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Abstract

In this paper, we study partial traces on additive categories. Haghverdi and Scott introduced partially traced symmetric monoidal
categories generalizing traced symmetric monoidal categories given by Joyal, Street and Verity. The original example of a partial
trace is given in terms of the execution formula on the category of vector spaces and linear functions. Malherbe, Scott and Selinger
gave another example of a partial trace on the category of vector spaces, and they observed that we can define these two partial
traces on arbitrary additive categories. A natural question is: what kind of partial traces does the category of vector spaces have?
We give a (partial) answer to this question. Our main result is: every abelian category has a largest partial trace. Here, “largest”
means that every partial trace on the abelian category is obtained by restricting the domain of the largest partial trace. As a
corollary, we show that the partial trace given by Malherbe, Scott and Selinger is the largest partial trace on the category of vector
spaces.
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1 Introduction

In computer science, traced monoidal categories [8] and their variants are fundamental algebraic structures in
the study of categorical semantics for cyclic computation. For example, a trace operator on a cartesian category
is a parametrized fixed point operator [7], and a trace operator on a cocartesian category models iteration.
Traced monoidal categories also appear in a categorical framework for Girard’s Geometry of Interaction (GoI)
[4,1] where trace operators capture interactive communication between automata.

In [5], Haghverdi and Scott introduced partially traced symmetric monoidal categories generalizing the
notion of trace in order to give a categorical framework for the original GoI based on vector spaces. Their
generalization provides many examples of partially traced symmetric monoidal categories that have not emerged
in studies of categorical semantics for lambda calculi. Typically, we need to consider partial traces when the
underlying symmetric monoidal category can only model converging iteration process. For example, Haghverdi
and Scott showed that the original execution formula

Ex

(
A B

C D

)
= A+B(I −D)−1C (1)

given in [4] is a partial trace on the symmetric monoidal category of vector spaces with the biproducts as
the monoidal products, and they constructed a denotational semantics for linear logic using the execution
formula. Roughly speaking, in their work, the execution formula computes the adjacent matrix associated to
the normal form of a given proof Π of linear logic. The block matrices A,B,C and D in (1) are adjacent
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matrices corresponding to certain fragments of Π, and when D is nilpotent, (1) is equal to A+
∑
n∈NBD

nC,

which is the adjacent matrix associated to the normal form of Π. Since the inverse (I − D)−1 may not be
defined, the execution formula is partially defined. In [12], Malherbe, Scott and Selinger observed that we can
generalize construction of the partial trace by Haghverdi and Scott to any additive category, and they also
showed that every additive category has another partial trace called the kernel-image trace. A question about
these observations is: what kind of partial traces does an additive (or an abelian) category have?

The goal of this paper is to give an answer to this question. We study partial traces on additive categories
and abelian categories, and we prove the following results.

• In every additive category, the partial trace given by Haghverdi and Scott is the largest partial trace that
satisfies strong naturality. (Theorem 3.3)

• Every abelian category C has a largest partial trace that is given by restricting the canonical total trace on
the category consisting of objects in C and relations between them. We also show that the largest partial
trace is a natural extension of the kernel-image trace on C. (Theorem 4.4 and Theorem 4.5)

• If an abelian category C is semisimple, then the largest partial trace on C coincides with the kernel-image
trace. (Corollary 4.7)

The second result means that any abelian category has essentially one partial trace; all partial traces on an
abelian category are just restrictions of the largest partial trace. It follows from our results that the category
of finite dimensional vector spaces equipped with the kernel-image trace is a traced symmetric monoidal sub-
category of the category of finite dimensional vector spaces and relations between them. This is an answer to
the following question posed in [12]:

“One question that we did not answer is whether specific partially traced categories can be embedded in
totally traced categories in a natural way. For example, the category of finite dimensional vector spaces,
with the biproduct ⊕ as the tensor, can be equipped with a natural partial trace in several ways. By our
proof, it follows that it can be faithfully embedded in a totally traced category. However, we do not know
any concrete natural description of such a totally traced category (i.e., other than the free one constructed
in our proof).”

Our motivation to study (partial) trace comes from importance of (partial) traces in categorical semantics
for recursive computation and GoI, and we are interested in partial traces on additive categories and abelian
categories because of use of C*-algebra in the first GoI. However, our results are just answers to purely
technical questions on additive categories and abelian categories, and at this point, we do not have any practical
application of our results to these research areas. To find practical application of our results is a future work.

The structure of this paper is as follows. In Section 2, we recall the notions of partially traced symmetric
monoidal category, additive category and abelian category. We also give some examples and basic properties
of these categories. In Section 3, we give examples of partial traces on additive categories and show that the
partial trace given by Haghverdi and Scott is the largest partial trace among partial traces satisfying strong
naturality. In Section 4, we show that every abelian category has a largest partial trace and when the abelian
category is semisimple, the kernel-image trace is the largest partial trace.

2 Categorical preliminaries

2.1 Symmetric monoidal category and symmetric monoidal functor

A symmetric monoidal category consists of a category C equipped with a unit object I and a monoidal product
⊗ : C×C → C and natural isomorphisms λX : I⊗X ∼= X, ρX : X⊗ I ∼= X, αX,Y,Z : (X⊗Y )⊗Z ∼= X⊗ (Y ⊗Z)
and σX,Y : X ⊗ Y ∼= Y ⊗ X subject to some coherence conditions (see [11,2] for example). We simply write
(C, I,⊗) or C for symmetric monoidal categories when we can infer other data from the context. In this paper,
we often regard a cartesian category C as a symmetric monoidal category (C, 1,×) where 1 is the terminal
object and X × Y is the product of X and Y .

Let (C, I,⊗) and (D, J,�) be symmetric monoidal categories. A symmetric monoidal functor (F, n,m) from
(C, I,⊗) to (D, J,�) consists of a functor F : C → D with an arrow n : J → FI and a natural transformation
mX,Y : FX � FY → F (X ⊗ Y ) subject to some coherence conditions (see [11,2] for example). A symmetric
monoidal functor (F, n,m) is strong when n and mX,Y are isomorphisms. We write F : C → D to denote a
(strong) symmetric monoidal functor when we can infer n and mX,Y from the context.

2.2 Partial trace

We recall the definition of a partial trace introduced by Haghverdi and Scott in [5]. We prepare several
notations. Given partially defined expressions E and F , we write E � F when E is not defined or both E
and F are defined and they are the same. For example, we have

∑
n∈N x

n � 1
1−x for all x ∈ [0,∞) because
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the left hand side is defined if and only if 0 ≤ x < 1, and we have
∑
n∈N x

n = 1
1−x for all 0 ≤ x < 1. We write

E ' F when both E � F and F � E are true.

Definition 2.1 Let (C, I,⊗, λ, ρ, α, σ) be a symmetric monoidal category. A partial trace tr on C is a family
of partial functions

trZX,Y : C(X ⊗ Z, Y ⊗ Z) ⇀ C(X,Y ) (X,Y, Z ∈ C)
subject to the following conditions:

• (Naturality) For all f : X ⊗ Z → Y ⊗ Z, g : U → X and h : Y → V ,

g # trZX,Y (f) # h � trZU,V ((g ⊗ Z) # f # (h⊗ Z)).

• (Sliding) For all f : X ⊗W → Y ⊗ Z and g : Z →W ,

trWX,Y (f # (Y ⊗ g)) ' trZX,Y ((X ⊗ g) # f).

• (Superposing) For all f : X ⊗ Z → Y ⊗ Z,

W ⊗ trZX,Y (f) � trZW⊗X,W⊗Y (αW,X,Z # (W ⊗ f) # α−1
W,Y,Z).

• (Vanishing I) For all f : X ⊗ I → Y ⊗ I, trIX,Y (f) is defined and is equal to ρ−1
X # f # ρY .

• (Vanishing II) For all f : (X ⊗W )⊗ Z → (Y ⊗W )⊗ Z, if trZX⊗W,Y⊗W (f) is defined, then

trWX,Y (trZX⊗W,Y⊗W (f)) ' trW⊗ZX,Y (α−1
X,W,Z # f # αY,W,Z).

• (Yanking) For all X ∈ C, trXX,X(σX,X) is defined and is equal to idX .

A partially traced symmetric monoidal category is a symmetric monoidal category equipped with a partial trace.
A total trace is a partial trace that is totally defined, and a totally traced symmetric monoidal category is a
symmetric monoidal category equipped with a total trace. We note that the notion of totally traced symmetric
monoidal category coincides with the notion of traced (symmetric) monoidal category given in [8].

We often present trZX,Y (f) : X → Y as the following feedback loop:

X

Z
f

Y

Z trZX,Y (−)

X
f

Y .

For many totally traced symmetric monoidal categories in computer science, this feedback loop nicely fits in
our intuition. As an example, let (Pfn, ∅,⊕) be the symmetric monoidal category of sets and partial functions
whose monoidal product is the disjoint sum

X ⊕ Y = {(0, x) : x ∈ X} ∪ {(1, y) : y ∈ Y }.

The symmetric monoidal category (Pfn, ∅,⊕) has a total trace iter: for a partial function f : X ⊕Z ⇀ Y ⊕Z,

the trace iterZX,Y (f) : X ⇀ Y is given by

iterZX,Y (f)(x) = y ⇐⇒ there is a finite sequence z1, . . . , zn ∈ Z such that

f(0, x) = (1, z1) and f(1, z1) = (1, z2) and · · · and f(1, zn) = (0, y).

The definition of iterZX,Y (f)(x) means that for x ∈ X, the partial trace iterZX,Y (f)(x) is defined and is equal
to y ∈ Y if and only if there is a finitely many loops like the following dotted line:

x yX
f

Y
.
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This diagrammatic presentation helps us to convince that iter is a total trace. For example, the sliding axiom
holds because the difference between the following two diagrams

X
f

Y

g

X
f

Y

g

is just how we arrange boxes and wires, and the arrangement has nothing to do with how data flow along wires.
We can construct various partial traces by applying the following theorem to already known partial traces.

Theorem 2.2 ([12, Proposition 3.20]) Let (C, I,⊗) and (D, J,�) be symmetric monoidal categories, and
let tr be a partial trace on D. If there is a faithful strong symmetric monoidal functor (F, n,m) : (C, I,⊗) →
(D, J,�), then C has a partial trace tr given by

trZX,Y (f) =

{
g : X → Y, if trFZFX,FY (mX,Z # Ff #m−1

Y,Z) is defined and is equal to Fg,

undefined, otherwise.

This is well-defined since F is faithful.

Example 2.3 Let (Set, ∅,⊕) be the symmetric monoidal category of sets and functions whose monoidal
product is given by the disjoint sum of sets. Since there is a trivial inclusion functor J : Set → Pfn, we have
a partial trace on Set that is given by pulling back iter along J . Concretely, the partial trace iterZX,Y on Set
is given by

iterZX,Y (f : X ⊕ Z → Y ⊕ Z) =

{
iterZX,Y (f), if iterZX,Y (f) is totally defined,

undefined, otherwise.

Example 2.4 Let (Set, {0},×) be the symmetric monoidal category of sets and functions whose monoidal
product is given by the cartesian product of sets, and let (Rel, {0},×) be the symmetric monoidal category
of sets and relations whose monoidal product is also given by the cartesian product of sets. The symmetric
monoidal category (Rel, {0},×) has a total trace given by

trZX,Y (r) = {(x, y) ∈ X × Y : ((x, z), (y, z)) ∈ r for some z ∈ Z}.

By pulling back the total trace tr along the obvious inclusion functor Set→ Rel, we obtain a partial functor
tr on Set. To be concrete, given a function f : X × Z → Y × Z, the partial trace trZX,Y (f) is defined and is
equal to a function g : X → Y if and only if

{(x, y) ∈ X × Y | f(x, z) = (y, z) for some z ∈ Z}

is the graph relation of g. In the next section, we will generalize this construction to regular categories.

The next example is about existence of the least partial trace.

Example 2.5 For partial traces tr1 and tr2 on a symmetric monoidal category (C, I,⊗), we write tr1 ≤ tr2

when we have (tr1)ZX,Y (f) � (tr2)ZX,Y (f) for all arrows f : X ⊗ Z → Y ⊗ Z in C. This is a partial order on
the set of all partial traces on C. With respect to this partial order, every non-empty family of partial traces
{trλ}λ∈Λ on C has a greatest lower bound tr given by

trZX,Y (f) is defined and is equal to g ⇐⇒ for all λ ∈ Λ, (trλ)ZX,Y (f) is defined and is equal to g.

In particular, if C has a partial trace, then the meet of all partial traces on C exists and is the least partial
trace on C. We note that the least partial trace on C is not the everywhere undefined operator because every
partial trace must be defined at σX,X , and it is not easy to find concrete description of the least partial trace.

2.3 Regular category

In this paper, a partial trace on a regular category plays an important role. In a regular category C, we
can consider relations between objects in C, and the category of objects in C and relations between them has
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the structure of a totally traced symmetric monoidal category. The partial trace on C is obtained by pulling
back the total trace. Below, we precisely describe this construction. We first recall the definition of a regular
category.

Definition 2.6 A regular category is a category with finite limits such that

• every arrow f : X → Y has a factorization f = e # m with a monomorphism m : Z → Y and a regular
epimorphism e : X → Z,

• the pullback of a regular epimorphism along any arrow is a regular epimorphism.

Here, an epimorphism e : X → Y is regular if and only if e is a coequalizer of a pair of arrows u, v : Z ⇒ X.
Below, we write e : X � Y when e is a regular epimorphism from X to Y , and we write m : X � Y when m
is a monomorphism from X to Y .

For example, the category Set of sets and function is a regular category where the image factorization of
a function f : X → Y from a set X to a set Y is:

X
f
// // {y ∈ Y | y = f(x) for some x ∈ X} // // Y .

It is known that regular-epi/mono factorization is unique up-to isomorphism. This means that if an arrow
f : X → Y in a category C has two regular-epi/mono factorizations

f = X e // // Z //
m // Y, f = X e′ // // Z ′ //

m′ // Y,

then there is an isomorphism θ : Z → Z ′ such that e # θ = e′ and θ #m′ = m.
When C is a regular category, regular-epi/mono factorization enables us to define a totally traced symmetric

monoidal category Rel(C): objects in Rel(C) are objects in C, and arrows from X to Y are (equivalence classes
of) subobjects r : R � X × Y . This is a generalization of the category Rel of sets and relations. In fact,
we have Rel(Set) = Rel. The identity on X is the diagonal arrow δX : X � X × X, and the composition
r ∗ s : T � X × Z of relations r = 〈r1, r2〉 : R � X × Y and s = 〈s1, s2〉 : S � Y × Z is defined to be the
mono-part of the regular-epi/mono factorization of 〈p1 # r1, p2 # s2〉:

U // //

〈p1#r1,p2#s2〉

##

T //
r∗s //X × Z

where

U

p1

��

p2 //

p.b

S

s1

��

R r2
// Y .

Here, 〈−,−〉 is the tuple of arrows. Well-definedness of the composition of arrows in Rel(C) follows from
uniqueness of regular-epi/mono factorization. The unit object of Rel(C) is the terminal object 1 ∈ C, and the
monoidal product of objects X and Y in Rel(C) is the product X × Y . The monoidal product of relations
r : R� X × Y and s : S � Z ×W is given by

r ⊗ s = R× S r×s
// (X × Y )× (Z ×W )

∼= // (X × Z)× (Y ×W ).

For a relation r : R � (X × Z) × (Y × Z), the trace trZX,Y (r) is the mono-part of the regular-epi/mono
factorization of the vertical arrow from P to X × Y in the following diagram:

P

����

P

��

//

p.b

Z

δZ

��

S
��

trZX,Y (r)

��

R
r#(π′X,Z×π

′
Y,Z)

//

r#(πX,Z×πY,Z)

��

Z × Z

X × Y X × Y .
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To clarify intuition of trZX,Y (r), we concretely describe the above diagram assuming that C is the category of
sets and functions. First, the set R is the graph of r:

R = {((x, z), (y, z′)) ∈ (X × Z)× (Y × Z) | ((x, z), (y, z′)) ∈ r},

and two arrows going out from R are projections. The set P is a subset of R given by

P = {((x, z), (y, z)) ∈ (X × Z)× (Y × Z) | ((x, z), (y, z)) ∈ r}.

Therefore, the image S of the arrow from P to X × Y is

{(x, y) ∈ X × Y | ((x, z), (y, z)) ∈ r for some z ∈ Z}.

We note that we can derive this total trace from the compact closed structure of Rel(Set), and this is true for
arbitrary regular category: the total trace trZX,Y on Rel(C) is derived from a compact closed structure of Rel(C)
and is called the canonical trace in [8]. (We can check that Rel(C) is a compact closed category by following
the idea of the proof of Rel being compact closed.) For relationship between compact closed categories and
total traces, see [8,13]. It is tedious but doable to directly check that tr is a total trace on Rel(C).

Now, we can apply Theorem 2.2 to the totally traced symmetric monoidal category (Rel(C), 1,×, tr).

Example 2.7 Let C be a regular category, and letHC be a faithful strong symmetric monoidal functorHC : C →
Rel(C) given by

HC(X) = X, HC(f : X → Y ) = 〈idX , f〉 : X � X × Y.
As we have observed, Rel(C) has a total trace. Therefore, it follows from Theorem 2.2 that HC gives rise to a
partial trace on C. We write relC for this partial trace on C. Concretely, for an arrow f : X × Z → Y × Z in
C, the partial trace (relC)

Z
X,Y (f) is defined if and only if there exists g : X → Y in C such that the mono-part

of the regular-epi/mono factorization of p # 〈πX,Z , f # πY,Z〉 is equal to 〈idX , g〉:

P
p

//X × Z 〈πX,Z ,f#πY,Z〉
//X × Y = P // // X //

〈idX ,g〉
//X × Y

where p : P → X × Z is the pullback of δZ along 〈π′X,Z , f # π′Y,Z〉:

P

p

��

//

p.b

Z

δZ
��

X × Z
〈π′X,Z ,f#π′Y,Z〉

//Z × Z ,

and when (relC)
Z
X,Y (f) is defined, (relC)

Z
X,Y (f) is equal to g.

2.4 Additive categories and abelian categories

We recall the notions of an additive category and an abelian category, and we give their basic properties. For
more details, see [11,3].

Definition 2.8 A pre-additive category C is a category such that every hom-set has the structure of an abelian
group and the composition is bilinear. We write 0X,Y : X → Y for the unit of C(X,Y ) and f+g for the addition
of f, g : X → Y . An additive category is a pre-additive category that has finite coproducts.

The category Ab of abelian groups and homomorphisms is an additive category. When R is a ring, the
category ModR of left R-modules and homomorphisms is also an additive category. In particular, the category
VectK of vector spaces over a field K and linear maps is an additive category. We denote the subcategory of
VectK consisting of finite dimensional vector spaces by fdVectK , which is an additive category.

When C is an additive category, C has finite products and those coincide with finite coproducts: the initial
object 0 is the terminal object, and the coproduct X ⊕ Y with

πX,Y = [idX , 0Y,X ] : X ⊕ Y → X, π′X,Y = [0X,Y , idY ] : X ⊕ Y → Y (2)
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is the product of X and Y where [−,−] is the cotuple of arrows. The diagonal arrow δX : X → X ⊕X is given
by ιX,X + ι′X,X where ιX,Y : X → X⊕Y and ι′X,Y : Y → X⊕Y are injections. By the definition of projections,
we have

ιX,Y # πX,Y = idX ι′X,Y # π′X,Y = idY ιX,Y # π′X,Y = 0X,Y ι′X,Y # πX,Y = 0Y,X

and πX,Y # ιX,Y + π′X,Y # ι′X,Y = idX⊕Y . The codiagonal arrow γX : X ⊕X → X is equal to πX,X + π′X,X . The

addition f + g : X → Y is equal to δX # (f ⊕ g) # γY . It follows from coincidence of finite coproducts and finite
products that every arrow f : X ⊕ Y → Z ⊕W in C is uniquely decomposed into a matrix of arrows(

fXZ : X → Z fXW : X →W

fY Z : Y → Z fYW : Y →W

)
=

(
ιX,Y # f # πZ,W ιX,Y # f # π′Z,W
ι′X,Y # f # πZ,W ι′X,Y # f # π′Z,W

)

called the matrix decomposition of f . This decomposition is unique because we can recover f as follows:

f = πX,Y # fXZ # ιZ,W + πX,Y # fXW # ι′Z,W + π′X,Y # fY Z # ιZ,W + π′X,Y # fYW # ι′Z,W .

The composition of arrows in C is compatible with matrix multiplication, namely, the matrix decomposition of
f # g : X ⊕ Y → Z ⊕W → U ⊕ V is equal to(

fXZ fXW

fY Z fYW

)
#

(
gZU gZV

gWU gWV

)
=

(
fXZ # gZU + fXW # gWU fXZ # gZV + fXW # gWV

fY Z # gZU + fYW # gWU fY Z # gZV + fYW # gWV

)

where (fAB : A→ B)A,B and (gBC : B → C)B,C are the matrix decompositions of f and g.

Definition 2.9 In a pre-additive category, a (co)kernel of f : X → Y is, if it exists, a (co)equalizer of f
and 0X,Y . An abelian category is a pre-additive category with finite limits and finite colimits such that every
monomorphism is a kernel of some arrow, and every epimorphism is a cokernel of some arrow.

By the definition of abelian categories, every additive category is an abelian category. Categories Ab,
ModR, VectK and fdVectK are abelian categories. Let C be an abelian category. For an arrow f : X → Y in
C, we write Y � coker(f) for the cokernel of f : X → Y , and we write ker(f) � X for the kernel of f : X → Y .
Because any epimorphism in C is a cokernel, epimorphisms in C are regular epimorphisms. It is known that
any arrow f : X → Y in C has a regular-epi/mono factorization

X e // // im(f) // m // Y

where m is the kernel of the cokernel Y � coker(f) and e is the cokernel of the kernel ker(f) � X. Fur-
thermore, the pullback of an epimorphism along any arrow is an epimorphism. (See [3, Theorem 1.5.5 and
Proposition 1.7.6].) Hence, any abelian category is a regular category. Because the definition of abelian cat-
egory is self-dual, if C is an abelian category, then Cop is an abelian category. In particular, Cop is a regular
category.

An object X in a category C is projective when for every epimorphism f : Y � Z and for every arrow
g : X → Z in C, there is h : X → Y such that h # f = g. An object X ∈ C is injective when X is projective in
Cop. The following definition is from [9].

Definition 2.10 An abelian category is semisimple when one of the following equivalent conditions is true:

• Every object is projective.

• Every object is injective.

The category VectK is semisimple for any field K. More generally, when a ring R is semisimple, i.e., R is
a direct sum of its irreducible left R-submodules, then the category ModR of left R-modules is semisimple.
For example, finite direct products K1 × · · · ×Kn of fields are semisimple. It follows from Maschke’s theorem
[10] that given a field K and a finite group G of order n such that the characteristic of K does not divide n,
the category ModK[G] of left K[G]-modules is semisimple where K[G] is the group ring of G over K.

Remark 2.11 In the sequel, we always regard an additive category C as a symmetric monoidal category
(C, 0,⊕). As usually, we omit canonical isomorphisms such as 0⊕X ∼= X ∼= X⊕0 and (X⊕Y )⊕Z ∼= X⊕(Y ⊕Z)
when we can infer them from the context, and we simply write X ⊕ Y ⊕ · · · ⊕ Z for ((X ⊕ Y )⊕ · · · )⊕ Z.
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Concrete description of fdVect
As an illustration, we explain how the abelian category fdVectK looks like. We first note that we can

regard each arrow f : Kn → Km in fdVectK as an n ×m-matrix. Below, we identify n ×m-matrices with
arrows from Kn to Km, and we also identify the monoidal product Kn ⊕Km with Kn+m in the obvious way.
Under this identification, the identity on Kn is the n × n identity matrix In, and the composition of arrows
in fdVectK is the multiplication of matrices. The zero arrow 0Kn,Km : Kn → Km is the zero matrix, and the
addition f + g : Kn → Km is given by the pointwise manner. The projections πKn,Km : Kn+m → Kn and
π′Kn,Km : Kn+m → Km are given by

πKn,Km =

(
In

0Km,Kn

)
, π′Kn,Km =

(
0Kn,Km

Im

)
,

and the injections ιKn,Km : Kn → Kn+m and ι′Kn,Km : Km → Kn+m are given by

ιKn,Km =
(
In 0Kn,Km

)
, ι′Kn,Km =

(
0Km,Kn Im

)
.

It is easy to check the four equations (2) are true for these projections and injections. For example, we have
ιKn,Km # πKn,Km = idKn because

(
In 0Kn,Km

)( In

0Km,Kn

)
= In # In + 0Kn,Km # 0Km,Kn = In.

The matrix decomposition of an arrow f : Kn+m → Kn′+m′ is the partitioning of f into the following 4 blocks:

x1,1 · · · x1,n′ z1,1 · · · z1,m′

...
. . .

...
...

. . .
...

xn,1 · · · xn,n′ zn,1 · · · zn,m′

y1,1 · · · y1,n′ w1,1 · · · w1,m′

...
. . .

...
...

. . .
...

ym,1 · · · ym,n′ wm,1 · · · wm,m′


.

Given an arrow f : Kn → Kn′ in fdVectK , let u : Kn → Kn and v : Kn′ → Kn′ be isomorphisms in fdVectK
such that

f = u #

(
Il 0Kl,Kn′−l

0Kn−l,Kl 0Kn−l,Kn′−l

)
# v. (3)

The natural number l is the rank of f . The regular-epi/mono factorization of f is of the following form:

Kn e // // Kl // m //Kn′

where e and m are given by

e = u #

(
Il

0Kn−l,Kl

)
, m =

(
Il 0Kl,Km−l

)
# v.

Because u and v in (3) are not unique, the above decomposition of f is not unique. Still, the decomposition is
unique up to isomorphism.

8
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3 Partial traces on additive categories

Because an additive category with a total trace is equivalent to the trivial one-object additive category {0}
(see Proposition A.1), interesting partial traces on additive categories must be strictly partial. We give some
examples of partial traces. The first two examples are from [5,12].

Example 3.1 We define a partial trace exC on an additive category C by

(exC)
Z
X,Y (f) =

{
fXY + fXZ # (idZ − fZZ)−1 # fZY , if idZ − fZZ is invertible,

undefined, otherwise

where (fAB : A→ B)A,B is the matrix decomposition of f : X⊕Z → Y ⊕Z. When fZZ is nilpotent, idZ−fZZ
is an isomorphism, and we have

(exC)
Z
X,Y (f) = fXY +

∑
n∈N

fXZ # fnZZ # fZY . (4)

The right hand side is called the execution formula [6]. Informally, the result of the execution formula is the
accepting language of the following automaton:

X Y

Z Z

ε

fZZ

fXY

fZY fZY

where ε is the ε-transition, and Y is the final state. We note that (4) does not make sense in general as the
execution formula subsumes infinite summation.

Example 3.2 We give another partial trace kiC called the kernel-image trace on an additive category C. For
f : X ⊕ Z → Y ⊕ Z, if there are g : X → Z and h : Z → Y such that

X
fXZ //

g

((

Z

h

((
Z

idZ−fZZ

OO

fZY

// Y ,

we define (kiC)
Z
X,Y (f) to be fXY + fXZ # h; otherwise, (kiC)

Z
X,Y (f) is undefined. We note that (kiC)

Z
X,Y (f) is

independent of the choice of g and h. It is easy to see that when idZ − fZZ is invertible, (kiC)
Z
X,Y (f) is defined

and is equal to (exC)
Z
X,Y (f). Hence, we have exC ≤ kiC . For the definition of the partial order ≤ between

partial traces, see Example 2.5.

We say that a partial trace tr on an additive category C satisfies strong naturality when tr satisfies

g # trZX,Y (f) # h ' trZU,V ((g ⊕ Z) # f # (h⊕ Z))

for all f : X ⊕ Z → Y ⊕ Z, g : U → X and h : Y → V in C. We give a characterization of exC .

Theorem 3.3 Let C be an additive category. We have:

• The partial trace exC satisfies strong naturality.

• If a partial trace tr on C satisfies strong naturality, then tr ≤ exC.

Hence, exC is the largest partial trace that satisfies strong naturality.

9
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Proof. See Section B. It is easy to check the first claim. For the second claim, the point of the proof is that
for a partial trace tr on C and for an arrow f : X ⊕ Z → Y ⊕ Z in C, if

trZZ,Z((Z ⊕ δZ) # (σZ,Z ⊕ fZZ) # (Z ⊕ γZ)) : Z → Z (5)

is defined, then it is the inverse of idZ−fZZ where fZZ : Z → Z is the (Z,Z)th entry of the matrix decomposition
of f . We use strong naturality to show that if trZX,Y (f) is defined, then (5) is defined 2

We give an example of a partial trace that is smaller than exVectK . Let G ⊆ K \ {0} be a subgroup. We
define a partial trace tr on VectK by

trZX,Y (f) =

{
fXY + fXZ # (idZ − fZZ)−1 # fZY , if det(idZ − fZZ) ∈ G,
undefined, otherwise

where {fAB : A → B}A,B is the matrix decomposition of f . We can check that tr is a partial trace as in the
proof of exVectK being a partial trace given in [5, Section 2.2]. When G is not equal to K \ {0}, we have
tr < exVectK .

4 Partial traces on abelian categories

In this section, we study partial traces on abelian categories. When C is an abelian category, C and Cop are
regular categories. Therefore, as we observed in Example 2.7, there are two different constructions of partial
traces on C: one is relC that is induced by the strong symmetric monoidal functor HC : C → Rel(C), and the
other is relCop that is induced by the strong symmetric monoidal functor (HCop)op : C → Rel(Cop)op. The goal
of this section is to clarify how these partial traces are related and to give their characterizations. Below, we
fix an abelian category C.

Proposition 4.1 relC = relCop .

Proof. (Sketch) We define a functor Θ: Rel(C)→ Rel(Cop)op by ΘX = X and

Θ(〈r, s〉 : R� X ⊕ Y ) = [q, p] : Y ⊕X � S where

R s //

r

��

p.o

Y

q

��

X p
// S .

It is easy to check that HC # Θ is equal to (HCop)op. The functor Θ is a symmetric monoidal isomorphism
(Proposition C.2) and preserves total traces. Hence, by the definition of relC and relCop , they are the same.2

We next show that relC is the largest partial trace on C. We prepare two lemmas.

Lemma 4.2 Let f : X ⊕ Z → Y ⊕ Z be an arrow in C, let (fAB : A → B)A=X,Z;B=Y,Z be the matrix decom-
position of f , and let

Z e // // W // m //Z

be the regular-epi/mono factorization of idZ − fZZ . If there are arrows g : X → W and h : W → Y such that
the following triangles commute:

X
fXZ //

g
""

Z

W
h

""

OO

m

OO

Z

e

OOOO

fZY

// Y ,

then (relC)
Z
X,Y (f) is defined and is equal to fXY + g # h.

10
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Proof. We define p : P � X to be the pullback of e : Z �W along g : X →W :

P
q

//

p

����

p.b

Z

e

����

X g
//W .

By the definition of arrows p and q, the tuple 〈p, q〉 : P � X ⊕ Z is the kernel of πX,Z # g − π′X,Z # e. Since m

is a monomorphism, 〈p, q〉 : P � X ⊕Z coincides with the kernel of (πX,Z # g− π′X,Z # e) #m, which is equal to

f # π′Y,Z − π′X,Z . Hence,

P
q

//

〈p,q〉
��

Z

δZ
��

X ⊕ Z
〈π′X,Z ,f#π′Y,Z〉

//Z ⊕ Z

is a pullback square. Because p is an epimorphism, the right hand side of

〈p, q〉 # 〈πX,Z , f # πY,Z〉 = p # 〈idX , fXY + g # h〉

is the regular-epi/mono factorization of the left hand side of this equation. Hence, (relC)
Z
X,Y (f) is defined and

is equal to fXY + g # h. 2

Lemma 4.3 Let f : X ⊕ Z → Y ⊕ Z be an arrow in C, let (fAB : A → B)A=X,Z;B=Y,Z be the matrix decom-
position of f , and let

Z e // // W // m //Z

be the regular-epi/mono factorization of idZ − fZZ . Given a partial trace tr on C, if trZX,Y (f) is defined, then
there are arrows g : X →W and h : W → Y such that the following triangles commute:

X
fXZ //

g
""

Z

W
h

""

OO

m

OO

Z

e

OOOO

fZY

// Y ,

and trZX,Y (f) is equal to fXY + g # h.

Proof. We first note that m : W � Z is the kernel of the cokernel of idZ−fZZ , and e : Z �W is the cokernel
of the kernel of idZ − fZZ . Because trZX,Y (f) is defined, the right hand side of

−fXY + trZX,Y (f) ' γX # ((−fXY )⊕ trZX,Y (f)) # δY � trZX,Y ((fXZ ⊕ γZ) # (σZ,Z ⊕ fZZ) # (fZY ⊕ δZ))

is defined. Therefore, by Lemma B.3,

trZX,Z((fXZ ⊕ δZ) # (σZ,Z ⊕ fZZ) # ((idZ − fZZ)⊕ γZ))

is defined and is equal to fXZ . Let c : Z → C be the cokernel of idZ − fZZ . Then by naturality, we obtain

fXZ # c � trZX,C((fXZ ⊕ fZZ) # γZ # ι′C,Z) ' trZX,C(f # (0Y,C ⊕ Z)) � trZX,Y (f) # 0Y,C � 0X,C .

Hence, there exists a unique g : X →W such that

fXZ = X
g
// W // m //Z .

11



Hoshino

In the same way, we can show that there exists a unique h : W → Y such that

fZY = Z e // // W
h // Y .

It remains to check that trZX,Y (f) is equal to fXY +g #h. We define p : P � X to be the pullback of e : Z �W
along g : X →W :

P
q

//

p

����

p.b

Z

e

����

X g
//W .

Because

p # (−fXY + trZX,Y (f)) ' p # γX # ((−fXY )⊕ trZX,Y (f)) # δY
� trZP,Y (((p # fXZ)⊕ δZ) # (σZ,Z ⊕ fZZ) # (fZY ⊕ γZ))

' trZP,Y (((q # (idZ − fZZ))⊕ δZ) # (σZ,Z ⊕ fZZ) # (fZY ⊕ γZ)),

it follows from Lemma B.3 that p #(−fXY +trZX,Y (f)) is equal to q #fZY = p #g #h. Hence, we see that trZX,Y (f)
is equal to fXY + g # h. 2

The following theorems are straightforward consequences of Lemma 4.2 and Lemma 4.3. The first one
means that relC is the largest partial trace on C, and the second one means that we can define relC without
referring to Rel(C).

Theorem 4.4 If tr is a partial trace on C, then tr ≤ relC.

Theorem 4.5 Let f : X ⊕ Z → Y ⊕ Z be an arrow in C, let (fAB : A → B)A=X,Z;B=Y,Z be the matrix
decomposition of f , and let

Z e // // W // m //Z

be the regular-epi/mono factorization of idZ − fZZ . Then we have

(relC)
Z
X,Y (f) =

{
fXY + h # k, if fXZ = h #m and fZY = e # k for some h : X →W and k : W → Y,

undefined, otherwise.

Corollary 4.6 Any partial trace tr on an abelian category C is uniform in the following sense: for all arrows
f : X ⊕Z → Y ⊕Z and g : X ⊕W → Y ⊕W such that trZX,Y (f) and trWX,Y (g) are defined, if there is an arrow
h : Z →W satisfying

X ⊕ Z f
//

X⊕h
��

Y ⊕ Z

Y⊕h
��

X ⊕W g
// Y ⊕W ,

then trZX,Y (f) = trWX,Y (g).

Proof. We can easily check that relC is uniform in the above sense (See Proposition D.1). Uniformity of
arbitrary traces tr on C follows from tr ≤ relC . 2

When C is a semisimple abelian category, the kernel-image trace kiC is equal to the largest partial trace
relC .

Corollary 4.7 Let C be a semisimple abelian category. If tr is a partial trace on C, then tr ≤ kiC.

Proof. We show that kiC coincides with relC . Let f : X⊕Z → Y ⊕Z be an arrow in C such that (relC)
Z
X,Y (f)

is defined. Let (fAB : A→ B)A=X,Z;B=Y,Z be the matrix decomposition of f , and let

Z e // // W // m //Z

12



Hoshino

be the regular-epi/mono factorization of idZ − fZZ . By Theorem 4.5, there are g : X → W and h : W → Y
such that fXZ = g # m and fZY = e # h. Because every object is projective and injective, we obtain arrows
g′ : X → Z and h′ : Z → Y such that every triangle in

X
fXZ //

g
((

g′

!!

Z

h′

!!

W
h

((

OO

m

OO

Z

e
OOOO

fZY

// Y

commutes. Hence, (kiC)
Z
X,Y (f) is defined and is equal to fXY + g′ # fZY = (relC)

Z
X,Y (f). 2

We note that Corollary 4.7 does not hold for Ab, which is not a semisimple abelian category. To see this
we show that kiAb < relAb. Let f : Z2 ⊕ (Z⊕ Z2)→ Z2 ⊕ (Z⊕ Z2) be an arrow in Ab given by

f([x], y, [z]) = ([x], y, [x+ y + z])

where we write Z2 for Z/2Z, and [n] ∈ Z2 is the equivalence class of an integer n ∈ Z. We shall show that

(kiAb)Z⊕Z2

Z2,Z2
(f) is not defined and that (relAb)Z⊕Z2

Z2,Z2
(f) is defined and is equal to idZ2

.

• (kiAb)Z⊕Z2

Z2,Z2
(f) is not defined because there is no g : Z2 → Z⊕ Z2 such that

ιZ2,Z⊕Z2
# f # π′Z2,Z⊕Z2

= g # (idZ⊕Z2
− ι′Z2,Z⊕Z2

# f # π′Z2,Z⊕Z2
).

We note that the left hand side is equal to ι′Z,Z2
and idZ⊕Z2 − ι′Z2,Z⊕Z2

# f # π′Z2,Z⊕Z2
maps (y, [z]) to (0, [y]).

• (relAb)Z⊕Z2

Z2,Z2
(f) is defined and is equal to idZ2

because the triangles

Z2

ι′Z,Z2 //

idZ2
))

Z⊕ Z2

Z2

OO

ι′Z,Z2

OO

0Z2,Z2

))Z⊕ Z2

e
OOOO

0Z⊕Z2,Z2

//Z2

commute where the vertical arrow e # ι′Z,Z2
is the regular-epi/mono factorization of h. The epimorphism

e : Z⊕ Z2 → Z2 is given by e(x, [y]) = [x].
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A On a total trace on an additive category

Proposition A.1 If C is an additive category with a total trace tr, then any X ∈ C is isomorphic to 0.

Proof. Since 0→ X → 0 is the identity, it remains to prove 0X,X = idX . Let z : X → X be

trXX,X(γX # δX).

Then

z = trXX,X((δX ⊕ δX) # (X ⊕ σX,X ⊕X) # (γX ⊕ γX))

= δX # (X ⊕ (trXX,X((X ⊕ δX) # (σX,X ⊕X) # (X ⊕ γX)))) # γX (naturality, superposing)

= idX + trXX,X((X ⊕ δX) # (σX,X ⊕X) # (X ⊕ γX))

= idX + trXX,X((X ⊕ δX) # (σX,X ⊕ trXX,X(σX,X)) # (X ⊕ γX)) (yanking)

= idX + trX⊕XX,X ((X ⊕ δX ⊕X) # (σX,X ⊕ σX,X) # (X ⊕ γX ⊕X)) (superposing, naturality, vanishing)

= idX + trX⊕XX,X ((X ⊕ σX,X) # (γX ⊕X) # σX,X # (δX ⊕X) # (X ⊕ σX,X))

= idX + trX⊕XX,X ((γX ⊕X) # σX,X # (δX ⊕X)) (sliding)

= idX + trXX,X(γX # trXX,X(σX,X) # δX) (vanishing, naturality)

= idX + z. (yanking)

Hence, we obtain 0X,X = idX . 2

B A Proof of Theorem 3.3

We divide Theorem 3.3 into Theorem B.2 and Theorem B.4.

Lemma B.1 Let tr be a partial trace on an additive category. For all f : X ⊕ Z → Y ⊕ Z, we have

W ⊕ trZX,Y (f) ' trZW⊕X,W⊕Y (W ⊕ f).

Proof. If trZW⊕X,W⊕Y (W ⊕ f) is defined, then

ι′W,X # trZW⊕X,W⊕Y (W ⊕ f) # π′W,Y � trZX,Y ((ι′W,X ⊕ Z) # (W ⊕ f) # (π′W,Y ⊕ Z)) ' trZX,Y (f).

Hence, trZX,Y (f) is defined. 2

Theorem B.2 Let C be an additive category. The partial trace exC satisfies strong naturality.

Proof. For all f : X ⊕ Z → Y ⊕ Z, g : U → X and h : Y → V ,

(exC)
Z
X,Y (f) is defined ⇐⇒ idZ − ι′X,Z # f # π′Y,Z is invertible

⇐⇒ idZ − ι′U,Z # ((g ⊕ Z) # f # (h⊕ Z)) # π′V,Z is invertible

⇐⇒ (exC)
Z
U,V ((g ⊕ Z) # f # (h⊕ Z)) is defined.

It is easy to see that when idZ − ι′X,Z # f # π′Y,Z is invertible, (exC)
Z
U,V ((g ⊕ Z) # f # (h ⊕ Z)) is equal to

g # (exC)
Z
X,Y (f) # h. 2

In this paper, we often use the next lemma.

Lemma B.3 Let C be an additive category, and let tr be a partial trace on C. For all arrows f : X → Z,
g : Z → Z and h : Z → Y in C, if

trZX,Y ((f ⊕ δZ) # (σZ,Z ⊕ g) # (h⊕ γZ))
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is defined, then for all k : Z →W ,

trZX,W ((f ⊕ δZ) # (σZ,Z ⊕ g) # (((idZ − g) # k)⊕ γZ))

is defined and is equal to f # k.

Proof. Let nZ : Z → Z be −idZ . We have

trZX,W ((f ⊕ δZ) # (σZ,Z ⊕ g) # (((idZ − g) # k)⊕ γZ))

' trZX,W ((f ⊕ δZ) # (σZ,Z ⊕ (g # δZ)) # (Z ⊕ Z ⊕ Z ⊕ nZ) # (Z ⊕ σZ⊕Z,Z) # ((γZ # k)⊕ γZ))

' trZX,W ((f ⊕ δZ) # (σZ,Z ⊕ (g # δZ)) # (Z ⊕ Z ⊕ Z ⊕ trZZ,Z((Z ⊕ nZ) # σZ,Z)) # (Z ⊕ σZ⊕Z,Z) # ((γZ # k)⊕ γZ))
(yanking, naturality)

' trZ⊕ZX,W ((f ⊕ δZ ⊕ Z) # (σZ,Z ⊕ (g # δZ)⊕ nZ) # (Z ⊕ σZ⊕Z⊕Z,Z) # ((γZ # k)⊕ γZ ⊕ Z))

(superposing, naturality, vanishing)

' trZ⊕ZX,W ((f ⊕ δZ ⊕ nZ) # (σZ,Z ⊕ g ⊕ Z) # (Z ⊕ σZ⊕Z,Z) # ((γZ # k)⊕ ((Z ⊕ δZ) # (γZ ⊕ Z))))

' trZ⊕ZX,W ((X ⊕ ((Z ⊕ δZ) # (γZ ⊕ Z))) # (f ⊕ δZ ⊕ nZ) # (σZ,Z ⊕ g ⊕ Z) # (Z ⊕ σZ⊕Z,Z) # ((γZ # k)⊕ Z ⊕ Z))

(sliding)

' trZ⊕ZX,W ((f ⊕ δZ ⊕ Z) # (σZ,Z ⊕ γZ) # (k ⊕ Z ⊕ g))

' trZ⊕ZX,W ((Z ⊕ σZ,Z) # (f ⊕ δZ ⊕ Z) # (σZ,Z ⊕ γZ) # (Z ⊕ Z ⊕ g) # (k ⊕ σZ,Z)) (sliding)

' trZX,W ((f ⊕ Z) # (δZ ⊕ Z) # (Z ⊕ γZ) # (k ⊕ g)) (naturality, superposing, vanishing, yanking)

� δX # ((f # k)⊕ trZX,W ((f ⊕ Z) # γZ # g # ι′W,Z)) # γW . (naturality, superposing)

Because the left hand side of

trZX,Y ((f ⊕ δZ) # (σZ,Z ⊕ g) # (h⊕ γZ)) # 0Y,W � trZX,W ((f ⊕ Z) # γZ # g # ι′W,Z)

is defined, trZX,W ((f ⊕ Z) # γZ # g # ι′W,Z) is defined and is equal to 0X,W . Hence,

δX # ((f # k)⊕ trZX,W ((f ⊕ Z) # γZ # g # ι′W,Z)) # γW

is defined and is equal to f # k. 2

Theorem B.4 If a partial trace tr on an additive category C satisfies strong naturality, then trZX,Y (f) �
(exC)

Z
X,Y (f) for all f : X ⊕ Z → Y ⊕ Z.

Proof. Let (
fXY : X → Y fXZ : X → Z

fZY : Z → Y fZZ : Z → Z

)
be the matrix decomposition of f . By “strong superposing” (Lemma B.1) and strong naturality, we have

trZX,Y (f) ' δX # (fXY ⊕ trZX,Y (fXZ ⊕ δZ) # (σZ,Z ⊕ fZZ) # (fZY ⊕ γZ)) # γY
' fXY + fXZ # trZZ,Z((Z ⊕ δZ) # (σZ,Z ⊕ fZZ) # (Z ⊕ γZ)) # fZY .

Let g : Z → Z be
trZZ,Z((Z ⊕ δZ) # (σZ,Z ⊕ fZZ) # (Z ⊕ γZ)).

Because trZX,Y (f) is defined, g is also defined. By Lemma B.3, we see that g # (idZ − fZZ) = idZ . By applying

the same argument to Cop, we obtain (idZ − fZZ) # g = idZ . Hence, when trZX,Y (f) is defined, idZ − fZZ is

invertible and trZX,Y (f) is equal to

fXY + fXZ # (idZ − fZZ)−1 # fZY ,

which is (exC)
Z
X,Y (f). 2
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C Rel(C) ∼= Rel(Cop)op

Lemma C.1 Given a commutative diagram

P
p
//

q

��

p.o

X

r

�� f

��

Y s
//

g
..

Z

u
  

W

in C such that the inner square PY ZX is a pushout square and the outer square PYWX is a pullback square,
the unique arrow u : Z →W is a monomorphism.

Proof. By the assumptions, 〈p,−q〉 : P → X ⊕ Y is the kernel of [f, g] : X ⊕ Y → W , and [r, s] : X ⊕ Y → Z
is the cokernel of 〈p,−q〉 : P → X ⊕ Y . Because the epi-part of the regular-epi/mono factorization of [f, g] is
the cokernel of the kernel of [f, g], the arrow u is equal to the mono-part of the regular-epi/mono factorization
of [f, g]. 2

Theorem C.2 Θ is a strong symmetric monoidal isomorphism from Rel(C) to Rel(Cop)op and preserves total
traces.

Proof. We first check that Θ is a functor. It is easy to see that Θ preserves identities. For relations f =
〈f0, f1〉 : R0 � X ⊕ Y and g = 〈g0, g1〉 : R1 � Y ⊕ Z, the composition f ∗ g : R3 � X ⊕ Z is given by the
regular-epi/mono factorization of 〈h0 # f0, h1 # g1〉, namely

〈h0 # f0, h1 # g1〉 = R2
// // R3

//
f∗g
// X ⊕ Z

where h0 and h1 are given by the following pullback:

R2

h1

!!

h0

~~

p.bR0

f1
!!

f0

~~

R1

g1

  

g0
}}

X Y Z .

Then Θ(f ∗ g) is given by [q, p] : Z ⊕X � T where p : X → T and q : Z → T are given by the pushout of two
legs (f ∗ g) # πX,Z : R3 → X and (f ∗ g) # π′X,Z : R3 → Z:

R2

����

h0#f0





h1#g1

��

R3
(f∗g)#πX,Z

vv

(f∗g)#π′X,Z

((p.oX

p

((

Z

q

vvT .

Since the inner square is a pushout square, the outer square is a pushout square. Therefore, the outer pushout
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square is decomposed into the following four pushout squares:

R2

h0

~~

h1

!!
p.oR0

f0

~~ !!
p.o

R1

}}

g1

  
p.oX

  

U

}} !!

p.o

Z

~~

T0

!!

T1

}}

T .

On the other hand, Θ(f)#Θ(g) : Z⊕X � S3 is the epi-part of the regular-epi/mono factorization of [q1#r1, p0#r0],
namely

[q1 # r1, p0 # r0] = Z ⊕X Θ(f)#Θ(g)
// // S3
// // S2

where pi, qi and ri are given by the following pushouts:

R0

f0

~~

f1

!!
p.o

R1

g0

}}

g1

  
p.oX

p0
  

Y

p1
}}

q0
!!

p.o

Z

q1
~~

S0

r0
  

S1

r1
~~

S2

By universality of pushouts, we obtain arrows U → Y , T → S2 and Ti → Si for i = 0, 1 such that the following
diagram commutes:

R2

R0 R1

YX Z

S0 S1

S2

U

T1T0

T

h0

��

h1

��

f0

�� �� ��

g1

��

�� �� �� ��

�� ��

,, rr

,,
�� ��

rr

�� ��

��

��

��

��

��

��

��

��

By Lemma C.1, the arrow U → Y is a monomorphism. Since monomorphisms are stable under pushouts, the
vertical arrows T0 → S0, T1 → S1 and T → S2 are monic. Because the pair p : X → T and q : Z → T is jointly
epi, we obtain the following regular-epi/mono factorization:

[q1 # r1, p0 # r0] = Z ⊕X [q,p]
// // T // // S2
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Hence, Θ(f # g) = [q, p] = Θ(f) # Θ(g).
It remains to check preservation of monoidal products by Θ. Since Θ is identity on objects, Θ(0) = 0. The

monoidal product of arrows f : R0 � X ⊕ Y and g : R1 � Z ⊕W in Rel(C) is given by

R0 ⊕R1
// // (X ⊕ Y )⊕ (Z ⊕W )

∼= // (X ⊕ Z)⊕ (Y ⊕W ) .

Let

R0

f0

~~

f1

  

X

p0
  

Y

p1
~~

S0

R1

g0

~~

g1

!!

Z

q0
  

W

q1
}}

S1

be pushout squares. Because

R0 ⊕R1

f0⊕g0

yy

f1⊕g1

%%

X ⊕ Z

p0⊕q0
%%

Y ⊕W

p1⊕q1
yy

S0 ⊕ S1

is a pushout square, Θ(f ⊗ g) is equal to [p1 ⊕ q1, p0 ⊕ q0], which is Θ(f) ⊗ Θ(g). We note that because the
traces on Rel(C) and Rel(Cop)op are derived from their compact closed structures, it follows from Θ being a
strong monoidal functor that Θ preserves traces. By Lemma C.1, we see that Θ is full and faithful. Hence, Θ
is an isomorphism of symmetric monoidal categories Rel(C) and Rel(Cop)op and preserves total traces. 2

D Uniformity of relC

Proposition D.1 For all arrows f : X ⊕ Z → Y ⊕ Z and g : X ⊕W → Y ⊕W such that (relC)
Z
X,Y (f) and

(relC)
W
X,Y (g) are defined, if there is an arrow h : Z →W satisfying

X ⊕ Z f
//

X⊕h
��

Y ⊕ Z

Y⊕h
��

X ⊕W g
// Y ⊕W ,

then (relC)
Z
X,Y (f) = (relC)

W
X,Y (g).

Proof. Let (fAB : A→ B)A=X,Z;B=Y,Z and (gAB : A→ B)A=X,W ;B=Y,W be the matrix decompositions of f
and g respectively. It follows from the assumption on h that we have

fXY = gXY , fXZ # h = gXW , fZY = h # gWY , fZZ # h = h # gWW .

We write

idZ − fZZ = Z
e1 // // V1

//
m1 //Z , idW − gWW = W

e2 // // V2
//
m2 //W

for the regular-epi/mono factorization of idZ − fZZ and the regular-epi/mono factorization of idW − gWW

respectively. Because e1 is a regular epimorphism and m2 is a monomorphism, there is a unique h′ : V1 → V2
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such that each square in

Z h //W

V1

OO

m1

OO

h′ // V2

OO

m2

OO

Z

e1

OOOO

h
//W

e2

OOOO

commutes. Since (relC)
Z
X,Y (f) and (relC)

W
X,Y (g) are defined, there are k1 : X → V1, k2 : X → V2, l1 : V1 → Y

and l2 : V2 → Y such that

fXZ = k1 #m1, gXW = k2 #m2, fZY = e1 # l1, gWY = e2 # l2.

Because
k2 #m2 = gXW = fXZ # h = k1 #m1 # h = k1 # h′ #m2,

we see that k2 = k1 # h′. Similarly, we obtain h′ # l2 = l1. Hence,

(relC)
Z
X,Y (f) = fXY + k1 # l1 = gXY + k2 # l2 = (relC)

W
X,Y (g).

2
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