b2 = A-3n - 1 .. 

We will determine an x = 3 t + b such that 

a2 + ax - x2 = -1 (mod 3n + 1) . 

We have 

a2 + ax - x2 = a2 + 3nat + ab + 2-3nbt + b2 

= 3n(a + 2b)t + (a2 + ab - b2) 

= 3n(a + 2b)t + 3nA - Krnod 3n + 1) . 

Thus x will have the desired property if 

(a + 2b)t + A s 0 (mod 3) . 

But 3 / a + 2b, for otherwise a = b , and 
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a2 = a2 + ab - b2 = - 1 (mod 3) , 

which i s i m p o s s i b l e The re fo re , the above congruence has a solution and the 

l e m m a i s proved, 

We now cons ider the effect of the p r i m e 5. We will prove a genera l 

l e m m a which i s of some in t e r e s t in itself. 

L e m m a 3. Suppose that the Fibonacci sequence {u } has per iod k 

modulo m , and that i t has period 5k modulo 5m» F o r some n and a l e t 

u = a (mod m) . Then u , u, , • •• , u , , a r e congruent to a, m + a* 

• • • , 4m + a (mod 5m) in some o r d e r . 

Proof. We cons ider two c a s e s , depending on whether o r not 5Jm„ We 

f i r s t a s sume 5 / m . Then the per iod of 5m is the g. c. d. of k and the p e r -

iod of 5, which i s 20. Since this per iod i s to equal 5k, we have k = 4 , 8, 

12, 16 (mod 20). Now, a cycle modulo 5 which co r r e sponds to the s tandard 

Fibonacci sequence i s 

(0, 1, 1, 2 , 3 , . 0 , 3 , 3 , 1, 4 , 0, 4 , 4 , 3 , 2 , 0, 2 , 2 , 4 , 1). 

F r o m this i t m a y b e verif ied that u , u. , , • • • , u . . , a re congruent mod-J n k+n ' 4k+n & 

ulo 5 t o 0, 1, 2 , 3 , 4 in some o r d e r . F o r ins tance , if n = 0 (mod 20) they 

a re congruent respec t ive ly to 9, 3 , 1, 4 , 2. Since each of these i s congruent 

to a modulo m , they are congruent in some o r d e r to a, m + a, • • • , 4m + 

a. Th is comple tes the f i r s t c a s e . 
We now assume 5|m. Since the Fibonacci sequence has per iod k mod-

ulo m , u , u, , , • • • , u , , a re all congruent to a modulo m and hence 
n k+n' 4k+n & 

a re each congruent to im + a modulo 5m for some choice of 0 ^ i ^ 4. 

Our object i s to show that the value of i i s different for each of the five t e r m s . 
Set u ,- = b (mod m) . Then u , - , u , , „ , *e * , u . , , - a re each con-

n+1 n+1 m+n+1 4m+n+l 
gruent to jm + b for some 0 ^ j ^ 4 . Speaking in t e r m s of the concept we 
have defined, there a r e 25 p a i r s congruent modulo 5m to (im + a, j m + b) 
appearing within a complete Fibonacci sys tem modulo 5m, of which 5 ap -
p e a r in the cycle cor responding to the s tandard Fibonacci sequence. Our o b -
jec t i s to show that each of these 5 gives a different value of i. 

Since 
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a2 + ab - b2 = ±1 (mod m) , 

we may set 

a2 + ab - b2 = mA ± 1 . 

Applying this same invariant to the pair (im + n, jm + b), we have 

(im + a)2 + (im + a)(jm + b) - (jm + b)2 

= i2m2 + ijm2 - j2m2 + ((2a + b)i + (a - 2b)j)m + a2 + ab - b2 

= m2(i2 + ij - j2) + m((2a + b)i + (a - 2b)j) + mA ± 1 . 

This last expression will be congruent to ±1 (modulo 5m) if and only if 

(2a + b)i + (a - 2b)j + A = 0 (mod 5) . 

However9 2a + b ^ 0 (mod 5) since otherwise 

±1 = a2 - ab - b2 = a2 - 2a2 - 4a2 = 0 (mod 5); 

similarly a - 2b ^ 0 (mod 5). 
Consequentlys for each of the 5 possible choices of i , there is exactly 

one j satisfying the above congruence. Hence only these 5 pairs could appear 
as consecutive pairs in the Fibonacci sequence. Since i is different in each 
case, the lemma is proved., 

We now deal with the other primes, and combinations thereof. 
Lemma 4. The numbers 8, 12, 18, 21, 28, and 49 are deficient; the 

numbers 4, 6, 14, and 20 are nondeficient. 
Proof. The arithmetic involved in verifying these facts is left to the 

reader. 
We now can easily prove the main result. 
Proof of Theorem. Lemmas 1 and 4, along with (I), show that the num-

bers of the theorem are the only possible nondeficient numbers. Ail numbers 
3J are nondeficient by Lemma 2. Furthermore, the periods of 6, 14, 20, 
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and 30 are 24, 48, 60, and 8 • 3J~ , respectively, so that by Lemma 3, 
all numbers 6 • 5 , 14 • 5 , 20 - 5 , 3J • 5 are all nondeficient. Apply-
ing (I) again we see that all numbers of the theorem are nondeficient. Thus, 
the theorem is proved, 

It would be interesting to extend this work by considering more general-
ly the problem of characterizing, at least partially, the residue classes that 
appear in the Fibonacci sequence with respect to a general modulus, as well 
as their multiplicities. A small start on this large problem has been made 
by [1] , [2] , and the present work, especially Lemma 3. Also of interest, 
both as an aid to the above and for itself, would be a systematic study of com-
plete Fibonacci systems, whose structure can be quite complicated. In par-
ticular, it would be useful to know the set of lengths and multiplicities of the 
cycles. Considerable information, especially for prime moduli, bearing on 
this problem exists in various places; see for instance [3], [4 ] . Of course, 
these problems can be generalized to sequences satisfying other recurrence 
relations. 
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