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Abstract

To every small category or topos one may associate its isotropy group, which is an algebraic invariant capturing information about
the behaviour of automorphisms. We investigate this invariant in the particular situation of algebraic theories, thus obtaining a
group-theoretic invariant of algebraic theories. This invariant encodes a notion of inner automorphism relative to the theory. Our
main technical result is a syntactic characterization of the isotropy group of an algebraic theory, and we illustrate the usefulness
of this characterization by applying it to various concrete examples of algebraic theories.
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1 Introduction

In [Funk et al. 2012], the authors introduce and study a new group-theoretic invariant for Grothendieck toposes
called isotropy. In loc. cit. it is explained how the isotropy group of a topos has the universal property that it
acts canonically on every object of the topos, in such a way that every morphism is equivariant with respect
to these actions, and such that it acts on itself by conjugation. More recent work [Funk et al. 2018] extends
this study to small categories, making the phenomenon part of elementary category theory. In particular, it
explains how the isotropy group of a small category can be regarded as a solution to the “problem” that the
assignment C 7→ Aut(C) (the automorphism group of an object C) is generally not functorial. Somewhat more
precisely, the isotropy group of a small category is a functor ZC : Cop → Grp equipped with, for each object C
of C, a comparison morphism ZC(C)→ Aut(C).

Independently, and motivated by the categorical analysis of parametric polymorphism, Freyd [Freyd 2007]
has investigated the concept of core algebras. In his terminology, the core of a category (if it exists), is a
monoid which, informally speaking, represents the polymorphic unary operations present in that category. In
the case of Grothendieck toposes, Freyd shows that the core always exists. Moreover, it can be shown that the
isotropy group is the group of invertible elements of the core, and hence that we can interpret the elements of
the isotropy group as polymorphic automorphisms in the topos.

For Grothendieck toposes, there is also an interpretation of the isotropy group in logical terms. For every
Grothendieck topos E there exists a (geometric) theory T (unique up to Morita-equivalence), such that E is
the classifying topos B(T) of T. In particular, this means that E contains a universal T -model. The isotropy
group of E is then the automorphism group of this universal model. In work by Breiner [Breiner 2016] it has
also been shown that if we represent a topos E = B(T) as a topos of sheaves on the (topological) groupoid of
T-models, then the isotropy group is the sheaf of groups whose stalk at a T-model M is the group of definable
automorphisms of M . Here, an automorphism of M is called definable when there is a formula φ(x, y) in
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the language of T, possibly with parameters from the model M , such that φ(x, y) is a T-provably functional
relation whose interpretation is the given automorphism.

In the present paper, we investigate the concept of isotropy in the context of algebraic theories, or, equiva-
lently, finitary monads. Using Gabriel-Ulmer duality, it is easily seen that the isotropy group of an algebraic
theory T can be understood in terms of automorphisms in the category fpT-Mod of finitely presentable T-
models. In the specific instance of the theory of groups, the following result by Bergman [Bergman 2012],
which aimed at giving a categorical characterization of inner automorphisms in the category of groups, is the
starting point for our analysis:

Theorem 1.1 (Bergman) For any group G, the automorphism group of the forgetful functor G/Grp → Grp
is isomorphic to G, via the isomorphism that relates an element g ∈ G to the natural automorphism whose
component at s : G→ H is the inner automorphism x 7→ s(g)−1xs(g) of H.

This result remains valid when we replace groups by finitely presentable groups; it can then be used to fully
characterize isotropy of the algebraic theory of groups in terms of conjugation. Therefore, there is a sense in
which isotropy of a general algebraic theory can be thought of as specifying a notion of formal conjugation for
that theory. Alternatively, it may be regarded as a notion of inner automorphism.

Our main contribution in this paper is a purely syntactical description of the isotropy group of an algebraic
theory, inspired by and generalizing the methods used by Bergman. This result allows us to identify elements
of the isotropy group as certain (equivalence classes of) words. We then apply this result in the context of
several examples including groups, monoids, Abelian groups, and lattices to give explicit calculations of the
isotropy groups of these theories.

The research presented in this paper is part of the PhD project of the second author. (See also the section
on Future Research.)

2 Basic Definitions

Given a category C, the assignment

C 7→ Aut(C)

is in general not functorial; given a morphism f : D → C there is no canonical group homomorphism Aut(C)→
Aut(D), unless f is an isomorphism. The isotropy group of C can be thought of as solving this “problem”.
Consider the isotropy functor Z = ZC : Cop → Grp:

C 7→ Z(C) = Aut(C/C → C),

assigning to an object C the group of natural automorphisms of the forgetful functor C/C → C. This assign-
ment is functorial in C, and given α ∈ Aut(C/C → C), the component α1C : C → C is an automorphism of
C. The other components αf : D → D are automorphisms making

D
αf //

f

��

D

f

��

C α1C

//C

commute. Finally, given another map g : E → D, we find that the diagram

E
αfg //

g

��

E

g

��

D
αf //

f

��

D

f

��

C α1C

//C

commutes. Thus an element α ∈ Z(C) is an automorphism of C, together with a specification of how to
reindex this automorphism in a compatible way along morphisms into C. We refer to an element α ∈ Z(C) as
an element of isotropy (at C).

When E is a Grothendieck topos, it happens that the functor Z : Eop → Grp is representable: there exists a
group object ZE internal to E with the property that for any object X of E , there is a bijective correspondence

ZE(X) ∼= E(X,ZE).(1)
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This correspondence is natural in X, and hence gives an isomorphism of functors ZE ∼= E(−, ZE). The group
Z = ZE is called the isotropy group of E . We refer to [Funk et al. 2018] for details and basic theory. In the
present paper, we will use the following fact:

Proposition 2.1 When E = SetC
op

, the isotropy group of E coincides with the isotropy functor ZC : Cop → Grp
of the category C.

Note that in this situation, the isotropy group Z of E can be regarded both as an internal group object in
E and as the “external” isotropy functor Cop → Grp of the category C. Occasionally we overload notation and
also write Z for its underlying Set-valued presheaf.

When T is a theory, then a classifying topos for T is a topos B(T) for which there exists a natural bijective
correspondence

Geom(E ,B(T )) ' Mod(T, E)(2)

between the category of geometric morphisms from E to B(T) and the category of T-models in E . Here, E is an
arbitrary cocomplete topos. It is well-known (see e.g. [Mac Lane-Moerdijk 1992]) that every geometric theory
admits a classifying topos (which is then automatically unique up to equivalence) and that every Grothendieck
topos is the classifying topos of some geometric theory (which is then automatically unique up to Morita
equivalence).

Now let T be an algebraic theory, that is, a theory whose underlying language consists of a single sort X,
countably many variables of this sort, and function symbols of potentially all finite arities. The (non-logical)
axioms of T are equations between terms of this language. Now let fpT-Mod be the category of all finitely
presented set-based models of T and homomorphisms between them, where a set-based model of T is finitely
presented if it is isomorphic to a free model of T on finitely many generators modulo finitely many relations on
those generators. It is well known that the classifying topos B(T) of T is the category SetfpT-Mod of all covariant
functors from fpT-Mod to Set. In other words, for any cocomplete topos E there is an equivalence of categories

Geom(E ,SetfpT-Mod) ' Mod(T, E)(3)

between the category of geometric morphisms E → SetfpT-Mod and the category of T-models in E . Moreover,
this equivalence is natural in E . It follows that SetfpT-Mod contains a universal T-model UT, which is simply
the (underlying presheaf of the) inclusion functor fpT-Mod→ T-Mod. Under the equivalence (3), a geometric

morphism φ : E → SetfpT -Mod corresponds to the T-model φ∗UT. (See [Mac Lane-Moerdijk 1992] for details.)
We may consider the automorphism group of this universal model, meaning the subgroup of the exponential

UUTT on those automorphisms which preserve the T-structure. A priori it is not clear that this is a well-defined

object of the topos SetfpT-Mod, but in fact we have the following result (which in fact holds for any geometric
theory T, not necessarily algebraic):

Theorem 2.2 The isotropy group of B(T) is isomorphic to the automorphism group of the universal T-model.

We remark that this result was first conjectured by S. Awodey, and has been known to be true for some
time. Since no proof has appeared in the literature yet, we include a sketch here.

Proof. By the usual argument, it suffices to show that there is a natural bijection between maps X → Z
and maps X → Aut(UT) in B(T). So, let α : X → Z be an element of isotropy, and consider the natural
automorphism of the projection functor B(T)/X → B(T) to which it corresponds under the bijection (1).
Since the inverse image functor X∗ of the projection B(T)/X → B(T) sends UT to the projection UT×X → X,
α corresponds under the equivalence (2) to a T-model automorphism

UT ×X α //

##H
HH

HH
HH

HH
UT ×X

{{vv
vv
vv
vv
v

X

of the model X∗UT in B(T)/X. In turn, the (first component of the) map α corresponds to an X-indexed

family of T-model automorphisms of UT, that is, a map X → UUTT which factors through Aut(UT). Remaining
details are left to the reader. 2

We may alternatively describe the isotropy group of SetfpT-Mod in terms of the category fpT-Mod: Z = ZT
is the (covariant) presheaf of groups assigning to a finitely presentable T-model M the group

Z(M) = Aut(M/fpT-Mod→ fpT-Mod).
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Unpacking this definition, we obtain the following elementary description of the isotropy group of T.

Proposition 2.3 Let T be an algebraic theory with isotropy group ZT : fpT-Mod→ Grp. For a finitely presented
T-model M an element α ∈ ZT(M) is an automorphism αM of M , together with, for each homomorphism
f : M → N , an automorphism αf of N , subject to the compatibility condition that αgfg = gαf for all
f : M → N, g : N → K.

3 Syntactic Characterization

In this section we present the main result of the paper, namely a syntactic description of the isotropy group
associated to an algebraic theory. Towards this aim, we first fix some terminology and notation regarding term
models and indeterminates. Throughout, we are working with an arbitrary but fixed algebraic theory T.

First, the free T-model on generators x1, . . . , xk is denoted 〈x1, . . . , xk〉; explicitly, the underlying set of
this model is obtained from the set Tm(x1, . . . , xk) of terms in the variables x1, . . . , xk modulo the smallest
congruence containing the T-axioms.

Next, given a T-model M , we write M〈x1, . . . , xk〉 for the coproduct of M with 〈x1, . . . , xk〉. This model can
be thought of as the result of adjoining indeterminates x1, . . . , xk to the model M . There is an obvious inclusion
morphism ιM : M → M〈x1, . . . , xk〉. Moreover, any homomorphism f : M → N induces a homomorphism
f〈x1, . . . xk〉 : M〈x1, . . . , xk〉 → N〈x1, . . . , xk〉 making

M

ιM

��

f //N

ιN

��

M〈x1, . . . , xk〉 f〈x1,...,xk〉
//N〈x1, . . . , xk〉

commute, and with f〈x1, . . . , xk〉(xi) = xi. When k is understood, we also write M〈~x〉 for M〈x1, . . . , xk〉. We
recall that an explicit presentation of M〈~x〉 can be obtained as follows.

Definition 3.1 Given a T-model M and indeterminates x1, . . . , xk, let Tm(M ; ~x) = Tm(M ;x1, . . . , xk) be the
smallest set satisfying the following conditions:

(i) x1, . . . , xk ∈ Tm(M ; ~x).

(ii) M ⊆ Tm(M ; ~x).

(iii) If f is an l-ary function symbol of T and t1, . . . , tl ∈ Tm(M ; ~x), then f(t1, . . . , tl) ∈ Tm(M ; ~x).

Next, let R = RM ;~x be the smallest congruence on the set Tm(M ; ~x) satisfying the following conditions:

(i) If s(y1, . . . , yl) = t(y1, . . . , yl) is an axiom of T in the variables y1, . . . , yl, then (s(t1, . . . , tl), t(t1, . . . , tl)) ∈
RM ;~x for all t1, . . . , tl ∈ Tm(M ; ~x).

(ii) If f is an l-ary function symbol of the language of T and m1, . . . ,ml ∈ M , then
(fM (m1, . . . ,ml), f(m1, . . . ,ml)) ∈ RM ;~x, where fM : M l → M is the interpretation of f in the model
M , so that fM (m1, . . . ,ml) ∈M .

With the above notation, we have M〈~x〉 := Tm(M ; ~x)/RM ;~x. When t is an element of Tm(M ; ~x), we will
write [t] for its image in the T-model M〈~x〉.

As usual in categorical logic, terms of the theory T get interpreted as suitably typed morphisms in a
category with finite products. In particular, when the interpreting category is Set and M is a T-model, a term
t with variables x1, . . . , xl (and possibly constant symbols corresponding to elements of M) is interpreted as a
function denoted tM : M l →M . This function satisfies

tM (m1, . . . ,ml) = t[mi/xi]
M .

Soundness guarantees that [s] = [t] implies sM = tM . That is, if two terms are T-provably equal, then their
interpretations are the same.

Now given a homomorphism h : M → N , we obtain a function Tm(h; ~x) : Tm(M ; ~x) → Tm(N ; ~x) which
replaces all symbols m in t by h(m). We will write th for Tm(h; ~x)(t). It is readily seen that [t] = [s] implies
[th] = [sh], so that Tm(h; ~x) induces the homomorphism h〈~x〉 : M〈~x〉 → N〈~x〉. Moreover, given t ∈ Tm(M ; ~x),
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the interpretation tNh of th fits into a commutative diagram

Mk

hk

��

tM //M

h

��

Nk

tNh

//N

(4)

Remark 3.2 [Notation] Given terms t, s ∈ Tm(M ; ~x), we must distinguish carefully between the statement
that tM = sM , which means that the two (open!) terms have the same interpretation in the model M , i.e., are
interpreted as the same function Mk →M , and the statement that tM〈~x〉 = sM〈~x〉, which means that the two
terms are equal qua elements of the model M〈~x〉. The latter implies the former but not conversely. In what
follows we will sometimes write M � t = s to denote the former, and M〈~x〉 � t = s for the latter.

Now we define the following functor GT : fpT-Mod→ Set.

Definition 3.3 For any object M of fpT-Mod, we define GT(M) to be the set of all [t] ∈ M〈x〉 such that for
any morphism h : M → N in fpT-Mod, the induced function

tNh : N → N

is a T-automorphism of N .
For a morphism h′ : M → K in fpT-Mod, we define GT(h′) : GT(M) → GT(K) as follows. First, consider

the induced morphism h′〈x〉 : M〈x〉 → K〈x〉. Then for [t] ∈ GT(M), it is easy to show that h′〈x〉([t]) is an
element of GT(K). The following diagram may clarify the situation:

GT(M)

GT(h
′)

��

⊆ //M〈x〉

h′〈x〉
��

GT(K) ⊆
//K〈x〉.

Finally, it is easy to show that GT is functorial, so that we have indeed defined a functor GT : fpT-Mod→ Set.

Note that for [t] ∈ GT(M) and a homomorphism h : M → N , we get, as a special case of (4), a commutative
square

M tM //

h
��

M

h
��

N
tNh

//N.

(5)

The following theorem now relates this functor GT to the isotropy group of T.

Theorem 3.4 The underlying object of the isotropy group ZT of T is naturally isomorphic to the functor
GT : fpT-Mod→ Set.

Proof. We construct a natural isomorphism β : GT → ZT = Z. Given an element [t] ∈ GT(M), let βM ([t]) ∈
Aut(M/fpT-Mod→ fpT-Mod) be the element of isotropy whose component at h : M → N is the automorphism
tNh , as in (5):

βM ([t])h := tNh : N → N.

To show that this is indeed a well-defined element of isotropy, we must consider a commutative triangle
(left)

M h //

h′
  B

BB
BB

BB
B N

g

��

K

N
tNh //

g

��

N

g

��

K
tK
h′

//K

(6)

and show that g ◦ βM ([t])h = βM ([t])h′ ◦ g, i.e., that g ◦ tNh = tKh′ ◦ g, as in the square in the right of (6). But
one can prove that this holds for all t ∈ Tm(M ;x) by induction on t. Thus βM ([t]) is a natural automorphism
of the forgetful functor M/fpT-Mod→ fpT-Mod, which proves that βM ([t]) ∈ Z(M), as desired.
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Next, we show that βM : GT(M) → Z(M) is surjective. Consider an arbitrary element of isotropy α ∈
Z(M). We wish to construct [t] ∈ GT(M) for which βM ([t]) = α. Consider the inclusion homomorphism
ι : M → M〈x〉, which is an object of M/fpT-Mod. Then we have an automorphism αι : M〈x〉 → M〈x〉, and
we define

[t] := αι([x]) ∈M〈x〉.
We now show that [t] ∈ GT(M) and βM ([t]) = α. To show that [t] ∈ GT(M), let h : M → N be any morphism
in fpT-Mod with domain M . We must show that the function tNh : N → N is a T-automorphism of N . It
suffices to show that tNh = αh, since αh is a T-model automorphism. For this, let n ∈ N be arbitrary, and
consider the commutative triangle on the left:

M ι //

h
""E

EE
EE

EE
EE M〈x〉

hn

��

N

M〈x〉

hn

��

αι //M〈x〉

hn

��

N αh
//N

(7)

where hn sends the indeterminate x to n ∈ N . Then by naturality of α, the square on the right in (7) commutes,
which gives

αh(n) = αh(hn([x])) = hn(αι([x])) = tNh (n),

as desired. The last equality follows because one can prove by induction on t that hn([t]) = tNh (n) holds for all
t ∈ Tm(M ;x). Note that we have also shown that, for h : M → N , βM ([t])h = tNh = αh, so that βM ([t]) = α.
Remaining details are unsurprising and left to the reader. 2

One of the key steps in this proof, namely the consideration of the inclusion M → M〈x〉 qua object of
M/fpT-Mod and the fact that any n ∈ N induces a commutative triangle (7), is also at the heart of Bergman’s
categorical characterization of inner automorphisms in the category of groups [Bergman 2012]. Indeed, one
may view the above result as a reinterpretation and generalization of Bergman’s.

While this concrete characterization of the isotropy group of T is more syntactic than categorical, it still
leaves something to be desired, because the definition of the elements of GT(M) (for M ∈ fpT-Mod) awkwardly
quantifies over all morphisms in fpT-Mod with domain M . Ideally, we would like to obtain a purely syntactic
characterization of the elements of GT(M).

The object M〈x〉 does not only carry a T-model structure, but is at the same time a monoid with respect
to substitution. Explicitly, for any t, s ∈ Tm(M ;x), we have the associative multiplication operation given by
[t] · [s] = [t[s/x]]. The identity element is then [x]. Somewhat more conceptually, the interpretation function
M〈x〉 → Set(M,M), which sends [t] to tM , has the property that t[s/x]M = tM ◦ sM . Thus there is a monoid
homomorphism

M〈x〉 → Set(M,M)(8)

from the substitution monoid to the monoid of endofunctions of M . Moreover, an element [t] ∈ M〈x〉 is
invertible in the monoid M〈x〉 if there is some (unique) [t′] ∈M〈x〉 such that [t[t′/x]] = [x] = [t′[t/x]].

Lemma 3.5 For any [t] ∈M〈x〉, if [t] ∈ GT(M), then [t] is invertible in the substitution monoid M〈x〉.

Proof. This follows from the proof of Theorem 3.4. 2

In order to single out those elements [t] of the substitution monoid which are not only invertible but also
induce T-model automorphisms, we need the following definition:

Definition 3.6 Let f be a k-ary operation of the language of T, let M ∈ fpT-Mod, and let [t] ∈M〈x〉. Then
we say that [t] (or just t) commutes generically with f if

M〈x1, . . . , xk〉 � t[f(x1, . . . , xk)/x] = f(t[x1/x], . . . , t[xk/x]).

(Recall that this means that the two terms are equal qua elements of the model M〈x1, . . . , xk〉, see Remark 3.2.)

In the case of a nullary function symbol f , the above definition means that M � t[f/x] = f .

Lemma 3.7 Let [t] ∈ GT(M). Then [t] commutes generically with all operation symbols of T.

Proof. Let [t] ∈ GT(M) and let f(x1, . . . , xk) be a function symbol of T. Write ι : M →M〈x1, . . . , xk〉 for the
inclusion homomorphism. Then ι〈x〉 : M〈x〉 → M〈x1, . . . , xk, x〉 sends [t] to [t]. Since [t] ∈ GT(M), it follows
that the induced function

tM〈x1,...,xk〉 : M〈x1, . . . , xk〉 →M〈x1, . . . , xk〉

6
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is a T-automorphism. In particular, this function commutes with the interpretation of f in the model
M〈x1, . . . , xk〉, and so we have

M〈x1, . . . , xk〉 � t[f(x1, . . . , xk)/x] = f(t[x1/x], . . . , t[xk/x]),

as required. 2

Now we have the following result, which characterizes the isotropy group in a purely syntactic way.

Theorem 3.8 Let M ∈ fpT-Mod. Then for all [t] ∈ M〈x〉, we have that [t] ∈ GT(M) if and only if [t] is
invertible in the substitution monoid M〈x〉 and commutes generically with every operation of T. Hence the
isotropy group of T at M is isomorphic to the subgroup of M〈x〉 on those invertible elements which commute
generically with every operation of T.

Proof. Lemmas 3.5 and 3.7 show that every element of GT(M) is invertible and commutes generically with
the operations of T. For the converse, suppose [t] ∈ M〈x〉 has these properties. To show [t] ∈ GT(M), let
h : M → N be a morphism with domain M in fpT-Mod. We must show that the induced function

(h〈x〉[t])N = tNh : N → N

is a T-model automorphism. Since the map h〈x〉 : M〈x〉 → N〈x〉 is a monoid homomorphism, it preserves
invertible elements. Hence when [t] is invertible in M〈x〉, [th] is invertible in N〈x〉. Moreover, since the
interpretation function N〈x〉 → Set(N,N) is a monoid homomorphism, the function tNh is bijective.

To show that tNh is a homomorphism, consider a function symbol f(x1, . . . , xk). We want to show that

Nk (tNh )k
//

fN

��

Nk

fN

��

N
tNh

//N

(9)

commutes. Since [t] commutes generically with f by assumption, we know that

M〈x1, . . . , xk〉 � t[f(x1, . . . , xk)/x] = f(t[x1/x], . . . , t[xk/x]).

Applying h〈x1, . . . , xk〉 : M〈x1, . . . , xk〉 → N〈x1, . . . , xk〉 to both sides gives

h〈x1, . . . , xk〉([t[f(x1, . . . , xk)/x]]) = h〈x1, . . . , xk〉([f(t[x1/x], . . . , t[xk/x])]),

which is equivalent to

N〈x1, . . . , xk〉 � th[f(x1, . . . , xk)/x] = f(th[x1/x], . . . , th[xk/x]).

This in turn implies that we have the following equality of induced functions:

th[f(x1, . . . , xk)/x]N = f(th[x1/x], . . . , th[xk/x])N .

Using the fact that substitution is interpreted as composition, commutativity of (9) follows. Thus tNh is a
T-automorphism for any h : M → N , and hence [t] ∈ GT(M) as required. 2

4 Examples and Applications

In this section we will use the purely syntactic characterization of the isotropy group given in Theorem 3.8 to
compute the isotropy groups of several well-known algebraic theories. As is to be expected, in each of these
examples we ultimately invoke information about the word problem for the theory in question.

Example 4.1 [Groups] Let G be any (finitely presented) group. We compute the isotropy group Z(G) at G,
that is, the group of all elements [t] ∈ G〈x〉 such that [t] is invertible in the substitution monoid G〈x〉 and
commutes generically with the unit, inverse, and multiplication operations. Note that an element [t] ∈ G〈x〉
can be presented as the congruence class of a multiplicative word in x and elements of G (without bracketing).

We show that the isotropy group of G is the group of all congruence classes of the form [gxg−1] ∈ G〈x〉
for all g ∈ G. Clearly words of this form give elements of isotropy, since (the function induced by) [gxg−1]
preserves the group structure and is invertible, with inverse [g−1xg].

Conversely, suppose that [t] ∈ G〈x〉 is invertible in the substitution monoid G〈x〉 and commutes generically
with the unit, inverse, and multiplication operations. We show that [t] = [gxg−1] for some g ∈ G. Since [t]
commutes with multiplication, we have that [t[x1x2/x]] = [t[x1/x]t[x2/x]]. Then, as in [Bergman 2012], one
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can show that this implies that (the reduced word corresponding to) t has at most one occurrence of x, which
must have exponent 1. If t did not have an occurrence of x, then it would follow that [t] = [h] for some
h ∈ G, but then [t] could not be invertible in the substitution monoid G〈x〉, contrary to supposition. So t
must have exactly one occurrence of x, with exponent 1, so that [t] = [gxh] for some g, h ∈ G. The above
equality [t[x1x2/x]] = [t[x1/x]t[x2/x]] then implies [gx1x2h] = [gx1hgx2h]. Since the word gx1x2h is reduced,
the solution to the word problem implies that hg = e and hence g = h−1 in G. So then [t] = [gxg−1], as
desired.

Thus the isotropy group at G is isomorphic to G itself, via the assignment g 7→ [gxg−1].

Recall that in the classifying topos SetfpGrp for groups, the universal model is the inclusion functor U :
fpGrp → Grp. Hence we see that the isotropy group of SetfpGrp coincides with the universal model. On the
other hand, we know from Theorem 2.2 that the isotropy group coincides with the automorphism group of the
universal model. We thus have the following diagram:

U ι //

∼=
##F

FF
FF

FF
FF Aut(U)

∼=
��

Z
where the map ι is the usual inner automorphism map. It is easily seen from the construction of the two
isomorphisms in this diagram that the diagram is commutative, and hence that ι must be an isomorphism as
well. A group G is called complete when the inner automorphism map G → Aut(G) is an isomorphism. We
have therefore shown:

Theorem 4.2 The universal group is complete.

In particular, this shows that completeness, as a property of groups, is not definable in geometric logic: if
it were, then inverse image functors would preserve it, and hence every group, being an inverse image of the
universal group, would be complete, which is not the case.

Example 4.3 [Monoids] Let M be any (finitely presented) monoid. We show that the isotropy group at M is
the group of all elements [t] ∈M〈x〉 of the form [t] = [mxm−1] for all invertible elements m ∈M with inverse
m−1. As in the previous example, it is straightforward to show that if m ∈ M is invertible, then the element
[mxm−1] ∈ M〈x〉 gives an element of isotropy. Conversely, suppose that [t] ∈ M〈x〉 is isotropy. Then exactly
as in the previous example, one can show that [t] = [m1xm2] for some elements m1,m2 ∈ M , and then that
m1 is invertible with inverse m2, so that [t] = [m1xm

−1
1 ] for some invertible element m1 ∈M .

One can easily show that the map m 7→ [mxm−1] from the group of invertible elements of M to the isotropy
group at M is a group isomorphism, so that the isotropy group at a (finitely presented) monoid is the group
of its invertible elements.

Example 4.4 [Abelian Groups and Commutative Monoids] Let G be any (finitely presented) abelian group.
Note that an element [t] ∈ G〈x〉 can be presented as the congruence class of an additive group word in x and
the elements of G (without bracketing). We show that the isotropy group at G is the group consisting of just
the congruence classes [x], [−x] ∈ G〈x〉, where ‘-’ is the inverse operation. It is easy to see that both of these
elements are isotropy.

Conversely, let [t] ∈ G〈x〉 be invertible in the substitution monoid G〈x〉 and commute generically with the
unit, inverse, and addition operations. Then we can rearrange t to obtain that [t] = [g + nx] for some g ∈ G
and some n ∈ Z. Since [t] commutes generically with the constant 0, we have that [g+n0] = [0], which implies
that g = 0, so that [t] = [nx]. Now, we assumed that [t] is invertible, and so there is some [s] in the isotropy
group at G such that [t[s/x]] = [x] = [s[t/x]]. By the above argument for [t], we know that [s] = [mx] for
some m ∈ Z. So then we have [nx[mx/x]] = [(nm)x] = [x], which implies that nm = 1. Then it follows that
n = ±1, so that [t] = [±x], as desired. So for any (finitely presented) abelian group G, the isotropy group at
G is (isomorphic to) the two element abelian group Z2. Thus the isotropy group of the classifying topos is a
constant presheaf of groups, in the sense that its value is the same for any finitely presentable Abelian group.

Since the theory of commutative monoids has no additive inverse operation, the above arguments show that
the isotropy group at any (finitely presented) commutative monoid M contains just [x] ∈ M〈x〉 and so is the
trivial group.

Example 4.5 [Lattices] Let T be the algebraic theory of (not necessarily bounded or distributive) lattices. We
consider this theory to have the signature {∨,∧}; the axioms state that these binary operations are associative,
commutative and idempotent, and that the absorption laws a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a hold.
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We show that T has trivial isotropy. To this end, let M be a free lattice on finitely many generators; we wish
to show that ZT(M) = {[x]}. This is easy when M = ∅, the free lattice on no generators, because [t] ∈ M〈x〉
implies [t] = [x].

Next suppose that M = 〈y1, . . . , yn〉 is free on n ≥ 1 generators. We need to show that if [t] ∈ ZT(M) is an
element of isotropy at M , then [t] = [x]. To this end, it suffices to prove the following lemma:

Lemma 4.6 If t is any term in the variables x, y1, . . . , yn such that t has a right inverse with respect to
substitution, then M〈x〉 � t = x.

Here, by t having a right inverse we mean that there exists a term s with t[s/x] = x. Note that the lemma
indeed implies the desired result, since any term representing an element of isotropy is invertible with respect
to substitution, and hence in particular has a right inverse.

Proof. Induction on the structure of the term t. If t = x, then the result is trivial, and if t = yi for some
1 ≤ i ≤ n, then t cannot have a right inverse (since yi 6= x), so the result holds vacuously.

Now let t = t1 ∨ t2 for some lattice terms t1 and t2 for which the induction hypothesis holds, and suppose
that t has a right inverse. Thus there is a term s in the variables yi, x such that

x = t[s/x] = t1[s/x] ∨ t2[s/x].

Now let ≤ be the associated partial order on the lattice M〈x〉, so that for terms u and v, we have that
u = v if and only if u ≤ v and v ≤ u. Since t1[s/x] ∨ t2[s/x] = x, it follows that t1[s/x] ∨ t2[s/x] ≤ x and
x ≤ t1[s/x] ∨ t2[s/x]. The first inequality implies that t1[s/x] ≤ x and t2[s/x] ≤ x. Now the solution to the
word problem for free lattices [Whitman 1941a,Whitman 1941b] in particular tells us that the generators are
prime elements, in the sense that x ≤ v ∨ w implies x ≤ v or x ≤ w. Thus, we find that x ≤ t1[s/x] or
x ≤ t2[s/x]. So either t1[s/x] = x or t2[s/x] = x, and hence either t1 has a right inverse or t2 has a right inverse
(and with the same right inverse term s). Suppose without loss of generality that t1 has a right inverse. Then
by the induction hypothesis, it follows that t1 = x, and so we have that t = t1 ∨ t2 = x ∨ t2.

Note that t1 = x implies that t1[s/x] = s. Then we have that

x = t1[s/x] ∨ t2[s/x] = s ∨ t2[s/x].

So s ≤ x and t2[s/x] ≤ x, and by the solution to the word problem for free lattices, we also have that either
x ≤ s or x ≤ t2[s/x]. If x ≤ s, then we obtain that x = s, and so it follows that

x = t1[s/x] ∨ t2[s/x] = t1 ∨ t2 = t,

as desired. And if x ≤ t2[s/x], then x = t2[s/x]. So then t2 has a right inverse, and so by the induction
hypothesis it follows that t2 = x. But then we have

t1 ∨ t2 = x ∨ x = x,

as desired.
Dual reasoning also works in the case t = t1 ∧ t2. This completes the induction. 2

Similar reasoning, using the solution of the word problem for (possibly non-free) finitely presented lattices,
can also be used to show that every general finitely presented lattice has trivial isotropy.

For reasons of space, detailed proofs of some of the following examples will be given in the forthcoming
Ph.D thesis of the second author.

Example 4.7 [(Commutative) Unital Rings] If R is a (not necessarily commutative) (finitely presented) unital
ring, then the isotropy group at R is the group of all elements [t] ∈ R〈x〉 such that [t] = [uxu−1] for some unit
u ∈ R (i.e. some u ∈ R with a multiplicative inverse). One can then easily show that the isotropy group at
R is isomorphic to the group of units of R. If R is a commutative (finitely presented) unital ring, then the
isotropy group at R is the trivial group consisting of just [x] ∈ R〈x〉.

Example 4.8 [Theory of an Automorphism] Let T be the algebraic theory on a signature with two unary
function symbols f, g whose axioms are f(g(x)) = x and g(f(x)) = x. Then for any finitely presented T-model
M , we show that the isotropy group at M is the group of all elements [t] ∈ M〈x〉 such that [t] = [fn(x)]
or [t] = [gn(x)] for some n ≥ 0. Certainly, if t has one of those forms, say t ≡ fn(x) for some n ≥ 0, then
[t] is an element of isotropy, since [t] is invertible with inverse [gn(x)], and since [t] commutes generically
with both f and g in M〈x〉, since one can easily show that [fn(g(x))] = [g(fn(x))], and one obviously has
[fn(f(x))] = [f(fn(x))].

Conversely, suppose that [t] is an element of isotropy. We must show that there is some n ≥ 0 such
that [t] = [fn(x)] or [t] = [gn(x)]. But this follows from the (easily shown) more general claim that for any
[s] ∈ M〈x〉, either there is some n ≥ 0 such that [s] = [fn(x)] or [s] = [gn(x)], or there is some m ∈ M such
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that [s] = [m]. Since [t] is an element of isotropy, it follows that t must contain x, and hence the second option
is impossible.

From this syntactic description of the isotropy group of T at M , one can then easily show that for any
finitely presented T-model M , the isotropy group of T at M is isomorphic to the additive group Z.

Example 4.9 [Racks and Quandles] Racks and quandles are algebraic structures that axiomatize the notion
of conjugation (without reference to multiplication or inverses). Specifically, both theories are expressed over
a signature with two binary function symbols � and �−1. The axioms for the theory of racks are as follows:

• x� (y � z) = (x� y)� (x� z).
• x�−1 (y �−1 z) = (x�−1 y)�−1 (x�−1 z).
• (x� y)�−1 y = x.

• (x�−1 y)� y = x.

The axioms for the theory of quandles are the axioms for the theory of racks together with the following
additional axioms:

• x� x = x.

• x�−1 x = x.

For example, given any group G, a quandle structure can be defined on (the underlying set of) G by
specifying that for any g, h ∈ G we have g � h := h−1gh and g �−1 h := hgh−1.

Using the translation of the word problems for free racks and quandles into the word problem for free groups
given in [Dehornoy 2017], we have then shown the following theorem:

Theorem 4.10 Let 〈y1, . . . , yn〉 be the free quandle on n generators y1, . . . , yn. Then the isotropy group
ZQuandle(〈y1, . . . , yn〉) of 〈y1, . . . , yn〉 is the group of all (free quandle congruence classes of) quandle terms
t over x, y1, . . . , yn of the form

t ≡ (. . . ((x�e1 yi1)�e2 yi2) . . .)�em yim

(including t ≡ x), where ej = ±1 and 1 ≤ ij ≤ n for all 1 ≤ j ≤ m.

From this, one can then show without much difficulty that the isotropy group of the free quandle on n
generators is isomorphic to the free group on n generators. For racks, we have also shown the following result:

Theorem 4.11 Let 〈y1, . . . , yn〉 be the free rack on n generators y1, . . . , yn. Then the isotropy group
ZRack(〈y1, . . . , yn〉) of 〈y1, . . . , yn〉 is the group of all (free rack congruence classes of) rack terms t over
x, y1, . . . , yn of the form

t ≡ (. . . ((((. . . ((x�d1 x)�d2 x) . . .)�dp x)�e1 yi1)�e2 yi2) . . .)�em yim

(including t ≡ x), where dj = ±1 for all 1 ≤ j ≤ p and ek = ±1 and 1 ≤ ik ≤ n for all 1 ≤ k ≤ m.

From this, one can then show that the isotropy group of the free rack on n generators is anti -isomorphic
to the product of the group Z with the free group on n generators.

Remark 4.12 As the reader can see, the examples reinforce the idea that elements of isotropy encode a
notion of inner automorphism. Indeed, they suggest that for a general algebraic theory T, an automorphism
f ∈ Aut(M) of a model M should be called inner when there is an element of isotropy α ∈ ZT(M) whose
component at 1M is f .

To conclude this section, we mention the following observation involving the addition of a constant to a
theory. Let T be a theory and c a constant symbol not occurring in the signature of T. Then let Tc denote
the theory obtained from T by adding c to the signature; the axioms of Tc are simply those of T. Note that a
model of Tc is the same thing as a model M of T together with a chosen element of M . There is an obvious
forgetful functor Tc-Mod → T-Mod which forgets the interpretation of the constant c. We do not distinguish
notationally between a model of Tc and its underlying T-model.

Proposition 4.13 Let T be an algebraic theory and let c be a constant. Then there is an injective group
homomorphism, natural in M ,

ZTc(M)→ ZT(M)

whose image consists of those [t] for which tM (cM ) = cM .

10
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For instance, when T is the theory of groups, then a Tc-model M is a group together with a specified
element cM of M . The isotropy group at such M is then the subgroup of M on those elements that leave the
specified cM invariant.

5 Future Directions

(i) We have not included results concerning the behaviour of the isotropy group with respect to morphisms
of theories. It follows from [Funk et al. 2012] that Morita-equivalent theories have the same isotropy. We
would like to apply the general analysis of functoriality in [Funk et al. 2018] to identify morphisms of
theories which induce comparison maps between isotropy groups.

(ii) The category of algebraic theories admits several well-known constructions, such as the coproduct and
tensor product. An interesting problem is to characterize the isotropy groups of T+ S and T⊗ S in terms
of the isotropy groups for T and S. Note that Proposition 4.13 is a special case of a coproduct of theories.
Additionally, the example of (commutative) unital rings suggests investigating the isotropy of theories
arising through distributive laws: given theories T,S and a distributive law θ of T over S, can we describe
the isotropy of the resulting theory T ◦θ S?

(iii) In the present work we have focused on algebraic theories. A natural next step is to consider other classes
of theories, such as quasi-algebraic theories, regular theories, coherent theories, geometric theories, or
theories of presheaf type (i.e., geometric theories whose classifying topos is a presheaf topos).

(iv) As explained in detail in [Funk et al. 2018], the isotropy group of a category C induces a congruence ∼ on
C, namely the smallest congruence containing all automorphisms which are part of isotropy in the sense
of being in the image of the projection homomorphism Z(X) → Aut(X) . The quotient map C → C/∼
is called the isotropy quotient of C. It may happen that C/∼ itself has non-trivial isotropy. However,
as one can show (using some elementary but non-trivial group theory) in the case C = fpGrpop this does
not happen. Put differently: the classifying topos for groups has no higher isotropy. We conjecture that
this holds for any algebraic theory T. The investigation is complicated by the fact that the quotient
fpT-Mod/∼ is rarely of the form fpS-Mod for an algebraic theory S, so that the methods developed in the
present paper do not apply.

(v) One potentially interesting generalization of the work presented here involves replacing the isotropy group
of a small category C by the isotropy Lawvere theory. (Fittingly, this was suggested to the first author
by Lawvere.) This is the functor Cop → Cat assigning to an object X the Lawvere theory whose maps
n → m are the natural transformations from C/M → C → Cn to C/M → C → Cm. Explicitly, such a
natural transformation α assigns to an object f : N → M of C/M a morphism αf : Nn → Nm of C,
subject to the expected compatibility conditions. Just as the isotropy group rectifies the non-functoriality
of X 7→ Aut(X), the isotropy Lawvere theory is the solution to the problem of making X 7→ LT(X)
functorial, where LT(X) is the Lawvere theory of the object X, that is, the full subcategory of C whose
objects are the finite powers of X.

As conjectured correctly by one of the anonymous referees of this paper, in the case where C =
fpT-Modop, such a natural transformation α can be characterized syntactically by an m-tuple of terms
[t1], . . . , [tm] ∈ M〈x1, . . . , xn〉 each of which has the property that for each h : M → N , the associated
function th : Nn → N is a T-model homomorphism. It would be interesting to know whether this larger
invariant detects differences between algebraic theories that the isotropy group cannot detect, or whether
it is possible for an algebraic theory to have a trivial isotropy group but non-trivial isotropy Lawvere
theory.
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