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Abstract

We present a model of concurrent games in which strategies are probabilistic and support both discrete and continuous distributions.
This is a generalisation of the probabilistic concurrent strategies of Winskel, based on event structures. We first introduce
measurable event structures, discrete fibrations of event structures in which each fibre is turned into a measurable space. We then
construct a bicategory of measurable games and measurable strategies based on measurable event structures, and add probability
to measurable strategies using standard techniques of measure theory. We illustrate the model by giving semantics to an affine,
higher-order, probabilistic language with a type of real numbers and continuous distributions.
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1 Introduction

In the 25 years since its conception, game semantics [18,1] has developed into a powerful framework for modelling
programming languages with computational effects such as state, control, concurrency, or nondeterminism.
This range of applicability is due to the highly intensional nature of games models, where programs are
interpreted as strategies specifying their behaviour in all possible evaluation contexts.

Another use of game semantics is in probabilistic computation. As first shown by Danos and Harmer [13]
in a probabilistic version of the original Hyland-Ong game model [18], programs with random features can
be interpreted as probabilistic strategies carrying the extra quantititative information. This works particularly
well for probabilistic programs with state: the model is fully abstract for Probabilistic Algol, an extension of
PCF [21] with ground type references and probability.

Recently, concurrent games [22] were introduced as an alternative framework for game semantics, based
on event structures, a fundamental model for concurrent processes. The framework has been used to model
concurrent primitives in functional programs ([6,11,12]), and has been particularly successful in modelling
nondeterminism in languages without state [5], a problem known to be difficult in game semantics [17].

In [27] the second author enriched concurrent games with probability, by introducing a notion of probabilistic
event structure which extended previous work on probabilistic models for concurrency [24]. This made possible
an analysis of Probabilistic PCF via games [7], including an intensional full abstraction result.

However, all of the above do not readily support continuous probability distributions, making those models
unsatisfactory for modelling practical probabilistic languages, in which continuous distributions are essential.
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Vákár and Ong have recently announced [20] a generalisation of the Danos-Harmer model supporting continuous
distributions, which they apply to a stateful language to get a definability result, following [13].

In this paper, we propose a new probabilistic concurrent games model in which strategies are equipped to
support arbitrary distributions on the real numbers. We rely on methods of measure theory and introduce
measurable event structures, which generalise event structures and form the basis for a model of measurable
concurrent games, to which one may adjoin probability. We illustrate the model by giving semantics to a
higher-order, affine probabilistic language called PPCFR

aff, for which we prove an adequacy theorem.
In the next section, we introduce measurable event structures, independently of their application to con-

current games. Then, in Section 3, we define PPCFR
aff and use it to motivate the development of a bicategory

of measurable games and measurable strategies, which we enrich with probability in Section 4. Finally, in
Section 5, we return to PPCFR

aff and prove adequacy.

2 Measurable Event Structures

Our model is based on a generalisation of event structures supporting arbitrary probability measures, including
continuous distributions. We start by recalling some elements of the theory of event structures, and introduce
our notion of fibred event structures.

2.1 Fibred event structures

2.1.1 Event structures

a1 a2

b

(a)

q

tt ff

(b)

Fig. 1: Two event
structures.

Event structures are a model of concurrent processes in which occurrences of compu-
tational events are partially ordered following the causal constraints between them.

Figure 1a displays an event structure in which two initial events a1 and a2 occur
in parallel, followed by a third event b. Here the partial order has a1 ď b and a2 ď b,
with the understanding that an event can only occur after each of its predecessors has
occurred.

Processes modelled by event structures are potentially non-deterministic. An event
structure carries information about which subsets of events are consistent, in which
case they may occur together in an execution. For instance the diagram in Figure 1b
represents a process in which an initial signal is followed by a boolean value chosen
non-deterministically: in the corresponding event structure, ttt, ffu is not a consistent
subset. Causality and consistency are subject to some axioms. Following [25]:

Definition 2.1 An event structure 3 is a tuple pE,ď,Conq where E is a set of
events, ď a partial order on E representing dependency, and Con a non-empty set of finite subsets of E
called consistent, such that

req “ te1 | e1 ă eu is finite for all e P E

teu P Con for all e P E

Y Ď X P Con ùñ Y P Con

X P Con and e ď e1 P X ùñ X Y teu P Con.

The diagrams of Figure 1 do not display ď and Con directly, but rather immediate causality e _ e1,
defined as e ă e1 with no events in between, and immediate conflict e e1, defined as req Y te1u P Con,
re1q Y teu P Con and te, e1u R Con.

A configuration of E is a finite subset x Ď E which is consistent and downwards-closed. The set of all
configurations is denoted CpEq and throughout the paper it is considered as a partial order under inclusion.
For x, y P CpEq, we say that y is a covering of x, written x Ắy, if there is e P E such that e R x and y “ xYteu.

2.1.2 Fibres
We propose making the event structure E measurable by turning CpEq into a measurable space whose structure
reflects that of E. We will review the basics of measure theory in the next section — for now let us introduce
a crucial object of our approach: a form of fibration of event structures which we call a fibred event structure.

Consider a process outputting two real numbers ε and δ consecutively, each chosen non-deterministically in
R. An event structure representation of it is pictured as E on the left of Figure 2. Each ‘real line’ represents

3 Specifically we use prime event structures with general consistency.
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ε P R
´8 8

δ P R
´8 8

a1

a2

Fig. 2. A fibred event structure f : E Ñ B.

an uncountable set of events, all pairwise in immediate conflict. Only one ε-branch is displayed — there are in
fact uncountably many such “δ” real lines, one for each ε P R.

Configurations of E can have one of three forms: H, tεu, or tε, δu where ε, δ P E and ε _ δ. Our approach
involves projecting them to the configurations of a base event structure B, displayed on the right of the figure.
The goal is to encapsulate the uncountable non-deterministic branching in E in fibres over the configurations
of B: H, ta1u and ta1, a2u. The projection map f : E Ñ B is an instance of a map of event structures:

Definition 2.2 A function f : E Ñ E1 is a map of event structures if

‚ it preserves configurations: for every x P CpEq, fx P CpE1q, and

‚ it is locally injective: if e, e1 P x are such that fpeq “ fpe1q, then e “ e1.

We say f is rigid if additionally e ď e1 implies fpeq ď fpe1q. Rigid maps are appropriate in this context:
as the next lemma shows they provide a well-behaved notion of fibres:

Lemma 2.3 If f : E Ñ E1 is a map of event structures, then f is rigid if and only if the induced map
CpEq Ñ CpE1q is a discrete fibration of partial orders, i.e. for every x P CpEq, if y Ď fx for some y P CpE1q,
then there exists a unique x1 P CpEq such that x1 Ď x and fx1 “ y.

Definition 2.4 A fibred event structure consists of a pair of event structures E and BE , and a rigid map
fE : E Ñ BE .

We use the same symbol to denote a map of event structures and the induced map on configurations.
Accordingly, given a fibred event structure fE : E Ñ BE and a configuration p P CpBEq, the fibre over p
is the preimage f´1

E tpu “ tx P CpEq | fEx “ pu. If p Ď q P CpBEq, we write rp,q : f´1
E tqu Ñ f´1

E tpu for
the restriction map determined by Lemma 2.3. Thus the preimage r´1

p,qtxu is the set of extensions of a

configuration x P f´1
E tpu.

2.2 Measurable event structures

In the example of Figure 2, the fibre structure is as follows: f´1
E tHu “ t˚u, f´1

E tta1uu – R, and f´1
E tta1, a2uu –

RˆR, with the restriction map rta1u,ta1,a2u acting as the first projection. It is this structure that we leverage
in order to make E measurable. First we recall some definitions, for which a standard reference is e.g. [16].

2.2.1 Measure theory
Given a set X, a σ-algebra on X is a set ΣX of subsets of X, containing X itself and closed under countable
unions, and complements. (Any such ΣX is also closed under countable intersections.) A measurable space
is a pair pX,ΣXq with X a set and ΣX a σ-algebra on it. A measurable function f : pX,ΣXq Ñ pY,ΣY q is
a function X Ñ Y such that for any U P ΣY , f´1U P ΣX .

Any set S of subsets of X generates a σ-algebra algpSq, as the smallest σ-algebra containing S. The
Borel σ-algebra on the set R of real numbers is generated by the set of all intervals: we write ΣR “

alg ptpa, bs | a ď b P Ruq.
The category Meas of measurable spaces and measurable functions has finite products: in the binary case

pX,ΣXqˆpY,ΣY q “ pXˆY,ΣXbΣY q, where the product σ-algebra is generated by the ‘measurable rectan-
gles’: ΣX bΣY “ alg ptUX ˆ UY | UX P ΣX , UY P ΣY uq . It also has countable coproducts 4 :

š

iPIpXi,ΣXiq “
p
š

iPI Xi,Σš

iPI Xi
q, where

š

iPI Xi “
Ť

iPItiu ˆXi and Σš

iPI Xi
“ alg pttiu ˆ U | i P I and U P ΣXiuq .

Finally, given a measurable space pX,ΣXq and a subset S Ď X, we can turn S into a measurable space
pS,ΣSq with the subspace σ-algebra ΣS “ tS X U | U P ΣXu.

4 In fact Meas is a topological category [4] and has all small limits and colimits induced from those in Set. We only give explicit
constructions for those needed in this paper.
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2.2.2 Measurable fibres

Definition 2.5 A measurable event structure E consists of a fibred event structure fE : E Ñ BE and, for
each p P CpBEq, a σ-algebra Σf´1

E tpu on the fibre over p, such that for every p Ď q P CpBEq, rp,q is measurable.

The fibred event structure in Figure 2 is naturally turned into a measurable event structure by setting
Σf´1

E tta1uu
“ ΣR and Σf´1

E tta1,a2uu
“ ΣR b ΣR. Note that in any measurable event structure, the fibre over H

is a singleton and necessarily equipped with the trivial σ-algebra.

Remark 2.6 Via the standard correspondence between discrete fibrations and presheaves, a fibred event
structure fE : E Ñ BE yields a functor CpBEqop Ñ Set, where the partial order pCpBEq,Ďq is seen as a
category. Likewise, a measurable event structure induces a ‘measurable presheaf’ CpBEqop Ñ Meas. Not all
presheaves on CpBEq are representable by fibred event structures in this way (see [26] for a precise connection),
but this presentation is more operationally intuitive and will facilitate the development of a game model in the
next section.

2.2.3 A category of measurable event structures
To define maps of fibred event structures we adapt the standard notion of maps between discrete fibrations of
categories:

Definition 2.7 A map of fibred event structures pfE : E Ñ BEq Ñ pfE1 : E1 Ñ BE1q is a pair of (not
necessarily rigid) maps α : E Ñ E1 and αB : BE Ñ B1E of event structures, making the diagram

E BE

E1 BE1

fE

α αB

fE1

commute. If E , E 1 are measurable event structures with underlying fibrations fE and fE1 , respectively, pα, αBq

is a measurable map if for each p P CpBEq, the map f´1
E tpu Ñ f´1

E1 tαBpu : x ÞÑ αx is measurable w.r.t. the
σ-algebra on each fibre.

We will give examples of such maps in the next section, when introducing measurable strategies. We call
MES the category of measurable event structures and measurable maps, with the obvious identities and
composition.

Observe that the usual category ES of event structures embeds fully and faithfully into MES: the embed-
ding disc : ES Ñ MES sends E to the unique object of MES whose underlying fibration is the identity map
id : E Ñ E. A measurable event structure of this form is said to be discrete.

In the rest of the paper we use E ,A,B,S, T , . . . to denote measurable event structures with underlying
event structures E,A,B, S, T, . . . respectively. When making use of the underlying data (base event structures
BE , fibration maps fE , etc. ) we use subscripts to avoid ambiguity. Similarly, we write α for the pair pα, αBq.

3 Measurable Games and Strategies

We proceed to give a presentation of our measurable games model, in which measurable event structures occupy
a central place: once enriched with polarity they play the roles of both processes and types.

We aim in the rest of the paper to give an interpretation to a higher-order, affine probabilistic language
called PPCFR

aff. We start by importing a few additional concepts from measure theory, to do with probability.
A sub-probability measure on a measurable space pX,ΣXq is a map µ : ΣX Ñ r0, 1s such that µpHq “ 0

and such that for any countable family tUiuiPI Ď ΣX with Ui X Uj “ H for every i ‰ j, we have µp
Ţ

i Uiq “
ř

i µpUiq. For x P X, the Dirac measure δx is defined as δxpUq “ 1 if x P U , and 0 otherwise. Finally,
given a sub-probability measure µ on X and a non-negative measurable function g : X Ñ R, the integral
ş

xPX
gpxqµpdxq is a well-defined element of r0,8q.

A stochastic kernel [15] from pX,ΣXq to pY,ΣY q is a map k : X ˆΣY Ñ r0, 1s such that for every x P X
the map kpx,´q is a sub-probability measure, and for every U P ΣY the map kp´, Uq is measurable with
respect to Σr0,1s, the subspace σ-algebra of ΣR. Such a map provides a notion of probability measure on the
space Y parametrised by elements of X. Stochastic kernels can be composed: given k : X ˆ ΣY Ñ r0, 1s and
h : Y ˆΣZ Ñ r0, 1s, their composition is the map h˝k : XˆΣZ Ñ r0, 1s defined as px, Uq ÞÑ

ş

yPY
hpy, Uqkpx, dyq.
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3.1 A probabilistic language with continuous distributions

We introduce our main language of study, PPCFR
aff, an affine version of PCF enriched with a real number type

and both discrete and continuous probabilistic primitives. It has types and terms defined as

A,B ::“ Real | Bool | A( B M,N ::“ x | λx.M |MN | K | tt | ff | ifM N P

coin | r |M ď 0 | d

where r ranges over real numbers and d over a countable set D of stochastic kernels Rˆ ΣR Ñ r0, 1s.
Elements of D may be thought of as families of distributions with one real parameter. In an example below

we use r ÞÑ normalpr, 1q, the normal distributions with standard deviation 1. Note that PPCFR
aff is designed

to support a proof of concept for measurable game semantics. It lacks some features desirable for practical
probabilistic programming, such as more general families of distributions, and primitives for observing data
and performing inference.

The language is given an affine type system in the standard way, so that in λx.M the variable x may appear
at most once in M . We give some of the typing rules, with Ground standing for either Real or Bool:

Γ $ K : Real
Γ $M : Bool ∆ $ N : Ground Ψ $ P : Ground

Γ,∆, Ψ $ ifM N P : Ground

Γ $M : Real
Γ $M ď 0 : Bool Γ $ coin : Bool

d P D
Γ $ d : Real ( Real Γ $ r : Real

To define operational semantics, we follow [3,14,23] and first turn the set of terms into a measurable space. We
write T Γ$A for the set of terms M for which the typing judgment Γ $M : A is derivable. Observe that every
M P T Γ$A can be canonically written as Srr1{x1, . . . , rn{xns, where the ri are real number constants, and S
is a term without any subterm of the form r, such that Γ, x1 : Real, . . . , xn : Real $ S : A.

Given such an S, let T Γ$A
S be the subset of T Γ$A containing terms of the form M “ Srr1{x1, . . . , rn{xns

for some r1, . . . , rn. There is a bijection T Γ$A
S – Rn, and we define ΣΓ$A

S to be the (unique) σ-algebra which

makes it an isomorphism pT Γ$A
S ,ΣΓ$A

S q – pRn,ΣRnq in Meas. We then take ΣT Γ$A to be the σ-algebra

induced by seeing T Γ$A as the coproduct
š

S T
Γ$A
S , where S ranges over the terms containing no subterms

of the form r and such that Γ, x1 : Real, . . . , xn : Real $ S : A for some n P N.
We then define a call-by-name, deterministic reduction relation Ñ as

pλx.MqN ÑM rN{xs if ttN P Ñ N r ď 0 Ñ tt pif r ď 0q

if ff N P Ñ P r ď 0 Ñ ff pif r ą 0q.

We also define evaluation contexts:

Cr s ::“ r s | if Cr sN P | Cr s ď 0 | Cr sN | dCr s

The one-step reduction relation between terms is then expressed as a stochastic kernel redΓ$A : T Γ$A ˆ

ΣT Γ$A Ñ r0, 1s defined for each PPCFR
aff term M and U P ΣT Γ$A inductively on the structure of M , as

redΓ$ApM,Uq “

$

’

’

’

’

&

’

’

’

’

%

δN pUq if M Ñ N
1
2δttpUq `

1
2δff pUq if M “ coin

dpr, tN P U | N “ r1uq if M “ d r

red∆$B pR, tN | CrN s P Uuq if M “ CrRs with R a redex for Ñ, R “ coin or R “ d r

δM pUq otherwise.

That red is a stochastic kernel is a straightforward adaptation of [14]. Finally, for U P ΣT Γ$A , the many-
step probability of reduction is PrpM Ñ Uq “ supnPN rednpM,Uq. Note that if V P ΣR, we write V for
tr | r P V u, an element of ΣT $Real .

3.2 Games and strategies as event structures

3.2.1 Terms as probabilistic strategies
In the concurrent games model presented here, the term M “ λr. normalpr, 1q ď 0 will be interpreted as the
strategy in Figure 3a, which combines all possible execution traces of M . Each trace is recorded a dialogue
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Real ( Bool

q´

q`

r´P R
´8 8

tt`
0

ff`|

normpr, 1q

´8 8

(a)

BReal ( BBool

q´

q`

a´

tt` ff`

(b)

Fig. 3. An interpretation for M “ λr. normalpr, 1q ď 0.

between Player, representing M , and Opponent, representing the execution environment. In this example
every maximal trace is of the form q´ _ q` _ r´ _ b` for some r P R and b P ttt, ffu, and the polarity (`
or ´) indicates which of the two players is responsible for a move, with the convention Player “ `, Opponent
“ ´. We read such a dialogue as follows: the initial q´ is an external call to the program, the following q` is
a call by the program to its argument, whose value is then supplied by the environment as r´. Finally b` is
the output of the function for this particular execution.

In our model the (uncountable) set of traces will arise as the configurations of a measurable event structure,
as defined in Section 2, which we will further enrich with probability in Section 4. Figure 3b shows the
corresponding base event structure, which acts as a discrete representation of the control flow of the program.
We omit the details of the projection map from the event structure of 3a to that of 3b, as it is clear from
the labelling of moves. To formalise this we must equip measurable event structures with the extra data of a
polarity function, as in e.g. [22]:

Definition 3.1 An event structure with polarity (esp for short) is an event structure E together with a
polarity function polE : E Ñ t`,´u. A map of esps is a polarity-preserving map of event structures.

Accordingly, a measurable esp is a measurable event structure E , where in addition E and BE have
polarity, and fE preserves it. A map α : E Ñ E 1 is a map of measurable esps whenever both α and αB
preserve polarity.

Configurations of an esp E are ordered by inclusion, as usual. In addition, we write x Ď` y (resp. x Ắ`y)
when x Ď y (resp. x Ắy) and every e P yzx has polpeq “ `; the relations Ď´ and Ắ´ are defined similarly.

3.2.2 Measurable games
As usual in game semantics, strategies are constrained by the games they play on. In this setting a measurable
game is simply a measurable esp. We will eventually build a bicategory [2] with measurable games as objects,
the soon-to-be-introduced measurable strategies as morphisms, and a suitable notion of 2-cells.

First we give the interpretation of PPCFR
aff ground types as measurable games. The game JBoolK is a

discrete measurable esp, defined as the image under the functor disc of the event structure of Figure 1b, with
polarity defined as polpqq “ ´ and polpttq “ polpffq “ `. The measurable game JRealK is defined as

q´

r`P R
´8 8

q´

a`

with the only non-trivial fibre, that over the configuration tq, au, defined to be the measurable space pR,ΣRq.

3.3 Measurable strategies

We forget about probability for now and until Section 4. The rest of this section is dedicated to the development
of our framework for game semantics in a measurable setting. We define measurable strategies on measurable
games and describe their composition and organisation as a bicategory.

As mentioned earlier, a strategy in this framework is a measurable esp which is constrained by the game
it plays on. In the same way as in [22], this constraint is expressed via a labelling map relating the two esps,
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subject to some conditions.

Definition 3.2 A measurable strategy on a measurable game A is a measurable esp S together with a
measurable map σ : S Ñ A (explicitly: two maps σ : S Ñ A and σB : BS Ñ BA), such that:

‚ courtesy: If e, e1 P BS are such that e _ e1 and σBpeq _ σBpe
1q, then polpeq “ ´ and polpe1q “ `.

‚ measurable receptivity: If p P CpBSq, and σB p Ď
´ q for some q P CpBAq, then there is a unique

q1 P CpBSq such that p Ď q1 and σB q
1 “ q, and furthermore the diagram

f´1
S tq1u f´1

S tpu

f´1
A tqu f´1

A tσBpu

rS
p,q1

σ σ

rAσBp,q

is a pullback in Meas (where recall the horizontal arrows are restriction maps induced by the fibred
structure, and the vertical ones are restrictions of σ to the respective fibres).

We will see later that both conditions serve to ensure a well-behaved interaction with copycat, the identity
strategy on a game. Informally, they prevent Player from constraining Opponent’s behaviour further than is
allowed by the game.

It will be useful to have a characterisation of pullbacks in Meas. Suppose X,Y, Z are measurable spaces
and g : X Ñ Y and h : Z Ñ Y are measurable functions. The pullback

P Z

X Y

Π2

Π1 h

g

exists and has underlying set the pullback in Set: P “ tpx, zq P X ˆ Z | gpxq “ hpzqu, with Π1 and Π2 the
usual projections. The associated ΣP is the subspace σ-algebra induced by ΣX b ΣZ , using that P Ď X ˆ Z.

We take a closer look at the two conditions of Definition 3.2 in turn. The courtesy axiom says that a strategy
may only specify additional causal dependencies of Player moves on Opponent moves. It is a constraint on BS ,
and indeed on S: using that fA and fS are rigid maps of esps, it is easy to see that the condition still holds
replacing BS , σB with S, σ. The purpose of the receptivity axiom is twofold. Restricted to the base BS , it is the
receptivity axiom of [22], stating that at any stage Player must be prepared to let Opponent play the moves
that BA makes available to them. In addition, the pullback condition is a way of encoding the same axiom for
the S Ñ A component of the strategy, while enforcing that for any such Opponent extension the fibre structure
of S reflects that of A.

3.3.1 Morphisms of measurable strategies
Often it is not appropriate to compare measurable strategies up to strict equality, so (as in [22]) we introduce a
notion of morphism between them. Such morphisms play the role of 2-cells in the bicategory we define below.

Definition 3.3 For measurable strategies σ : S Ñ A and τ : T Ñ A, a morphism of measurable strategies
is a measurable map α : S Ñ T which commutes with the labelling maps, i.e. τ ˝ α “ σ. When α is an
isomorphism, we write σ – τ .

3.4 Interaction of measurable strategies

We introduce two fundamental constructions on measurable esps:

Definition 3.4 Given esps E and E1, we define E ‖ E1 to be the event structure with events E`E1, causality
and polarity induced from E and E1, and consistent subsets those of the form X`X 1 (the disjoint union, often
written X ‖ X 1) for X P ConE and X 1 P ConE1 . Thus, the parallel composition E ‖ E 1 of measurable esps
E and E 1 is defined to be the fibration fE ‖ fE1 : E ‖ E1 Ñ BE ‖ BE1 where the fibres are obtained as product
spaces: pfE ‖ fE1q´1tp ‖ p1u “ f´1

E tpu ˆ f´1
E1 tp

1u. This makes all restriction maps measurable.

Next, the esp EK is defined as having events, consistency and causality those of E, and the opposite polarity:
polE1peq “ ´polEpeq for all e P E. Given a measurable esp E , its dual EK is given by fKE “ fE : EK Ñ BKE ,
with fibres the same as in E .

7
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Note the above use of ‖ as an operation on maps of esps. We observe that this operation lifts to maps
of fibred and measurable esps. Furthermore, it is functorial and makes pMES, ‖,1q a symmetric monoidal
category, where 1 is the empty measurable event structure. We will make use of this functorial action, and
write BE‖E1 and fE‖E1 for BE ‖ BE1 and fE ‖ fE1 .

We define a measurable strategy from A to B to be one on the game AK ‖ B. Aiming for a notion
of composition, our goal is now to investigate the interaction of measurable strategies σ : S Ñ AK ‖ B and
τ : T Ñ BK ‖ C. Traditionally in concurrent games, this is done via a pullback construction in the category of
event structures, which must be adapted to the fibred setting. Consider the diagram

T f S BTfS

S ‖ C A ‖ T BS‖C BA‖T

A ‖ B ‖ C BA‖B‖C

Π1 Π2_

fTfS

_
pΠ1qB pΠ2qB

σ‖C A‖τ pσ‖CqB pA‖τqB

in the category of event structures (without polarity), where T f S and BTfS are obtained as pullbacks as
indicated on the diagram (pullbacks always exist in ES, see e.g. [8]). For readability we have left out labels
for horizontal fibration maps; and fTfS is the canonical map induced by the universal property of BTfS . We
write τ fσ : T fS Ñ A ‖ B ‖ C and pτ fσqB : BTfS Ñ BA‖B‖C for the composite maps through the diagram.

Standard reasoning (using properties of pullbacks in ES) shows that fTfS is rigid, so that T f S “

pT f S, fTfS ,BTfSq is a fibred event structure. Moreover, given p P CpBTfSq, the fibre f´1
TfStpu corresponds

to the following pullback diagram in Set:

f´1
TfStpu

f´1
S‖CtpΠ1qB pu f´1

A‖T tpΠ2qB pu

f´1
A‖B‖Ctpτ f σqB pu

Π1 Π2

_

σ τ

We define Σf´1
TfStpu

so that the above is also a pullback diagram in Meas. The induced map τ f σ : T f S Ñ
A ‖ B ‖ C is measurable and it is the appropriate notion of interaction of σ and τ .

Lemma 3.5 The tuple pT f S,Π1,Π2q is the pullback of σ ‖ C and A ‖ τ in MES.

3.5 A bicategory of measurable strategies

Finally we organise measurable games and strategies into a bicategory. We start with composition.

3.5.1 Composition via hiding
We have seen that the map τ f σ : T f S Ñ A ‖ B ‖ C describes the outcome of the interaction of S and T ,
which synchronise via moves of the game B. In order to obtain from this a measurable strategy from A to C
we hide the synchronisation events of T f S.

Specifically, we define T dS to be the event structure with events those e P T fS whose image under τ fσ
lies in either the A or the C component of A ‖ B ‖ C, and with all the data of an event structure induced from
T f S. The base event structure BTdS is obtained from BTfS analogously with respect to BA‖B‖C . It poses
no problem to check that the map fTdS : T d S Ñ BTdS is well-defined and rigid.

After this step of hiding, every configuration p P CpBTdSq has a unique witness rps P CpBTfSq, and
similarly every x P CpT dSq induces rxs P CpT fSq, satisfying f´1

TdStpu – f´1
TfStrpsu via x ÞÑ rxs. It is therefore

natural to define Σf´1
TdStpu

“ Σf´1
TfStrpsu

, modulo the iso; we get a measurable esp T dS and a measurable map

τ d σ : T d S Ñ AK ‖ C.

Lemma 3.6 The map τ d σ : T d S Ñ AK ‖ C a measurable strategy, called the composition of σ and τ .

3.5.2 Measurable copycat
For a measurable game A, the identity strategy on A is the measurable copycat strategy ccA : CCA Ñ AK ‖ A,
which acts as a forwarder of information from one copy of A to the other.

8
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The components CCA and BCCA of the measurable esp CCA are instances of the same construction. Formally,
the events, polarity and consistency of CCA are those of AK ‖ A, and the causality is that of AK ‖ A enriched
with the pairs tppa, 1q, pa, 2qq | a P A and polApaq “ `u Y tppa, 2q, pa, 1qq | polApaq “ ´u. The base BCCA is
defined as CCBA ; the maps ccA and pccAqB are identities on events, and fCCA has the same action as fA ‖ fA.

Given p P CpBCCAq, the fibre over p is equipped with the smallest σ-algebra making the map ccA : f´1
CCA
tpu Ñ

f´1
AK‖AtpccAqB pu measurable.

Lemma 3.7 The map ccA : CCA Ñ AK ‖ A is a measurable strategy. Furthermore, if σ is a measurable
strategy from A to B, then σ d ccA – σ.

The proof relies on existing composition results for concurrent strategies [8], along with an analysis of the
fibre structure in the interaction σ f ccA. Similarly, we can show that composition is only associative up to
isomorphism, in such a way that:

Theorem 3.8 There is a bicategory MG with measurable games as objects, measurable strategies as mor-
phisms, and morphisms of measurable strategies as 2-cells.

4 Probabilistic Strategies

We add probability to measurable strategies by introducing the notion of valuation on a measurable esp.
Although the framework of the previous section works in full generality, valuations are only well-defined on
a restriction of the model. Say a measurable space pX,ΣXq is a standard Borel space (e.g. [19]) if it is
isomorphic to pR,ΣRq, or if X is countable and ΣX “ PX, the powerset of X. A measurable esp is said to be a
standard Borel esp if all its fibres are standard Borel spaces. Because standard Borel esps are closed under
the various constructions of Section 3, there is a sub-bicategory of MG involving only standard Borel esps.

We shall assume from now on that all measurable esps are standard Borel; in particular, we regularly make
use of the property that in a standard Borel space all singleton subsets are measurable. We first introduce
valuations on discrete esps.

4.1 Probabilistic esps: the discrete case

We are interested in representing the uncertainty with which some configurations of an esp E occur in an
execution. The probabilistic event structures with polarity of [27] take a global approach: a configuration-
valuation is a function v : CpEq Ñ r0, 1s, satisfying certain axioms, where for x P CpEq the coefficient vpxq is
the probability that the process will reach x, given that Opponent plays all the negative moves in x.

Here we instead adopt a more local (and marginally more general) approach, and for each x P CpEq we
assign coefficients to positive extensions of x, i.e. configurations y P CpEq such that x Ď` y. We write
vpx, yq for this coefficient, representing the conditional probability that y will occur given than x has. If
vp´,´q is to make sense as a form of conditional probability, we must have vpx, xq “ 1, and a chain rule:
vpx, zq “ vpx, yqvpy, zq, when x Ď` y Ď` z.

We must also ensure that vpx,´q is a probability distribution on the positive extensions of x. If those
extensions are pairwise incompatible, then indeed the sum

ř

xĎ`y vpx, yq must be ď 1; if instead extensions
y1, . . . , yn are not pairwise mutually exclusive then we must account for any overlap, using the inclusion-
exclusion principle. This is condition (3) in the definition below, called drop condition in [27]; condition
(4) formalises the requirement that Player and Opponent, whenever they are causally independent, are also
probabilistically independent.

Definition 4.1 A (discrete) valuation on an esp E is a family of coefficients pvpx, yqqxĎ`yPCpEq indexed by

positive extensions, and satisfying:

(1) for every x P CpEq, vpx, xq “ 1;

(2) if x Ď` y Ď` z, vpx, zq “ vpx, yqvpy, zq;

(3) if x Ď` y1, . . . , yn, then
ÿ

I

p´1q|I|`1vpx,
ď

iPI

yiq ď 1,

where I ranges over nonempty subsets of t1, . . . , nu such that
Ť

iPI yi is consistent;

(4) if x Ď` y and x Ď´ x1 with y and x1 compatible, then vpx, yq “ vpx1, y Y x1q.

9
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4.2 Probabilistic measurable esps: the general case

Suppose now that E is a measurable esp. We generalise Definition 4.1 by considering a family of stochastic
kernels kEp,q from f´1

E tpu to f´1
E tqu, indexed by positive extensions p Ď` q in CpBEq. Informally, for x P f´1

E tpu,

the sub-probability measure kEp,qpx,´q represents the conditional distribution on those positive extensions of x
lying in the fibre over q — note that all such extensions are necessarily incompatible. More formally, the support
of kEp,qpx,´q should be included in r´1

p,qtxu, the set of extensions of x, so we ask that kEp,qpx, f
´1
E tquzr´1

p,qtxuq “ 0,

or equivalently, kEp,qpx, f
´1
E tquq “ kEp,qpx, r

´1
p,qtxuq.

4.2.1 Race-freeness and pullbacks of stochastic kernels
We first investigate how to adapt condition (4) of Definition 4.1 to the measurable setting. To do so we must
apply a further restriction on measurable esps, that of race-freeness, which is usually required in probabilistic
concurrent games [27,7], and says that if behaviours of Player and Opponent are causally independent then
they are compatible and probabilistically independent:

Definition 4.2 A measurable esp E is race-free if for every p P CpBEq, if p Ď` q and p Ď´ p1, then
p1 Y q P CpBEq and moreover the diagram

f´1
E tp1 Y qu f´1

E tp1u

f´1
E tqu f´1

E tpu

rp1,p1Yq

rq,p1Yq rp,p1

rp,q

is a pullback in Meas.

The following technical lemma will be crucial, both for generalising condition (4) and when we study the
interaction of probabilistic strategies in 4.3.

Lemma 4.3 Let X,Y, Z be standard Borel spaces, and let f : Z Ñ X and r : Y Ñ X be measurable functions.

Consider the pullback pY
Π1
ÐÝÝW

Π2
ÝÝÑ Zq of r along f , where W is seen as a subspace of Y ˆZ as described in

Section 3.3. Then:

‚ For every y P Y , z P Z, and U P ΣW , the sections Uy “ tz P Z | py, zq P Uu and Uz “ ty P Y | py, zq P Uu
are in ΣZ and ΣY , respectively.

‚ If k : X ˆ ΣY Ñ r0, 1s is a stochastic kernel such that kpx, Y zr´1txuq “ 0 for all x P X, then the map
k# : ZˆΣW Ñ r0, 1s defined by k#pz, Uq “ kpfpzq, Uzq is a stochastic kernel, and k#pz,W zpΠ2q

´1tzuq “ 0
for all z P Z.

4.2.2 Generalised valuations
We can now generalise Definition 4.1 from the discrete case, by rephrasing conditions (1)-(4) in this setting:

Definition 4.4 A valuation on a race-free measurable esp E consists of a family KE “ pkEp,qqpĎ`qPCpBEq of
stochastic kernels

kEp,q : f´1
E tpu ˆ Σf´1

E tqu Ñ r0, 1s

such that for all x P f´1
E tpu, we have kEp,qpx, f

´1
E tquzr´1

p,qtxuq “ 0, satisfying the following conditions:

(1) kEp,ppx,´q “ δx for every x P f´1
E tpu;

(2) if p1 Ď
` p2 Ď

` p3, then kEp1,p3
“ kEp2,p3

˝ kEp1,p2
;

(3) if q Ď p1, . . . , pn and x P f´1
E tqu, then

ÿ

I

p´1q|I|`1kEq,
Ť

iPI pi
px, r´1

q,
Ť

iPI pi
txuq ď 1,

where I ranges over nonempty subsets of t1, . . . , nu such that
Ť

iPI pi is consistent;

(4) if p Ď` q and p Ď´ p1 then kEp1,qYp1 “ pk
E
p,qq

#, the lifting of kEp,q through the pullback of the race-freeness
condition for E , as in Lemma 4.3.

10
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4.3 A bicategory of probabilistic strategies

Definition 4.5 A probabilistic strategy on a race-free measurable game A consists of a measurable strategy
σ : S Ñ A, and a valuation KS on S.

Note that this is well-defined: if A is race-free then by receptivity, so is S. Probabilistic strategies pσ : S Ñ
AK ‖ B, KSq and pτ : T Ñ BK ‖ C, KT q interact and compose as measurable strategies; it remains to equip
the composition T d S with a valuation.

4.3.1 Interaction
We start by making the interaction T f S probabilistic, accounting for the fact that it is not an esp: the
polarity of synchronisation events is not well-defined.

We say that an event e P BTfS is a σ-action if pΠ1qBe is a positive element of BS , and that e is a τ-action
if pΠ2qBe is a positive element of BT (no event is both a σ-action and a τ -action, but some events are neither
of the two). For p, q P CpBTfSq with p Ď q, we write p Ďσ q (resp. p Ďτ q) if all events of qzp are σ-actions
(resp. τ -actions). Whenever p Ďσ q, we see that the fibre f´1

TfStqu extends f´1
TfStpu according to S:

Lemma 4.6 If p Ďσ q in CpBTfSq, with pΠ1qBq “ qS ‖ qC and pΠ1qBp “ pS ‖ pC , then the diagram

f´1
TfStqu f´1

TfStpu

f´1
S tqSu f´1

S tpSu

rp,q

ΠS ΠS
rpS,qS

is a pullback, where ΠS is Π1 composed with the projection f´1
S‖CtqS ‖ qCu Ñ f´1

S tqSu (and similarly for p).

Of course the corresponding result holds for τ -extensions, and therefore using Lemma 4.3 we can define a
family of stochastic kernels kTfSp,q indexed by p, q P CpBTfSq such that p Ďσ q or p Ďτ q, by lifting through the

pullback square the relevant kernel in KS or KT .

4.3.2 Composition
Suppose now that after hiding the synchronisation events as described in Section 3, we have p, q P CpBTdSq
such that p Ď` q. We have rps Ď rqs in CpBTfSq, and moreover it is easy to check that there must exist a
chain rps Ďλ1 u1 Ď

λ2 ¨ ¨ ¨ Ďλn un Ď
λn`1 rqs, with λi P tσ, τu for each i. With respect to this chain we can define

kTdSp,q “ kTfSun,rqs
˝ ¨ ¨ ¨ ˝ kTfS

rps,u1
. As the notation suggests, we show that:

Lemma 4.7 The kernel kTdSp,q is independent of the particular choice of chain.

Thus we have defined KT dS “ pkTdSp,q qpĎ`qPCpBTdSq, and we have:

Lemma 4.8 The family KTdS is a valuation on T dS, so that pτ dσ,KTdSq is a probabilistic strategy, called
the composition of pσ,KSq and pτ,KT q.

4.3.3 Copycat
Finally we make the copycat strategy ccA : CCA Ñ AK ‖ A probabilistic for a measurable, race-free game A.

Lemma 4.9 For p, q P CpBCCAq such that p Ď` q, for every x P f´1
CCA
tpu there is at most one y P f´1

CCA
tqu such

that rp,q pyq “ x, and setting kCCA
p,q px, Uq “ δypUq if y exists, 0 otherwise, defines a stochastic kernel.

It is straightforward to check that the family KCCA made up by the kCCA
p,q is a valuation. So as before, we

proceed to construct a bicategory with race-free measurable games as objects, and probabilistic strategies as
morphisms, and where copycat is the identity morphism. If σ : S Ñ A to τ : T Ñ A are probabilistic strategies,
a map α : S Ñ T is a morphism of probabilistic strategies if it is a morphism of measurable strategies such
that for all p Ď` q P CpBSq, and for all x P f´1

S tpu and U P Σf´1
T tαB qu

, we have kSp,qpx, α
´1Uq ď kTαB p,αB q

pαx,Uq.

Theorem 4.10 There is a bicategory PG with race-free standard Borel games as objects, probabilistic strategies
as morphisms, and morphisms of probabilistic strategies as 2-cells.
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5 Game Semantics for PPCFR
aff

We define the semantics of PPCFR
aff in PG, or rather in the quotiented category PG– where probabilistic

strategies are considered up to isomorphism, as usual in concurrent game semantics.

Call a measurable esp E negative if the initial moves in BE (and therefore in E) are negative. Let PG´
– be

the sub-category of PG– consisting of negative games and negative strategies. We can show that pPG´
–, ‖,1q

is symmetric monoidal closed and, in a special case, the function space A ( B can be characterised as follows:

Lemma 5.1 If A,B are negative esps such that B has a unique initial move b0, then A( B has events, polar-
ity and consistent sets those of AK ‖ B, and causality the transitive closure of ďAK‖B Ytpb0, aq | a initial in Au.
If A, B are measurable games where BA (and therefore A) has a unique initial move, then fA(B : pA( Bq Ñ
pBA ( BBq has the same action as fAK‖B. Finally, for any p P CpBA ( BBq, we have f´1

A(Btpu “ f´1
AK‖Btpu.

The interpretation of PPCFR
aff ground types was given in 3.2, and for higher types we set JA( BK “ JAK (

JBK. The interpretation of the discrete part of PPCFR
aff (that is, the PCF primitives and coin) follows the

standard one (see e.g. [10,7]) and is made measurable via the functor disc. The strategy JKK is the unique (up
to iso) strategy on JRealK with no positive moves. The constant r is interpreted by JrK : S Ñ JRealK, where S
is the measurable sub-esp of JRealK with unique maximal configuration tq´, r`u, and with base BS “ BJRealK.

It remains to define the kernel for the extension tqu Ď` tq, au: given the unique element of f´1
S ttquu, it behaves

like the Dirac measure on the singleton set f´1
S ttq, auu.

Then, JM ď 0 KΓ is defined as the composition of JMKΓ with a strategy ď0 from JRealK to JBoolK. Similarly
for each d P D, JdKΓ is a probabilistic strategy from JRealK to JRealK behaving like the kernel d. We omit
their explicit definition, hoping that both of them are reconstructible from the example of Figure 3.

Our final result is adequacy, relating the probability of convergence of a term and that of its interpretation;
we define the latter now. If σ : S Ñ JBoolK is a probabilistic strategy, then we observe that by receptivity, there
is a unique p0 P CpBSq such that σBp0 “ tq

´u, and necessarily f´1
S tp0u is a singleton, containing some x P CpSq.

For b P ttt, ffu, the probability of convergence Prpσ Ñ bq is a sum, indexed by configurations of BS mapping
to tq, bu, of the total measure of the corresponding fibre. That is, Prpσ Ñ bq “

ř

pPCpBSq
σB p“tq,bu

kSp0,ppx, f
´1
S tpuq.

Similarly, if τ : T Ñ JRealK, we write p0 and x for the unique configurations over tq´u. If U P ΣR, viewed
as an element of the fibre f´1

JRealKptq, auq, we set Prpτ Ñ Uq “
ř

pPCpBT q
τB p“tq,au

kTp0,ppx, σ
´1Uq, where σ´1U is the

preimage with respect to the restriction of σ to f´1tpu.

Theorem 5.2 (Adequacy) Let $M : Bool be a PPCFR
aff term. Then for b P ttt, ffu, we have PrpM Ñ bq “

PrpJMK Ñ bq. Similarly, if $M : Real is a PPCFR
aff term and U P ΣR, then PrpM Ñ Uq “ PrpJMK Ñ Uq.

6 Conclusion

The model we defined in this paper is strongly intensional. Compare, for instance, the primitive coin with
the term M “ if pnormalp0, 1q ď 0q tt ff . Both give rise to the same probability distribution on ttt, ffu.
But viewed as a strategy, JcoinK has only two positive events, one for tt and one for ff , whereas JMK has a
continuum of such events, with the probability equally spread between those labelled tt and those labelled ff ,
according to normalp0, 1q. This level of intensionality informs our understanding of probabilistic programs and
will facilitate the addition of computational effects to the language. It may also be useful in connection with
inference algorithms involving an exploration of the space of execution traces (e.g. [28]).

The addition of symmetry [9] to the model should be relatively straightforward using standard methods of
concurrent games [10,7], and would give rise to a cartesian closed category in which one could give semantics
to a non-affine probabilistic programming language. Probabilistic innocence in this context should also be
investigated in the spirit of [7], aiming for a definability result.
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