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Abstract

Monads and their compositions can sometimes be generated from simpler data types and without necessarily requiring any monad
axioms. Free monads and monad approximations provide two approaches to overcoming the constraints required by monad
composition laws while generating near distributive laws.

Keywords: monad composition, free monad, monad approximation, near distributive law.

1 Introduction

This paper continues our study of monad composition in [10], [11]. We will use the same notations as in the
second of these papers. We work in a category V.

In working with monads in a programming language, there are two problems: It may be hard to define a
monad using the data types available to the programmer, and it may be difficult to verify the monad axioms.
The second of these is a very common situation in monad composition.

Given monads (H,µ, η) and K, ν, ρ) their composition should have form (KH, τ, ρη). The problem is that
there is no obvious τ . The solution is to provide a natural transformation λ : HK → KH which allows τ to
be defined as

τ = KHKH
KλH−−→ KKHH

µν−−→ KH
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The axioms on λ equivalent to rendering (KH, τ, ρη) a monad were discovered by [3] and are as follows.

H HK-Hρ
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(DL C) (DL D)

Axioms (DL C, DL D) hold if and only if K lifts through the category VH of Eilenberg-Moore algebras of
H and we say λ is a near distributive law in this case.

In practice, such axioms present an obstruction to the programmer. We recall [4, Page 34]:

“all polymorphic functions in functional programming are natural transformations”.

Thus the axioms are the obstruction and not the requirement of naturality. In this paper we present
two approaches to getting around the obstruction and, in the process, discover a variety of near distributive
laws. In the first case, we consider endofunctors H, K and arbitrary natural transformations λ : HK → KH
where there are no axioms on λ. If H generates a free monad H@ then λ induces a near distributive law
λ@ : H@K → KH@ and say λ generates λ@. We consider in detail near distributive laws for a common class
of free monads namely those generated by algebraic signatures.

A different approach involves defining the notion of a pre-monad in V to be (H, η, µ) with H : V → V an
endofunctor and µ : HH → H, η : id→ H natural transformations, with no further axioms. Pre-monads retain
a surprising amount of structure. Analogous to the property of generating a free monad, we shall see that a

pre-monad H usually has a monad approximation of H, monad Ĥ. We show that if (K,m, e) is a pre-monad,

then a near distributive law λ : HK → KH induces a near distributive law λ̂ : ĤK → KĤ.

2 Free Monads

Our most relaxed model of a monad is a functor H : V → V. In standard situations the free monad generated
by H, (H@, µ, η; ι) exists where H@ = (H@, µ, η) is a monad in V and ι : H → H@ is a natural transformation,
subject to the universal property [2]

H H@-ι

α

@
@
@
@
@R
K
?

ψ

(H@, µ, η)

(K, ν, ρ)
?

ψ

that if (K, ν, ρ) is a monad in V and α : H → K is a natural transformation then there exists a unique monad
map ψ as shown with ψι = α.

Example 2.1 Assume that V has finite powers. For a finite ordinal i ≥ 1, let Hi : V → V be the functor
HiX = Xi, the usual i-product functor. When V = Set, the data type H@

i X is the set of all trees in which
every node is either an element of X, denoted Lix (if it is a leaf) or has i subtrees beneath it, denoted
Bit1 · · · ti ∈ H@

i X. The natural transformation ηX : X → H@
i X maps x to Lix while µX : H@

i H
@
i X → H@

i
maps Lit to t and Bi tt1 . . . tti to Bi (µXtt1) . . . (µXtti).

In what follows, we consider only H for which H@ exists.
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Definition 2.2 An H-algebra is a pair (X, δ) where δ : HX → X in V. An H-homomorphism f : (X, δ)→
(Y, ε) of H-algebras must satisfy: ε ◦Hf = f ◦ δ

It is evident that idX : (X, δ) → (X, δ) is an H-homomorphism and that H-homomorphisms are closed
under composition. This gives rise to a category VH of H-algebras with underlying functor VH → V.

Theorem 2.3 [2] VH is isomorphic over V to the category of Eilenberg-Moore algebras VH@

. The isomorphism

Φ : VH@ → VH is given by

Φ(X, H@X
ξ−−→ X) = (X, HX

ι
X−−→ H@X

ξ−−→ X)

3 Functorial Lifts

Definition 3.1 Let H = (H,µ, η) be a monad in V, and let K : V → V be a functor. A functor K? : VH → VH

is a functorial lift of K through the Eilenberg-Moore category VH if the following square commutes:

V V-
K

VH VH-K?

? ?

The following result is due to [1]. Also, see [7].

Theorem 3.2 For H = (H,µ, η) a monad in V and K : V → V a functor, functorial lifts K? : VH → VH are
in bijective correspondence with natural transformations λ : HK → KH which satisfy (DL C) and (DL D).
The correspondences are

K?(X, ξ) = (KX, HKX
λ
X−−−−→ KHX

Kξ−−−−→ KX)(1)

and

λX = HKX
HKη

X−−−−→ HKHX
ω
X−−−−→ KHX(2)

where K?(HX,µX) = (KHX, HKHX
ωX−−→ KHX). Further,

ωX = HKHX
λHX−−−−→ KHHX

KµX−−−−→ KHX(3)

It is immediate that λX : (HKX,µKX) → K?(HX,µX) is a H-homomorphism; the homomorphism
diagram is precisely (DL D). It follows (using (DL C)) that λX is the unique homomorphic extension of
Kη. There is more than one possible λ, however, because there is more than one possible K-algebra structure
for K?(HX,µX).

Definition 3.3 Let H : V → V generate a free monad H@ and let K : V → V be a functor. Let K? : VH@ →
VH@

be a functorial lift of K with classifying natural transformation λ@ : H@K → KH@ as in Theorem
3.2. We say K? is a flat functorial lift if there exists a natural transformation λ : HK → KH such that the
following square commutes.

KH KH@-
Kι

HK H@K-ιK

?
λ

?
λ@ (3.3)

We then say that λ generates K?, or λ generates λ@, and when K is a monad that λ@ is a flat near-
distributive law.

Theorem 3.4 Given H,K : V → V such that H@ exists, every natural transformation λ : HK → KH
generates a flat functorial lift of K through H@.
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Proof. Given λ, define K† : VH → VH over V by

K†(X, δ) = (KX, HKX
λX−−−−→ KHX

Kδ−−−−→ KX)

If f : (X, δ)→ (Y, ε) is an H-homomorphism, the diagram

HKY -
λY

HKX -λX

?
HKf

KHY KY-
Kε

KHX KX-Kδ

?
KHf

?
Kf

shows that Kf : K†(X, δ)→ K†(Y, ε) is again an H-homomorphism. In the notations of Theorem 2.3 we then
have the functorial lift

K? = VH@ Φ−−−−→ VH K†−−−−→ VH Φ−1

−−−−→ VH@

We leave the remaining details to the reader. 2

Corollary 3.5 Given H,K : V → V where K is a monad and H@ exists, then every natural transformation
λ : HK → KH generates a flat near distributive law λ@ : H@K → KH@.

4 Near Distributive Laws for Free Monads

4.1 Near Distributive Laws via Generic Prestrengths

The notion of prestrength on an endofunctor F of a category was defined and used in [11] and [12] as part of the
process of working with Kleisli strength. For the purposes of this paper a prestrength of order n on the functor
F is a natural transformation Γn : HnF → FHn, where Hn is as in Example 2.1. We exploit the existence of
what could be suitably called a monad-induced generic prestrength to derive classes of near-distributive laws
on free monads H@

i . Later, in Section 4.3, we will identify alternative non-generic kinds of prestrengths which
generate in turn different kinds of near-distributive laws.

Lemma 4.1 For any monad K = (K, ν, ρ) in Set there exists a generic prestrength Γn : KA1 × ...KAn →
K(A1 × ...An) of dimension n ≥ 1.

Proof. Let K = (K, ν, ρ) be a monad in Set. We show for any given i ≥ 1 that there exists a natural
transformation Γi : (KX)i → KXi. Suppose that there exists a natural transformation in two variables

KX ×KY
Γ
XY−−−−→ K(X × Y )

Then for i = 1 define Γ1 = idX and for i = 2 let Γ2 = Γ
XY

. Proceeding inductively, if Γi : (KX)i → KXi is
natural, we obtain a natural transformation

KX × (KX)i
idX×Γi−−−−−−−→ KX ×KXi

Γ
XXi−−−−→ K(Xi+1)

To construct Γ2, for x ∈ X let inx : Y → X × Y be defined by inx(y) = (x, y). It is obvious that the following
square commutes for each f : X → X1, g : Y → Y1:

Y1 X1 × Y1
-

infx

Y X × Y-inx

?
g

?
f × g

Define δ
XY

: X ×KY → K(X ×Y ) by δ
XY

(x, τ) = (K inx) τ . From the preceding square and the functoriality
of K we obtain

X1 ×KY1 K(X1 × Y1)-
δ
X1Y1

X ×KY K(X × Y )-δ
XY

?

f ×Kg
?

K(f × g)
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At this stage, we need that K is a monad. Any function fromX to a K-algebra admits a unique K-homomorphic
extension f# from the free algebra (KX,µX). Define the desired Γ

XY
: KX×KY → K(X×Y ) by Γ

XY
(σ, τ) =

δ
XY

(·, τ)
#
σ. The desired naturality square amounts to the commutativity of

KX1 K(X1 × Y1)-
δ
X1Y1

(·, (Kf)τ)
#

KX K(X × Y )-δ
XY

(·, τ)
#

?

Kf

?

K(f × g)

for each τ ∈ KY . Since each of the four maps in this square is a K-homomorphism, it suffices to check
commutativity restricted to the generators ρX and this is clear from the square for δ

XY
immediately above.2

4.2 Amenable Monads

We know of no nontrivial monad which admits a distributive law with every monad. This places some constraint
on the use of distributive laws in programming. We consider instead monads which admit near distributive
laws with every monad, calling these amenable and provide examples.

Definition 4.2 A monad H in V is amenable if for every monad K in V, K has a functorial lift through VH.

Proposition 4.3 The monads H@
i in Set of Example 2.1 are amenable.

Proof. Let K = (K, ν, ρ) be a monad in Set. By Lemma 4.1 there exists a generic natural transformation
Γi : HiK → KHi for every i ≥ 1. Letting λ = Γ2 = Γ

XX
in Corollary 3.5 we are done.

Example 4.4 For K the reader monad KX = C × X, λ = Γ2 : H2K → KH2 in Proposition 4.3 becomes
Γ2((c1, x1), (c2, x2)) = (c1 ∗ c2, (x1, x2)). Acting on a binary tree t of type H@

2 KX, λ@(t) = (p, t∗) where p
is the product of the cis found in the leaves and t∗ is the corresponding tree in H@

2 X consisting only of the
elements of X.

Example 4.5 When K is itself a free monad of the form H@
j , we can give a recursive construction of the

functorial lift of lifting K = H@
j through SetH

@
i defining the near-distributive law λ : H@

i H
@
j → H@

j H
@
i in

cases. Details are straightforward and left to the reader. For i, j ≥ 1:

λ(LiLja) = LjLia

λLi(Bjt1 · · · tj) = Bj(λLit1) · · · (λLitj)
λBi(tt1 · · · tti) = (H@

j Bi)Γi((λtt1), · · · , (λtti))
where tti has type Hi

@Hj
@

Proposition 4.6 Let V have small coproducts, let (Hα) be a small family of endofuctors and let H =
∐
Hα

be the pointwise coproduct. Assume that the free monads H@
α , H@ exist. Then if each H@

α is amenable, so is
H@.

Proof. An H-algebra is determined by a family (δα : HαX → X). Let K be a monad in V and let

(X, HαX
δα−−→ X) 7→ (KX,HαKX

εα−−→ X) under a functorial lift of K through VHα . The remaining
details are clear. 2

Example 4.7 Let Σ be a finitary operator domain, that is, a disjoint sequence (Σn) of (possibly empty) sets.
A Σ-algebra (as conventionally defined in universal algebra) is (X, δ) where X is a set and δ = (δσ : σ ∈ Σ)
with δσ : Xn → X if σ ∈ Σn. Consider the coproduct functor

HΣX =
∐
σ∈Σn

Xn

so that an HΣ-algebra is the same thing as a Σ-algebra.

A variety of universal algebras is obtained from SetHΣ by imposing equations. H@
ΣX is the usual free

Σ-algebra generated by X. It is immediate from Propositions 4.3 and 4.6 that H@
Σ is an amenable monad in

Set.
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4.3 Prestrengths and Flat Near-Distributive Laws

In this section we consider a different class of flat near-distributive laws which generally differ from those of
the previous section.

Lemma 4.8 For any monad K = (K, ν, ρ) in Set, if there exists a natural transformation γ : K → id then
there exists a prestrength Γi : KA1 × ...×KAi → K(A1 × ...×Ai) for any i ≥ 1.

Proof. The construction is simple: for i = 1 define Γ1 = ρ ◦ γ. If i ≥ 2 then Γi = ρ ◦ (γ × . . . × γ). Since in
each case Γi is a composition of natural transformations we are done. 2

Proposition 4.9 For any monad K = (K, ν, ρ) for which a natural transformation γ : K → id exists, then
there exists a flat near-distributive law λ@ : H@

i K → KH@
i .

Proof. For any i ≥ 1, the prestrength Γi of the previous lemma generates a natural transformation HiK →
KHi and so the result follows immediately from Corollary 3.5. 2

Example 4.10 For j ≥ 1 let γ denote the j-th projection natural transformation Πj : Hj → id. By the
previous proposition this generates a flat near-distributive law λ@ : H@

i H
@
j → H@

j H@
i which generally differs

from that of Example 4.5.

Example 4.11 For monad K the M -Set monad KA = C × A for C a commutative monad with identity e,
γ : K → id defined as γ(c, a) = a is clearly natural thus generating Γn : KA1 × ...KAn → K(A1 × ...An)
by Γn((c1, a1), ...(cn, an)) = ρ(a1, ...an) = (e, (a1, ...an)). The resulting flat distributive law λ@ : L(C × A) →
C × LA takes [(c1, a1), ...(cn, an)] to (e, [a1, ...an]).

4.4 Uniformly branching trees and non-flat near-distributive laws.

For the free monad H@
i , H@

i X consists of trees in which every non-leaf has i branches. Due to their particular
structure, these trees also generate a class of (not necessarily flat) near-distributive laws of H@

i over H@
j

which are minimal in the sense that very little underlying data is either created or destroyed in the process.
Significantly these near-distributive laws do not arise via flat liftings, unlike earlier sections, but rather arise
directly from the monad structure on H@

i .

Recall that an algebra for H@
i is generated by (A, [ ]i), where [ ]i : Ai → A is an i-ary operation on A. For

i, j ≥ 1, we build a recursive schema for canonical functorial liftings of H@
j over SetH

@
i . To do this, we define

(H@
j )∗ in cases and expressly define (H@

j )∗(A, [ ]i) = (H@
j A, [ ]i). (Note that we use the same notation for the

two i-ary operations). When i = 1

• [(Lj a)]1 = Lj([ a]1)

• [(Bj t1...tj)]1 = Bj [t1]1...[tj ]1

Likewise when j = 1 we have

• [L1a1, ...L1ai]i = L1[a1, ...ai]i
• [L1a1, ...L1ai−1, (B1 t)]i = B1 [L1a1, ...L1ai−1, t]i
• etc

• [(B1 t1) t2...ti]i = B1 [t1, t2...ti]i

Otherwise for i, j ≥ 2

• [Lja1, ...Ljai]i = Lj [a1, ...ai]i
• [Lja1, ...Ljai−1, (Bj ti,1...ti,j)]i = Bj [Lja1, ...Ljai−1, ti,1]i ti,2...ti,j
• etc

• [(Bj t1,1...t1,j) t2...ti]i = Bj t1,1...t1,j−1 [t1,j , t2...ti]i

Theorem 4.12 For i, j ≥ 1, there exists a schema of recursively defined near-distributive laws λ : H@
i H

@
j →

H@
j H

@
i between all free monads H@

i , H
@
j as defined above.

Proof. A near-distributive law λ is created via the lifting functor (H@
j )∗ over H@

i algebras described above.

Applying (H@
j )∗ to (H@

i A,Bi), the i-ary operation associated to the canonical algebra (H@
i A,µ) generates λ

defined by the following set of equations:

• λ(LiLj a) = LjLi a

6
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• λLi(Bjt1... tj) = Bj(λ Lit1)...(λ Litj)

• λ(Bi tt1... tti) = [λtti]i where [ ]i is defined as in the previous result

Verifying that the two laws (DL C) and (DL D) hold follows from a straightforward argument via structural
recursion and is left to the reader.

2

Example 4.13 For the special case of i = 1 of Theorem 4.12, H@
1 is the M -set or writer monad N × where

N is the commutative monoid of natural numbers {0, 1, 2, . . .} under addition and λ : N ×H@
j a→ H@

j (N ×A)

is actually a distributive law. Likewise for the special case of j = 1, λ : H@
i (N × A) → N × H@

i A can be
described by: for an arbitrary tree tt in H@

i (N ×A), λ tt = (k, t∗) where t∗ is the tree in H@
i A, with the same

shape as tt, generated by replacing every leaf in tt of the form Li(m, a) by Lia and where k equals the sum of
all the various m’s found in the leaves, again generating a full distributive law.

Are the near distributive laws of Theorem 4.12 always distributive laws as in the two cases of the previous
example? The answer is no, in fact these are the only such cases as the next result indicates.

Theorem 4.14 For any i, j ≥ 2 the near distributive law λ : H@
i H

@
j → H@

j H
@
i of Theorem 4.12 fails to

produce a distributive law as one can produce a generic tree t ∈ H@
i H

@
j H

@
j for which law (DLB) fails.

Proof. For λ : H@
i H

@
j → H@

j H
@
i we produce t ∈ H@

i H
@
j H

@
j with 4(j − 1) + i leaves for which (DL B) fails.

Let

• lt = Bj (Lj (Lj a1))...(Lj (Lj aj−1)) (Lj(Bj(Ljaj)...(Lja2j−1)))

• rt = Bj (Lj(Bj(Lja2j)...(Lja3j−1))) (Lj (Lj a3j))...(Lj (Lj a4j−2))

• t = Bi(Li(lt)) (Li(Lj(Ljb1))) ... (Li(Lj(Ljbi−2))) (Li(rt))

then (DL B) fails for this t. The details are left to the reader. 2

5 Pre-Monads

Definition 5.1 A pre-monad in V is H = (H,µ, η) with H : V → V a functor and with η : id → H,
µ : HH → H natural transformations.

Composition of pre-monads is easily obtained. If (H,µ, η) and (K, ν, ρ) are pre-monads and if λ : HK →
KH is a natural transformation, we obtain the composite pre-monad

(KH, KHKH
KλH−−−−−−−→ KKHH

νµ−−−−→ KH, id
ρη−−−−→ KH)

It develops that λ with additional axioms will classify a functorial lift of K through VH. To make sense of
this we will have to define the “Eilenberg-Moore” category VH.

Definition 5.2 The axioms defining an algebra (X, ξ) for a pre-monad H = (H,µ, η) and an H-
homomorphism f : (X, ξ)→ (Y, θ) are exactly the same as for a monad, namely

X -ηX

idX

@
@
@
@
@
@R

X HX�
ξ

HX HHX� µX

?

ξ

?

Hξ

X Y-
f

HX HY-Hf

?

ξ

?

θ

It is well known that the theory of algebras for a monad provides an approach to developing universal
algebra [9]. It is very frequently the case that for a pre-monad K there is an isomorphism Φ : VK → VK• with
K• a monad, i.e. that VK → V is monadic. By the well-known “Beck tripleableness theorem” it is enough
that V is complete and that VK → V satisfies the solution set condition, since the coequalizer condition of
the theorem always holds. This shows that pre-monads play a role in developing universal algebra. This idea
will be developed elsewhere, but we present an example now, with emphasis on the idea that pre-monads may
reduce complications for the programmer.

7
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A band is a semigroup in which every element is idempotent. Bands arise as the variety of semigroups
satisfying the additional equation xx = x, so the monad B for bands is a quotient monad θ : L → B of the
list monad. From the point of view of the monad programmer, the construction of the free band BX (despite
the fact that BX is finite when X is, unlike the situation with lists) is not intuitive. An entire section of [6] is
devoted to the word problem involved.

We next introduce an approach to bands which uses only the list data type. This illustrates our claim that,
by relaxing axioms, we can sometimes describe what we need using readily available data types. We shall see
in Theorem 6.2 below how this result leads to a simplification in specifying near distributive laws. In effect,
we have gotten around the work to solve the word problem for free bands by simply not needing it!

Proposition 5.3 Let (L,m, e) be the list monad in Set. Modify this to the pre-monad (L,m, ê) where êX x =

[x, x]. Then Set(L,m,ê) is the category of bands.

Proof. An algebra (X, ξ) satisfies

X -êX

idX

@
@
@
@
@
@R

X LX�
ξ

LX LLX� mX

?

ξ

?

Lξ

We have

x = ξ[x, x] = ξ(mX [[x], [x]]) = ξ(Lξ)[[x], [x]])

= ξ([ξ[x], ξ[x]] = ξêX(ξ[x]) = ξ[x]

But then (X, ξ) is also an algebra of the list monad, that is a semigroup (X, ·) with ξ([x1, . . . , xn]) = x1 · · ·xn.
This semigroup is a band because x2 = ξ[x, x] = x. The remaining details are routine.

Although every monad is a pre-monad, a pre-monad need not satisfy any of the three monad axioms. We
do have two pre-monad laws or axioms (PME.1, PME.2) where “PM” stands for “pre-monad”.

Proposition 5.4 Pre-monads may be equivalently described as (H, (·)#
, η) where H : V → V is a functor,

η : id→ H is a natural transformation and X
f−−→ HY 7→ HX

f#

−−→ HY is an operator subject to the axioms

(PME.1) For g : Y → HZ, g# = HY
Hg−−→ HHZ

(idHZ)
#

−−−−−−−→ HZ

(PME.2) For f : X → HY , g : Y → Z, (Hg) f# = ((Hg)f)
#

As for monads, the correspondences are

f# = HX
Hf−−→ HHY

µY−−→ HY(4)

µX = (idHX)
#

(5)

Proof. Let (H,µ, η) be a pre-monad. For f : X → HY define f# : HX → HY as in (4). Since H(idHX) =

idHX , (idHX)
#

= µX , and this gives (PME.1). For (PME.2), let f : X → HY , g : Y → Z. Then

(Hg)f# = (Hg)µY (Hf) = µZ (HHg) (Hf) (µ natural)

= µZ H((Hg)f) = ((Hg)f)
#

Conversely, let (PME.1, PME.2) hold and define µ by (5). (4) holds by PME.1. For g : Y → Z,

(Hg)µY = (Hg) (idHY )
#

= ( (Hg) idHY )
#

(PME.2)

= (Hg)
#

= µZ (HHg)

which shows that µ is natural. To complete the proof, we show the two passages are inverse bijections. Start

with (·)#
, define µZ = (idHZ)

#
and then (·)##

by (4). Then (·)#
= (·)##

by (PME.1). Starting with µ,

8
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define (·)#
as in (4) and then νZ = (idHZ)

#
. Then νZ = µZ as is clear from setting g = idHZ in (4). The

proof is complete. 2

Definition 5.5 Let H = (H,µ, η), K = (K, ν, ρ) be pre-monads. A pre-monad map σ : H→ K is a natural
transformation σ : H → K such that σ ◦ η = ρ and ν ◦ σσ = σ ◦ µ. The definition is the same as the usual one
for monad maps so that monads form a full subcategory of pre-monads.

Definition 5.6 Given a pre-monad H in V, a monad approximation of H is a reflection σ : H→ K of H
in the full subcategory of monads.

Theorem 5.7 Let H = (H,µ, η), K = (K, ν, ρ) be pre-monads in V. Then a pre-monad map σ : H → K
induces a functor W : VK → VH over V defined by

W (X, ξ) = (X, HX
σX−−→ KX

ξ−−→ X)(6)

If, additionally, K is a monad, then σ 7→W is bijective with inverse

σX = HX
HρX−−−−→ HKX

γX−−−−→ KX(7)

where (KX, γX) = W (KX, νX).

Proof. Given σ, we first show W (X, ξ) is an H-algebra. This follows from ξ σX ηX = ξ ρX = idX and

ξ σX µX = ξ νX(σσ)X (σ pre-monad map)

= ξ νX σKX(HσX)

= ξ(Kξ)σKX(HσX) (K-algebra)

= ξ σX(Hξ)(HσX) (σ natural)

= ξ σXH(ξσX()

That W maps homomorphisms to homomorphisms is clear from the naturality of σ. Now assume that K is
a monad, so we can note that (KX, νX) is a K-algebra. We next show that if W 7→ σ 7→ W then W = W .
(Of course we cannot assume here that σ is a pre-monad map since that has not yet been shown). Starting

with a K-algebra (X, ξ), W (X, ξ) is (X, HX
σX−−→ KX

ξ−−→ X) where σX = HX
HρX−−→ HKX

ΓX−−→ KX and
(KX, γX) = W (KX, νX). As ξ : (KX, νX) → (X, ξ) is a K-homomorphism, ξ : (KX, γX) → W (X, ξ) is an
H-homomorphism. Writing W (X, ξ) as (X, δ), we have the commutative diagram

HX -HρX

idX

@
@
@
@
@
@R

HX X-
δ

HKX KX-γX

?

Hξ

?

ξ

where the square is because ξ is a homomorphism and the triangle is a K-algebra axiom. But the top row
is σX , so δ = ξ σX and W (X, ξ) = (X, δ) = W (X, ξ). We may apply this, in particular, to the K-algebra
(KX, νX) to establish that

γX = νX σKX(8)

We turn to showing that W 7→ σ is well defined. For f : X → Y in V, Kf : (KX, νX) → (KY, νY ) is a
K-homomorphism. Applying W gives the square on the right in the diagram

HY -
HρY

HX -HρX

?

Hf

HKY KY-
γY

HKX KX-γX

?

HKf

?

Kf

9
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But the square on the left commutes because ρ is natural. Since the rows are σX and σY , the perimeter of the
diagram then shows that σ is natural. The first pre-monad map law is shown by

σX ηX = γx(HρX)ηX = γX ηKX ρX (η natural)

= ρX ( (KX, γX) algebra)

For the second pre-monad map law,

νX(σσ)X = νX σKX(HσX) = γX(HσX) (by (8) )

= γX(HγX)(HHρX) = γX µKX(HHρX) ( (KX, γ) algebra)

= γX(HρX)µX (µ natural)

= σX µX

Finally, we show that if σ 7→W 7→ σ then σ = σ.

σX = γX(HρX) = γX σKX(HρX) ( by (8))

= νX(KρX)σX (σ natural)

= σX (K monad)

2

Theorem 5.8 Let H be a pre-monad such that U : VH → V is monadic so that there exists a monad K and
an isomorphism of categories Φ : VK → VH over V. Then the corresponding pre-monad map σ : H → K of
Theorem 5.7 is a monad approximation of H.

Proof. Let α : H→ T be a pre-monad map with T a monad and show that there exists a unique monad map
β so that β ◦ σ = α. Let W : VK → VH correspond to α and let β be the unique monad map corresponding

to VT W−−→ VH Φ−1

−−→ VK. We leave the remaining details to the reader. 2

6 Near Distributive Laws for Pre-Monads

We note that the laws DL A, DL B, DL C, DL D make sense whenever (H,µ, η), (K, ν, ρ) are pre-monads. In
this section, we show how distributive laws and near distributive laws for pre-monads induce similar laws on
their monad approximations. As shown in [10, Theorem 2.2.2] the following result is well known when H is a
monad. The generalization to the case when H is a pre-monad must be proved with some care.

Theorem 6.1 Let K : V → V be a functor, (M,m, e) a monad in V and let (H,µ, η) be a pre-monad in V such
that VH → V is monadic. Functorial lifts K? : VM → VH correspond bijectively to natural transformations
λ : HK → KM which satisfy (K?A, K?B):

K HK-ηK
HHK� µK

KMM�
Km

KM
?

λ
?
Hλ

HKM

?
λM

Z
Z
Z
Z
Z
Z
Z
Z~

Ke

(K? A) (K? B)

The correspondences are

K?(X,MX
θ−−→ X) = (KX,HKX

λX−−→ KMX
Kθ−−→ KX)(9)

and, if K?(MX,mX) = (KMX, γX),

λX = HKX
HKeX−−−−→ HKMX

γX−−−−→ KMX(10)

Moreover, half of this result holds if M is only a pre-monad, namely if λ satisfies (K?A) and (K?B), then
K? as in (9) is a functorial lift VM → VH of K.

Proof. Given λ, and assuming that M, H are arbitrary pre-monads, we show that K? is well defined.

10
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For (K∗ A): (Kξ)λXηKX = (Kξ)(KeX) ((K∗ A) for λ) = idKX (ξ algebra).
For (K∗ B): (Kθ)λXµKX = (Kθ)(KmX)λMX(HλX) ((K∗ B) for λ) = (Kθ)(KMθ)λMX(HλX) (θ algebra)

= (Kθ)λX(HKθ)(HλX) (λ natural)
Given an M-homomorphism f : (X, ξ)→ (Y, θ), Kf is an H-homomorphism as follows:
(Kf)(Kξ)λX = (Kθ)(KMf)λX (M-homomorphism) = (Kθ)λY (HKf) (λ natural)

Conversely, now assuming that M is a monad, let K? : VM → VH be a functorial lift of K. Let σ : H → Ĥ

be such that (Ĥ, µ̂, η̂) is the monad approximation corresponding to the isomorphism Φ : CĤ → CH, (X, ξ) 7→
(X, ξσX) as in Theoram 5.8. This gives rise to a new functorial lift

CM K?

−−−−→ CH Φ−1

−−−−→ CĤ

of K which, since the theorem holds for monads, corresponds to a natural transformation λ̂ : ĤK → KM .
Define

λ = HK
σK−−−−→ ĤK

λ̂−−−−→ KM

We first show that such λ satisfies (K∗ A) and (K∗ B).

λ̂(σK)(ηK) = λ̂ = (η̂K) ((σ pre-monad map) = Ke ((K∗ A) for λ̂)

λ̂(σK) = (µ̂K)λ̂(µ̂K)(σĤK)(HσK) (σ pre-monad map) = (Km)(λ̂M)(Ĥλ̂)(σĤK)(HσK) ((K∗ B) for λ̂)

= (Km)(λ̂)(σKM)(Hλ̂)(HσK) (σ natural) as desired. If K?(MX,mX) = (KMX, γX) there exists a unique

Ĥ-algebra (KMX, γ̂X) with γX = HKMX
σKMX−−−→ ĤKMX

γ̂X−−→ KMX. By (10), which holds since Ĥ is a

monad, λ̂X = ĤKMX
ĤKeX−−−−→ ĤKMX

γ̂X−−→ KMX. We can then check that λ is also defined by (10) as
follows.

λ̂X σKX = γ̂X (ĤKeX)σKX
= γ̂X σKMX (HKeX) (σ natural)

= γX (HKeX)

So far, the passages of (9, 10) are well defined. If λ 7→ K? 7→ λ1 then γX = (KmX)λMX so

λ1,X = (KmX)λMX (HKeX) = (KmX) (KMeX)λX (λ natural)

= idKMX λX (mX algebra)

= λX

If K? 7→ λ 7→ K•, let K?(X, ξ) = (KX,HKX
δ−−→ KX). Taking K? of the M-homomorphism

θ : (MX,mX)→ (X, ξ) gives a commutative square

KMX KX-
Kξ

HKMX HKX-HKξ

?

γX

?

δ

Then K•(X, ξ) = (KX, ε) where

ε = (Kξ)λX = (Kξ) γX (KHeX)

= δ (HK(ξeX)) = δ (ξ algebra)

We conclude the section with the promised theorems and point out the connection to Proposition 5.3 (which
asserts that the band monad is the monad approximation of (L,m, ê) ).

Theorem 6.2 Let K = (K, ν, ρ) be a pre-monad in V and let H = (H,µ, η) be a pre-monad in V with monad

approximation σ : H → Ĥ, Ĥ = (Ĥ, µ̂, η̂). Let λ : HK → KH be a natural transformation satisfing (DL C,

DL D). Then there exists a near distributive law λ̂ : ĤK → KĤ of Ĥ over K such that the following square

commutes. We say λ generates λ̂.

11
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KH KĤ-
Kσ

HK ĤK-σK

?
λ

?̂
λ (6)

Proof. Applying Theorem 6.1 to λ induces a functorial lift K? : VH → VH , namely

K?(X,HX
δ−−→ X) = (KX,HKX

λX−−→ KHX
Kδ−−→ KX)

As is true for any monad approximation, for each δ : HX → X there exists a unique Ĥ-algebra (X, δ•) with

δ• ◦ σX = δ. Via the isomorphism VĤ ∼= VH , let K?(ĤX, µ̂X) = (KĤX,ωX) with

ωX = (HKĤX
λ
ĤX−−−−−−−→ KHĤX

Kσ
ĤX−−−−−−−→ KĤĤX

Kµ̂X−−−−−−−→ KĤX)•

and define

λ̂X = ĤKX
ĤKη̂

X−−−−−−−→ ĤKĤX
ωX−−−−−−−→ KĤX

Then λ̂ satisfies (DL C, DL D) because it arises from the formula corresponding to a functorial lift. To complete
the proof, we must show that the square (6) commutes. We have

λ̂ (σK) = ω• (ĤKη̂) (σK) = ω•(σKĤ) (HKη̂) (σ natural)

= (Kµ̂) (Kσ) (λĤ)(HKη̂) = (Kµ̂)(Kσ) (KHη̂)λ (λ natural)

= (Kµ̂) (KĤη) (Kσ)λ (σ natural)

= (Kσ)λ (Ĥ-algebra)

2

Example 6.3 Let (L,m, e) be the list premonad where e(x) = [x, x] and m ll = [fst(fst ll), lst(lst ll)] where
fst and lst pick out the first and last elements of a non-empty list. The rectangular band monad B = (B,µ, η)
where B A = A × A is the monad approximation of (L,m, e) defined by the reflection σ [x] = (x, x) and
σ [x1, . . . xn] = (x1, xn). One can easily check that σ is a premonad map and that the monad properties of
(B,µ, η) can be derived directly from (L,m, e) via the lemma that follows.

Lemma 6.4 Let H = (H,µ, η) be a pre-monad in V with monad approximation σ : H → Ĥ = (Ĥ, µ̂, η̂). Let

s : Ĥ → H be a section of σ, that is, s is a pre-monad map with σs = 1. Then Ĥ satisfies η̂ = σ ◦ η and for

map f : X → ĤY , f̂# : ĤX → ĤY = σ ◦ (sY ◦ f)
# ◦ sX .

Proof. The definition of η̂ follows immediately from σ being a monad map. For f : X → ĤY and g : Y → ĤZ

we have
̂

(ĝ# ◦ f)
#

= σZ ◦ (sZ ◦ (ĝ# ◦ f))
#
◦ sX = σZ ◦ µZ ◦HsZ ◦H(ĝ#) ◦Hf ◦ sX =

σZ ◦ µZ ◦HsZ ◦HσZ ◦HµZ ◦H2sZ ◦H2g ◦HsY ◦Hf ◦ sX
= µ̂Z ◦ σĤZ ◦HσZ ◦HsZ ◦HσZ ◦HµZ ◦H

2sZ ◦H2g ◦HsY ◦Hf ◦ sX(σ pre-monad map)

= µ̂Z ◦ σĤZ ◦HσZ ◦HµZ ◦H
2sZ ◦H2g ◦HsY ◦Hf ◦ sX(σ a retract of s)

= σZ ◦ µZ ◦HµZ ◦H2sZ ◦H2g ◦HsY ◦Hf ◦ sX (σ a pre-monad map)

= σZ ◦ µZ ◦HµZ ◦H2sZ ◦H2g ◦HsY ◦ sĤY ◦ Ĥf (s natural)

= σZ ◦ µZ ◦HµZ ◦H2sZ ◦HsĤZ ◦HĤg ◦ sĤY ◦ Ĥf (s natural)

= σZ ◦ µZ ◦HsZ ◦Hµ̂Z ◦HĤg ◦ sĤY ◦ Ĥf (s pre-monad map)

= σZ ◦ µZ ◦HsZ ◦Hµ̂Z ◦ sĤĤZ ◦ ĤĤg ◦ Ĥf (s natural)

= σZ ◦ µZ ◦HsZ ◦ sĤZ ◦ Ĥµ̂Z ◦ ĤĤg ◦ Ĥf (s natural)

= σZ ◦ sZ ◦ µ̂Z ◦ Ĥµ̂Z ◦ ĤĤg ◦ Ĥf (s pre-monad map)

= µ̂Z ◦ Ĥµ̂Z ◦ ĤĤg ◦ Ĥf (σ a retract of s)

12
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= µ̂Z ◦ µ̂ĤZ ◦ ĤĤg ◦ Ĥf (Ĥ a monad)

= µ̂Z ◦ Ĥg ◦ µ̂Y ◦ Ĥf (µ natural)

= ĝ# ◦ f̂#

We leave the other two properties: f̂# ◦ η̂ = f and η̂# = idĤ to the reader. 2

Example 6.5 The calculation of µ in the rectangular band monad (B,µ, η) is not immediately intuitive. We
can derive it however applying the previous lemma where B is the monad approximation of L of Example

6.3, (where σX [x1, . . . , xm] = (x1, xm)) and s(x, y) = [x, y]), so µX = (idBX)
#

= σ ◦ (sX ◦ id)
# ◦ sX =

σX ◦m ◦ L(sX) ◦ sX and thus µ(a, b, c, d) = σX ◦m ◦ L(sX) ◦ sX(a, b, c, d) = σX ◦m ◦ L(sX)[(a, b), (c, d)] =
σX ◦m[[a, b], [c, d]] = σX [a, d] = (a, d) as expected.

Example 6.6 The previous example can be generalized to other dimensions. For n ≥ 1, let (Ln, µ, η)
denote the monad of lists of length exactly n. For instance when n = 3, η(a) = [a, a, a] while
µ([[a, b, c], [d, e, f ], [g, h, i]]) = [a, e, i] defines monad (L3, µ, η). L3 is the monad approximation associated
with premonad (L,m, e) defined by e(x) = [x, x, x] and m(ll) = [p1(p1 ll), p2(p2 ll), p3(p3 ll)] where pi picks out
the i− th element in a list(or the last element if the list is too small). Ln, which is equivalent to the cartesian
product of the identity monad (n-times) (id)n, is a monad approximation of a premonad structure on lists L,
similar to the previous example.

When V = Set, the image of σ : H → Ĥ is a submonad with the universal property. Thus all monad
approximations are pointwise split epic in Set.

Theorem 6.7 If σ : H → Ĥ is a pointwise split epic monad approximation then if λ : HK → KH is a

distributive law then so too is λ̂ : ĤK → KĤ.

Proof. For (DL A), λ̂(Ĥρ)σ = λ̂(σKHρ) (σ natural) = (Kσ)λ(Hρ) (6) = (Kσ)ρH (λ a distributive law)

= ρĤσ (ρ natural), so (DL A) holds as σ is pointwise epic. Similarly, for (DL B), λ̂(Ĥν)σKK = λ̂(σKHν)
(σ natural) = (Kσ)λ(Hν) (6) = (Kσ)(νH)(Kλ)(λK) (DL B for λ) = (νĤ)(KKσ)(Kλ)(λK) (ν natural)

= (νĤ)(Kλ̂)(KσK)λK (6)

= (νĤ)(Kλ̂)λ̂KσKK (6). Since σ is a retraction, it is surjective, so (DLA) and (DL B) hold for λ̂. 2
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