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REDUCTION FORMULAS FOR FIBONACCI SUMMATIONS
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[Continued from page 466. ]
le| = |81, lof =1,

it is evident that

lim N1 1
N=oo uNiFn a
Thus (6.4) implies
00 T
(6.5) u A =u E (aﬁ)n = In-1 -k
' r'r T o u u o
=< “n n+r - n
n=1 n=1
Returning to (6.2), we have
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Therefore we have
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=1, af = -1, (6.6) reduces to

In particular, when o + B
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where now g § ; and Azk-j+1 are expressed in terms of Fibonacci numbers.
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P = 1 stems from its application to the partitioning of integers into distinct
Fibonacci numbers. These applications are investigated in the papers listed
in References. When P is a root of unity, series (1) again has partition —

theoretic congruence which we exploited to some extent in Section 5.
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