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In p a r t i c u l a r , when a + p = 1, ap = - 1 , (6.6) r educes to 
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'. V and A 2 k ^ . + 1 are expressed In terms of Fibonacci numbers, 
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p = 1 stems from its application to the partitioning of integers into distinct 
Fibonacci numbers. These applications are investigated in the papers listed 
in References. When p is a root of unity, series (1) again has partition — 
theoretic congruence which we exploited to some extent in Section 5. 
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