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Abstract

We study programs that perform I/O and finite nondeterministic choice, up to finite trace equivalence. For well-founded programs,
we characterize which strategies (sets of traces) are definable, and axiomatize trace equivalence by means of commutativity between
I/O and nondeterminism. This gives the set of strategies as an initial algebra for a polynomial endofunctor on semilattices. The
strategies corresponding to non-well-founded programs constitute a final coalgebra for this functor. We also show corresponding
results for countable nondeterminism.

Keywords: final coalgebra, nondeterministic strategies, trace, algebraic effects, semilattices

PASSIVE
P−moves )1

ACTIVE
O−move
iq

Passive A
0 --

1

&&

Active C0oo

Passive B
0

//Active D0mm

ee

Consider the following (infinitary) imperative language:

M,N ::= Age(Mn)n∈N
| Happy(M,N)

| Continue(M)

| Bye | M or N

The meaning is as follows.
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• The command Age(Mn)n∈N prints What is your age? and pauses. If the user then enters n, it executes
Mn.

• The command Happy(M,N) prints Are you happy? and pauses. If the user then enters Yes or No, it
executes M or N respectively.

• The command Continue(M) prints Continue? and pauses. If the user then enters Yes, it executes M .

• The command Bye prints Goodbye and pauses. No further input is possible.

• The command M or N nondeterministically chooses to execute M or N .

Any command has a set of traces, which are alternating sequences of outputs and inputs called plays. For
example:

Are you happy?
Yes
What is your age?

Two commands with the same traces are trace equivalent. The following questions naturally arise:

(i) Given a set P of plays, under what conditions is P the trace set of some command?

(ii) Can we give an axiomatic theory of trace equivalence?

This paper’s main contribution is to answer these questions. The answer to question ii is surprisingly simple:
we take the ordinary theory of or (commutativity, associativity and idempotency), together with the fact that
each I/O operation commutes with or. For example:

Age(Mn)n∈N or Age(M ′n)n∈N = Age(Mn or M ′n)n∈N

We give our results not only for the language above but also for some variations, as we shall now explain. The
language has two parts—I/O and nondeterminism—and each can be varied.

(i) The I/O part is determined by a signature, a collection of operations each with a specified arity—a set
of argument indices. The language above has four I/O operations—Age, Happy, Continue and Bye—of
respective arity N, {Yes,No}, {Yes} and ∅. Our results apply no matter what I/O signature is used to
generate the language.

(ii) We vary the nondeterministic part as follows.
• We consider the command choose (Mn)n∈N, which nondeterministically chooses n ∈ N and then executes
Mn.

• More generally, we consider choose (Mi)i∈I where I may be uncountable.

The significance of these results is shown by their connection to several areas of semantics.
Effects and monads. I/O operations and nondeterministic choice are examples of computational effects. A
collection of effects is often described by a monad on Set [17], which can sometimes be presented by a simple
theory [18]. For each of our variations, our results give rise to a monad on Set, corresponding to programs
modulo trace equivalence, which is moreover a tensor of the monads for I/O and nondeterminism [1,4,5,11].
Coalgebraic traces. An algebra for our theory may be seen as an algebra for the I/O signature in the
category of semilattices, or equivalently as an algebra for a polynomial endofunctor on that category. The
definable sets of plays form an initial such algebra, corresponding to the fact that programs are well-founded.
The second part of the paper treats another variation: non-well-founded programs. Such programs may have
infinite traces, but we ignore these and treat only the finite traces. We show that the definable sets of plays form
a final coalgebra for the same endofunctor. This gives a coalgebraic account of finite trace semantics. Although
several coalgebraic accounts of traces have appeared [8,13,14], the novelty of ours is that traces include both
output and input actions.
Game semantics. A program in the language above may be seen as playing a game. At any time, it is
either in an active position, i.e. executing, or in a passive position, i.e. paused. There is a passive position
corresponding to each operation, but only one active position, where play begins. By contrast, the games used
in game semantics may have many active and many passive positions [16]. A different terminology is used:
an output action is called a P-move (for “Proponent”) and an input action an O-move (for “Opponent”).
Nonetheless, where finite traces are studied, the same notions of nondeterministic strategies [6,7] may be used,
and our results characterize these strategies for general games.

Notation. Given a set X, we write P+
f X for the set of finite inhabited subsets, P+

c X for the set of countable
inhabited subsets, and P+X for the set of inhabited subsets.
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1 Finite nondeterminism

In this section, we define the finitely nondeterministic language for a signature, define bisimulation and trace
equivalence of programs, characterize definable strategies, axiomatize bisimilarity and trace equivalence. Lastly
we directly describe the semilattice of strategies as an initial algebra without needing to mention the language.

1.1 Language

Definition 1.1 A signature consists of a set K of operations, and for each operation k ∈ K, a set Ar(k) of
argument indices.

For the sequel, we fix a signature S = (Ar(k))k∈K .

Definition 1.2 The set comm of commands is given inductively by the grammar

M ::= In k(Mi)i∈Ar(k) | M or M

A command without or is deterministic.

We give operational semantics via a transition system, cf. [19].

Definition 1.3

(i) For k ∈ K, a k-passive state (representing a paused program) is a tuple x = (Mi)i∈Ar(k) of commands.

For i ∈ Ar(k) we write x@i
def
= Mi.

(ii) We define a relation M ⇒k x, where M is a command, k ∈ K and x is a k-passive state, meaning that M
may output k and then be in state x. The relation is defined inductively by the rules

In k(Mi)i∈Ar(k) ⇒
k

(Mi)i∈Ar(k)

M ⇒k x

M or N ⇒k x

N ⇒k x

M or N ⇒k x

(iii) We define ζ : comm // P
∑
k∈K

∏
i∈Ar(k) comm to send M to the set of all (k, x) such that M ⇒k x.

The transition system has the following properties.

Proposition 1.4 Let M be a command.

(i) (Finite nondeterminism and totality) The set ζM is finite and inhabited.

(ii) (Well-foundedness) There is no infinite sequence

M ⇒k0 x0 x0@i0 ⇒
k1 x1 x1@i1 ⇒

k2 x2 · · ·

Proof. Induction on M . 2

1.2 Bisimulation

Definition 1.5

(i) A passive relation R associates to each k ∈ K a binary relation Rk on k-passive states.

(ii) A passive relation R is a bisimulation when for xRk x′ and i ∈ Ar(k), if x@i⇒l y then there is an l-passive

state y′ such that x′@i⇒l y′ and yRl y′, and vice versa.

(iii) Commands M,M ′ are bisimilar when there exists a bisimulation R such that if M ⇒k y then there is a

k-passive state y′ such that M ′ ⇒k y′ and yRk y′, and vice versa.
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Axiomatizing bisimilarity is easy.

Proposition 1.6 The least congruence ≡ on commands satisfying

M or N ≡ N or M

(M or N) or P ≡ M or (N or P )

M or M ≡ M

is bisimilarity.

Proof. In Appendix. 2

1.3 Traces and Strategies

Definition 1.7

(i) A play is a sequence k0, i0, k1, i1, . . . where kr ∈ K and ir ∈ Ar(kr). It is active-ending, passive-ending or
infinite according as its length is even, odd or infinite.

(ii) A prerequisite of a play is a passive-ending strict prefix.

Intuitively, at the end of a passive-ending play, execution is paused and waiting for input.

Definition 1.8 Let ζ : X // P
∑
k∈K

∏
i∈Ar(k)X be a transition system. (For example, our language, with

X = comm.) Let M ∈ X. A play k0, i0, k1, i1, . . . is a trace of M when there exists a sequence

M ⇒k0 x0 x0@i0 ⇒
k1 x1 x1@i1 ⇒

k2 x2 · · ·

Definition 1.9

(i) A nondeterministic strategy (in the sense of finite traces) is a set σ of passive-ending plays, such that if
s ∈ σ then so are its prerequisites.

(ii) Let σ be a nondeterministic strategy. We write σAE for the set of active-ending plays whose prerequisites
are in σ, i.e. for the set {ε} ∪ {ski | sk ∈ σ, i ∈ Ar(k)}.

In particular, for a transition system ζ : X //P
∑
k∈K

∏
i∈Ar(k)X and any M ∈ X, the set of passive-ending

traces of M forms a strategy, written TracesM . The set of active-ending traces is (TracesM)AE.
If M is a command, we may also describe TracesM compositionally, as follows. We use the notation x.t to

mean x prepended to the sequence t.

Definition 1.10 Let k ∈ K and let (σi)i∈Ar(k) be a family of nondeterministic strategies. The nondeterministic
strategy In k(σi)i∈I is the set of plays k.t, where either t = ε or t = i.s for some i ∈ Ar(k) and s ∈ σi.

Proposition 1.11 We give TracesM compositionally:

Traces In k(Mi)i∈Ar(k) = In k(TracesMi)i∈Ar(k)

Traces (M or N) = TracesM ∪ TracesN

Hence traces respect ≡, and we write TracesA
def
= TracesM when A = [M ]≡. As usual, bisimilarity is finer

than trace equivalence:

Proposition 1.12 M ∼ N implies TracesM = TracesN , but not conversely.

Proof. The commands a.(b or c) and a.b or a.c, where a is a unary operation and b, c are constants (nullary
operations), are trace equivalent but not bisimilar. 2

We may also decompose strategies, as follows.

Definition 1.13 Let σ be a strategy. We write Initσ for the set of k ∈ K such that k ∈ σ. For each such k

and each i ∈ Ar(k), we define the strategy σ/ki
def
= {s | k.i.s ∈ σ}.
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1.4 Definability

We now consider our first question: which nondeterministic strategies are of the form TracesM for some
command M? To answer this, we list several conditions.

Definition 1.14 Let σ be a nondeterministic strategy.

(i) A response to a play s ∈ σAE is k ∈ K such that sk ∈ σ. The set of responses is written Resp(σ, s).

(ii) σ is a tree when every s ∈ σAE has a unique response.

(iii) σ is total when every s ∈ σAE has at least one response.

(iv) σ is deterministic, or a partial tree, when every s ∈ σAE has at most one response.

(v) σ is finitely nondeterministic when every s ∈ σAE has only finitely many responses. (Automatic if K is
finite.)

(vi) σ is anti-König when it is finitely nondeterministic and there is no infinite play whose prerequisites are
all in σ. A tree or partial tree with the latter property is also called well-founded.

The following is obvious.

Proposition 1.15 The mapping M 7→ TracesM is a bijection from deterministic commands to well-founded
trees.

Proposition 1.16 For a nondeterministic strategy σ, the following are equivalent.

• σ = TracesM for some command M .

• σ is total and anti-König.

Proof. (⇒) is proved by induction on M , or from the properties of the transition system (Proposition 1.4).
For (⇐), see the Appendix. 2

1.5 Axiomatizing trace equivalence

Definition 1.17 Let ≡c be the least congruence on commands that contains ≡ and also

In k(Mi or Ni)i∈Ar(k) ≡c In k(Mi)i∈Ar(k) or In k(Ni)i∈Ar(k) (1)

For A = [M ]≡ and B = [N ]≡, we write A =c B when M ≡c N .

The equation (1) is called commutativity between I/O and nondeterminism.

Theorem 1.18 For commands M and N , we have M ≡c N iff TracesM = TracesN .

Proof. In Appendix. 2

1.6 Semilattices and algebras

The algebraic view of binary nondeterminism is as follows.

Definition 1.19

(i) A semilattice is a set X equipped with a binary operation ∨ that is commutative, associative and idem-
potent.

(ii) A semilattice homorphism (X,∨) // (Y,∨′) is a function f : X // Y such that f(x ∨ y) = f(x) ∨ f(y).

Proposition 1.20 A semilattice may equivalently be described as a poset with all binary joins:

• we write x 6 y when x ∨ y = y

• conversely, x ∨ y is the join of x and y.

A semilattice homomorphism is a function that preserves binary joins and hence is monotone.

Next we give the algebraic view of the I/O operations provided by our signature S.

Definition 1.21

(i) An S-algebra consists of a set X and, for each k ∈ K, a function [[k]] :
∏
i∈Ar(k)X

//X.

5



Bowler and Levy

(ii) An S-algebra homomorphism (X, ([[k]])k∈K) // (Y, ([[k]]′)k∈K) is a function f : X // Y satisfying
f([[k]](xi)i∈Ar(k)) = [[k]]′(fxi)i∈Ar(k) for all k ∈ K.

This leads to a standard result:

Proposition 1.22 The set of well-founded trees with (In k)k∈K is an initial S-algebra.

Our aim is to combine nondeterminism and I/O in a similar way. We generalize Definition 1.21 as follows.

Definition 1.23 Let C be a category with products.

(i) An S-algebra in C consists of X ∈ C and, for each k ∈ K, a morphism [[k]] :
∏
i∈Ar(k)X

//X.

(ii) An S-algebra homomorphism (X, ([[k]])k∈K) // (Y, ([[k]]′)k∈K) is a morphism f : X // Y such that∏
i∈Ar(k)X

∏
i∈Ar(k) f //

[[k]]

��

∏
i∈Ar(k) Y

[[k]]′

��
X

f
// Y

commutes for all k ∈ K.

Unpacking this definition, an S-algebra in semilattices consists of a semilattice (X,∨) and a family [[k]]k∈K
of functions [[k]] : XAr(k) //X that satisfy

[[k]](xi ∨ yi)i∈Ar(k) = [[k]](xi)i∈Ar(k) ∨ [[k]](yi)i∈Ar(k)

A homomorphism is a function preserving ∨ and [[k]] for all k ∈ K. We therefore have an initial S-algebra
in semilattices, viz. the set of commands modulo ≡c, with or and (In k)k∈K . In view of Propositions 1.16
and 1.18, it is isomorphic via M 7→ TracesM to the semilattice of total anti-König strategies, ordered by
inclusion, with (In k)k∈K . To summarize:

Theorem 1.24 The set of total anti-König strategies, ordered by inclusion, with (In k)k∈K , is an initial S-
algebra in semilattices.

2 Countable Nondeterminism

This section adapts all our results from finite to countable nondeterminism. There are significant changes in
the condition on strategies, and the proof method for completeness of the theory.

2.1 Language

We now extend our language to include countable nondeterministic choice:

M ::= In k(Mi)i∈Ar(k) | M or M | choose (Mn)n∈N

We add to the inductive definition of ⇒ the rule

Mn ⇒
k
x

choose (Mn)n∈N ⇒
k
x

By comparison with Proposition 1.4, the set ζM is now countable and inhabited. The system remains well-
founded.

2.2 Bisimulation

Axiomatizing bisimilarity requires additional equations:
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Definition 2.1 Let ≡ be the least congruence on commands satisfying

M or N ≡ N or M

(M or N) or P ≡ M or (N or P )

M or M ≡ M

M or choose (Mn)n∈N ≡ choose (M or Mn)n∈N
choose (M)n∈N ≡ M

choose (Mn)n∈N ≡ choose (Mn)n∈N or Mn

A semilattice with an ω-ary operation satisfying these equations is called an ω-semilattice. This corresponds,
as in Proposition 1.20, to a poset in which every family (ai)i∈N has a supremum. A homomorphism of ω-
semilattices must preserve these suprema. We prove that ≡ coincides with bisimilarity as before.

2.3 Definability

We again want to characterize those nondeterministic strategies that are of the form TracesM . But, as has
often been observed, we cannot have a condition similar to the anti-König one. For consider the command

M
def
= choose (an.b)n∈N, where a is unary and b is constant: the infinite play aω has all its prerequisites in

TracesM . Accordingly, we consider instead the following conditions.

Definition 2.2 Let σ be a nondeterministic strategy.

(i) σ is countably nondeterministic when every s ∈ σAE has only countably many responses. (Automatic if K
is countable.)

(ii) σ is well-foundedly total when for every s ∈ σAE, there is a well-founded tree τ such that st ∈ σ for all
t ∈ τ .

To understand the latter condition, we first define, for any command M , its left determinization LD(M).

LD(In k(Mi)i∈Ar(k))
def
= In k(LD(Mi))i∈Ar(k)

LD(M or N)
def
= LD(M)

LD(choose (Mn)n∈N)
def
= LD(M0)

We argue that TracesM is well-foundedly total: if s ∈ (TracesM)AE, then there is some execution of M that
performs s and ends in a command N , and then Traces LD(N) is a well-founded tree with the required property.
We also see that TracesM is countably nondeterministic by the same argument as before.

Proposition 2.3 For any strategy σ, the following are equivalent.

• σ = TracesM for some command M .

• σ is well-foundedly total and countably nondeterministic.

Proof. We have just shown (⇒). For (⇐) see the Appendix. 2

2.4 Axiomatizing Trace Equivalence

We define ≡c as before: each I/O operation commutes with nondeterministic choice.

Definition 2.4 Let ≡c be the least congruence on commands that contains ≡ and also

In k(Mi or Ni)i∈Ar(k) ≡c In k(Mi)i∈Ar(k) or In k(Ni)i∈Ar(k)

In k(choose (Mi,n)n∈N)i∈Ar(k) ≡c choose (In k(Mi,n)i∈Ar(k))n∈N

For A = [M ]≡ and B = [N ]≡, we write A =c B when M ≡c N .

Theorem 2.5 For commands M and N , we have M ≡c N iff TracesM = TracesN .

The proof is in the Appendix. It differs from the one used for the finite case because trace normal form is
not available.
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2.5 Infinite nondeterminism and algebras

As in Section 1.6, we conclude the following:

Theorem 2.6 The set of well-foundedly total and countably nondeterministic strategies, ordered by inclusion,
with (In k)k∈K , is an initial S-algebra in ω-semilattices.

The countable nondeterminism condition is automatic if K is countable. For a general signature, it may
be removed as follows. Say that an almost complete semilattice is a (join) semilattice where every inhabited
subset has a least upper bound. A homomorphism is a function that preserves these least upper bounds.

Theorem 2.7 The set of well-foundedly total strategies, ordered by inclusion, with (In k)k∈K , is an initial
S-algebra in almost complete semilattices.

Proof. In Appendix. 2

We may also adapt Theorem 2.6 to nondeterminism bounded by a regular uncountable cardinal.

3 From a signature to an endofunctor

In this section, we present the set of strategies as an initial algebra or a final coalgebra for an endofunctor. We
also see how the latter gives rise to a notion of bisimulation that relates sets of states, giving a proof method
for trace equivalence. While this appears to be new, numerous authors have considered notions of bisimulation
that relate probability distribution, e.g. [2,3,9,10,20]

3.1 Initial algebras

Recall that Definition 1.23 applies to any category C with products. If C also has coproducts, written
⊕

, then
S-algebras in C may be described as algebras for the endofunctor

⊕
k∈K

∏
i∈Ar(k). Each of our categories—

semilattices, ω-semilattices and almost complete semilattices—has coproducts with a simple explicit descrip-
tion.

Proposition 3.1

(i) A coproduct
⊕

j∈J Aj of semilattices is given by the set
∑
U∈P+

f J

∏
j∈U Aj with (U, (aj)j∈U ) 6 (V, (bj)j∈V )

when U ⊆ V and aj 6 bj for all j ∈ U . For j ∈ J , the jth embedding ej : Aj // ⊕
j∈J Aj sends

a 7→ ({j}, (a)j). The cotuple of a family of homomorphisms (fj : Aj // B)j∈J sends (U, (aj)j∈U ) 7→∨
j∈U fj(aj).

(ii) Likewise for ω-semilattices, using P+
c J .

(iii) Likewise for almost complete semilattices, using P+J .

Let us reformulate Theorem 1.24 in these terms.

Theorem 3.2 The set of total anti-König strategies, ordered by inclusion with structure

(U, (σk,i)k∈K,i∈Ar(k)) 7→
⋃
k∈U

In k(σk,i)i∈Ar(k)

forms an initial algebra for
⊕

k∈K
∏
i∈Ar(k) on semilattices.

Lambek’s lemma says that the structure of an initial algebra an isomorphism. In this case its inverse sends
σ to (Initσ, (σ/ki)k∈Initσ,i∈Ar(k)). Likewise for Theorems 2.6–2.7.

3.2 Final coalgebras

We now consider non-well-founded total systems. We treat only the finitely nondeterministic case, but the
countably nondeterministic and unconstrained cases are similar. As usual, our first question is definability of
strategies. We write Strat+f for the set of finitely nondeterministic, total strategies.

Proposition 3.3 For a strategy σ the following are equivalent.

• σ = TracesM for some element M of a transition system ζ : X // Pf

∑
k∈K

∏
i∈Ar(k)X.

• σ is finitely nondeterministic and total.
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Proof. (⇒) is evident. For (⇐), we put X = Strat+f and ζ : σ 7→ {(k, (σ/ki)i∈Ar(k)) | k ∈ Initσ}, where
Ψσ = (U, (σk,i)k∈U,i∈Ar(k)). For any passive-ending play s, we show s ∈ Tracesσ iff s ∈ σ, by induction on s,
separating the cases s = (k) and s = k.i.s′. 2

Proposition 3.4 The function Ψ: Strat+f
// ⊕

k∈K
∏
i∈Ar(k) Strat

+
f sending σ to (Initσ, (σ/ki)k∈Initσ,i∈Ar(k))

is a semilattice isomorphism.

We use this to characterize traces for a transition system, in terms of the following notions.

Definition 3.5 For each j ∈ J , let Xj be a set, Aj a semilattice and fj : Xj
//Aj a function. Then we write

Ωj∈Jfj : P+
f

∑
j∈J Xj

// ⊕
j∈J Aj for the unique homomorphism h such that Xj

fj //

{inj −}
��

fj //Aj

ej

��
P+
f

∑
j∈J Xj h

//⊕
j∈J Aj

commutes for all j ∈ J . Explicitly it sends R to (U, (yj)j∈U ) where

U = {j ∈ J | ∃x ∈ Xj | inj x ∈ R}
yj =

∨
x∈Xj |inj x∈R

fj(xj) for j ∈ U .

Definition 3.6 Let (X, ζ) be a transition system i.e. Pf

∑
k∈K

∏
i∈Ar(k)-coalgebra and (A, ξ)

a
⊕

k∈K
∏
i∈Ar(k)-coalgebra. A map h : (X, ζ) // (A, ξ) is a function X // A such that

X h //

ζ

��

A

ξ

��
Pf

∑
k∈K

∏
i∈Ar(k)X Ωj∈J

∏
i∈Ar(k) h

//⊕
k∈K

∏
i∈Ar(k)A

commutes.

We note that such a map can be precomposed with a coalgebra morphism (X ′, ζ ′) //(X, ζ), or postcomposed
with a coalgebra morphism (A, ξ) // (A′, ξ′), by function composition.

Theorem 3.7 Let ζ : X // Pf

∑
k∈K

∏
i∈Ar(k)X be a transition system. Then M 7→ TracesM is the unique

map from (X, ζ) to (Strat+f ,Ψ).

Proof. In Appendix. 2

A similar construction gives the coalgebraic counterpart of Theorem 3.2.

Theorem 3.8 (Strat+f ,Ψ) is a final
⊕

k∈K
∏
i∈Ar(k)-coalgebra.

Proof. Let (A, ζ) be a
⊕

k∈K
∏
i∈Ar(k)-coalgebra. For M ∈ A, we write TracesM for the set of passive-ending

plays that are traces of A, suitably defined. Then M 7→ TracesM is the required coalgebra morphism to
(Strat+f ,Ψ). The details are in the Appendix. 2

3.3 Determinization and Bisimulation

The results we have seen give rise to a determinization process that may be used to establish when states are
trace equivalent. This resembles the account of determinization in [13], and indeed both are instances of the
general framework in [12].

Proposition 3.9 Let ζ : X //Pf

∑
k∈K

∏
i∈Ar(k)X be a transition system. Then there is a unique semilattice

homomorphism ζ̂ : P+
f X

// ⊕
k∈K

∏
i∈Ar(k) P

+
f X such that {−} : (X, ζ) // (P+

f X, ζ̂) is a map. Explicitly it

sends R to (U, (Sk)k∈U ), where

U = {k ∈ K | ∃M ∈ R.M ⇒k y}

Sk@i = {y@i | ∃M ∈ R.M ⇒k y} for k ∈ U and i ∈ Ar(k).
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Proof. It is the Kleisli extension of

X
ζ //Pf

∑
k∈K

∏
i∈Ar(k)X

(P+
f )

∑
k∈K

∏
i∈Ar(k){−} //⊕

k∈K
∏
i∈Ar(k) P

+
f X

. 2

It follows from Theorems 3.7–3.8 that TracesM = Traces {M}. This reduces the problem of establishing
trace equivalence in a transition system to that of establishing trace equivalence in a

⊕
k∈K

∏
i∈Ar(k)-coalgebra.

We now give a bisimulation method for the latter.

Definition 3.10

(i) Let A and B be semilattices. A semilattice relation A pR //B is a relation such that xRx′ and yR y′
implies x ∨ yRx′ ∨ y′.

(ii) For each j ∈ J let Aj pR //Bj be a semilattice relation. The semilattice relation∏
j∈J Aj p

∏
j∈j R //∏

j∈J Bj relates (xj)j∈J to (x′j)j∈J when xj Rx′j for all j ∈ J .

(iii) For each j ∈ J let Aj pR //Bj be a semilattice relation. The semilattice relation⊕
j∈J Aj p

⊕
j∈j R //⊕

j∈J Bj relates (U, (yj)j∈U ) to (U ′, (yj)j∈U ′) when U = U ′ and yj R y′j for all

j ∈ U .

Definition 3.11 Let (A, ζ) and (A′, ζ ′) be
⊕

k∈K
∏
i∈Ar(k)-coalgebras.

(i) A passive relation provides for each k ∈ K a semilattice relation Rk from Pass(k)(A, ζ) to Pass(k)(A′, ζ ′).
It is a bisimulation when xRk x′ implies that for each i ∈ Ar(k) we have ζ(x@i)

⊕
k∈K Rk ζ(x′@i).

(ii) Elements M ∈ A and M ′ ∈ A′ are bisimilar when ζ(M)
⊕

k∈K Rk ζ(M ′) for some bisimulation R.

Proposition 3.12 Let (A, ζ) and (A′, ζ ′) be
⊕

k∈K
∏
i∈Ar(k)-coalgebras. Elements M ∈ A and M ∈ A′ are

trace equivalent iff they are bisimilar.

Proof. In Appendix. 2

4 Non-total systems

So far we have only considered total systems; but the more general case, where ζ(M) can be empty, is also of
interest. For the language, this means we add a command die that serves as a unit for or. We summarize the
changes required.

Definability of strategies becomes an easier problem: a strategy is

• definable by a finitely nondeterministic well-founded process iff it is anti-König

• definable by a countably nondeterministic well-founded process iff it is countably nondeterministic

• always definable by a well-founded process

• definable by a finitely nondeterministic process if it is finitely nondeterministic

• definable by a countably nondeterministic process iff it is countably nondeterministic

• always definable by a process.

A sound and complete theory of trace equivalence is given by the equations of a bounded semilattice (semi-
lattice with least element) and commutativity of each operation with or. Note that we do not include the
commutativity

ink(die)i∈Ar(k) = die

as this is unsound for trace equivalence. Because of this exclusion, the set of anti-König strategies does not
form an initial S-algebra on Semilatt⊥ (the category of bounded semilattices). However, it does form an

initial algebra for the functor F
⊕

k∈K U
∏
i∈Ar(k) on Semilatt⊥, writing U : Semilatt⊥ // Semilatt for

inclusion and F for its right adjoint. (Note that we take a coproduct in Semilatt, not Semilatt⊥.) That

10
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is because an algebra structure F
⊕

k∈K U
∏
i∈Ar(k)A

// A corresponds to a family of (mere) semilattice

homomorphisms (fk : U
∏
i∈Ar(k)A

// UA)k∈K , while an algebra morphism must preserve the least element

as well as everything else, so the category of algebras for this functor is the category of models for our theory.
The countably nondeterministic and unconstrained cases are similar.

Moreover, the set of finitely nondeterministic strategies forms a final coalgebra for this functor, by a similar
argument to the one above, and all the other results of Section 3.2 hold correspondingly.

5 Conclusions

We have considered various notions of nondeterministic strategy in the sense of finite traces. They might at
first sight appear ad hoc, but we have learnt that in each case they form an initial algebra or final coalgebra
for a suitable functor.

We have chosen to work with coalgebras for an endofunctor P+
f

∑
k∈K

∏
i∈Ar(k), because our language is

then an example. But our narrative and proofs would also work for coalgebras for
∏
j∈j P

+
f

∑
k∈P (j), or for

many-sorted endofunctors [16].
Further work includes

• replacing nondeterministic by (finite or countable) probabilistic choice

• considering nondeterministic strategies in the sense of infinite traces [15].

A Appendix

Proposition 1.6: the least congruence ≡ on commands satisfying

M or N ≡ N or M

(M or N) or P ≡ M or (N or P )

M or M ≡ M

is bisimilarity.

Proof. We define operations on ≡-classes:

In k(Ai)i∈Ar(k)
def
= [In k(Mi)i∈Ar(k)]≡ where Ai = [Mi]≡

A or B
def
= [M or N ]≡ where A = [M ]≡ and B = [N ]≡

choose {A0, . . . , An}
def
= A0 or · · · or An

We inductively define the set of bisimulation normal forms as follows:

A ::= choose {In k0(A0,i)i∈Ar(k0), . . . , In kn(An,i)i∈Ar(kn)}

The bisimulation normal form of a command M is given by

NF(M)
def
= choose(k0,x0)∈ζMIn k0(i0 7→ choose(k1,x1)∈ζ(x0@i0)In k1(i1 7→ · · · ))

which is well-founded by Proposition 1.4(ii). Concisely:

NF(M)
def
= choose(k,x)∈ζMIn k(NF(x@i))i∈Ar(k) (A.1)

For all M , we have NF(M) = [M ]≡ by induction on M . If M ∼ N then NF(M) = NF(N) by induction on
NF(M) using (A.1). Finally, if M ∼ N then [M ]≡ = NF(M) = NF(N) = [N ]≡. 2

Proposition 1.16: for a nondeterministic strategy σ, the following are equivalent.

• σ = TracesM for some command M .

• σ is total and anti-König.

11
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Proof. of (⇐). We inductively define the set of trace normal forms.

E ::= choosek∈LIn k(Ek,i)i∈Ar(k) (L ∈ P+
f K) (A.2)

This grammar is more restrictive than the one for bisimulation normal forms: it does not allow two distinct
choices to output k. We show that M 7→ TracesM is a bijection from trace normal forms to total anti-König
strategies. For a total anti-König strategy σ, its trace normal form TNF(σ) is given by

TNF(σ)
def
= choosek0∈Resp(σ,ε)In k0(i0 7→ choosek1∈Resp(σ,k0i0)In k1(i1 7→ . . .

which is well-founded by the anti-König property. Concisely:

TNF(σ) = choosek∈InitσIn kTNF(σ/ki)i∈Ar(k)

If σ is a total König strategy, then TNF(σ) is the unique trace normal form E such that TracesE = σ. (To
prove this, we show Traces TNF(σ) = σ by induction on TNF(σ), and TNF(TracesE) = E by induction on E.)
The result follows. 2

Theorem 1.18: for commands M and N , we have M ≡c N iff TracesM = TracesN .

Proof. (⇒) is evident. For (⇐), we first prove that, for a trace normal form E and ≡-class A, if TracesE =
TracesA then E =c A. We proceed by induction on E. We have

E = choosek∈LIn k(Ek,i)i∈Ar(k)

A = choose {In k0(A0,i)i∈Ar(k0), . . . , In kn(An,i)i∈Ar(kn)}

Since TracesE = TracesA, we have L = {k0, . . . , kn}, and for k ∈ L and i ∈ Ar(k) we have

TracesEk,i = Traces choosej∈Qk
Aj,i where Qk

def
= {j ∈ [0 . . n] | kj = k}

and so Ek,i =c choosej∈Qk
Aj,i

Now we reason

A = choosek∈Lchoosej∈Qk
In k(Aj,i)i∈Ar(k)

=c choosek∈LIn k(choosej∈Qk
Aj,i)i∈Ar(k) by commutativity

=c choosek∈LIn k(Ek,i)i∈Ar(k)

= E

Given commands M and N such that TracesM = TracesN = σ, put E = TNF(σ). Then TracesM =
TracesE = TracesN gives [M ]≡ =c E =c [N ]≡. 2

Proposition 2.3: for any strategy σ, the following are equivalent.

• σ = TracesM for some command M .

• σ is well-foundedly total and countably nondeterministic.

Proof. (⇒) is explained in the text. For (⇐), we proceed as follows. First choose, for each s ∈ σAE, a well-
founded tree τ such that t ∈ τ implies st ∈ σ, and write T (s) for the corresponding deterministic command.
For n ∈ N, form a command Mn that, for the first n cycles, follows the same pattern as trace normal form
(Definition A.2), and then behaves deterministically:

Mn
def
= choosek0∈Resp(σ,ε)In k0(i0 7→

. . .

choosekn−1∈Resp(σ,k0i0...in−2)In kn−1(in−1 7→ T (k0i0 . . . kn−1in−1) . . .))

Then TracesMn ⊆ σ, and for every s ∈ σ with n outputs, s ∈ TracesMn. Therefore Traces choose (Mn)n∈N =
σ. 2

12
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To prove Theorem 2.5, we cannot bring a command to trace normal form, but the following lemma shows
that that we can at least bring it to a “top-level” version of trace normal form.

Lemma A.1 For any ≡-class B, we have B =c choosek∈LIn k(Bk,i)i∈Ar(k) for some L ∈ P+
c K and collection

of ≡-classes (Bk,i)k∈L,i∈Ar(k).

Proof. We put B = [M ]≡ and proceed by induction on M . The case M = In k(Mi)i∈Ar(k) is trivial. Suppose
M = choose (Mn)n∈N and [Mn]≡ = choosek∈LnIn k(Bn,k,i)i∈Ar(k). Then

B = choosen∈N,k∈Ln
In k(Bn,k,i)i∈Ar(k)

= choosek∈
⋃

n∈N Ln
choosen∈Qk

In k(Bn,k,i)i∈Ar(k) where Qk
def
= {n ∈ N | k ∈ Ln}

= choosek∈
⋃

n∈N Ln
In k(choosen∈Qk

Bn,k,i)i∈Ar(k)

The case M = M0 or M1 is similar. 2

Theorem 2.5: for commands M and N , we have M ≡c N iff TracesM = TracesN .

Proof. (⇒) is evident. For (⇐), we prove that, for ≡-classes A and B, if TracesA ⊆ TracesB then A 6c B.
(Here 6c is the partial order arising from =c and or.) We put A = [M ]≡ and proceed by induction on M . If
M = choose (Mn)n∈N or M = M0 or M1 we apply the supremum property. If M = In k(Mi)i∈Ar(k), we apply
Lemma A.1 to B:

Traces In k(Mi)i∈Ar(k) ⊆ Traces choosek∈LIn k(Bk,i)i∈Ar(k)

Thus k ∈ L, and for all i ∈ Ar(k) we have

TracesMi ⊆ TracesBk,i
so [Mi]≡ 6c Bk,i

So A 6c In k(Bk,i)i∈Ar(k) 6c B. 2

Theorem 2.7: the set of well-foundedly total strategies, ordered by inclusion, with (In k)k∈K , is an initial
S-algebra in almost complete semilattices.

Proof. Let C be the set of well-founded total strategies. Put λ
def
= ℵ0 ∨ |K| ∨ |C|. Say that a λ-semilattice

is a (join) semilattice where every family (ai)i<λ has a supremum, and a homomorphism is a function that
preserves these suprema. By the same proof as above, using a λ-ary nondeterministic choice operation, C forms
an initial S-algebra in λ-semilattices. Let A be an S-algebra in almost complete semilattices, and f : C // A
the unique homomorphism of S-algebras in λ-semilattices. Any inhabited R ⊆ C has cardinality 6 λ, so its
supremum is preserved by f . Hence f is an almost complete semilattice homomorphism. 2

Theorem 3.7: let ζ : X // Pf

∑
k∈K

∏
i∈Ar(k)X be a transition system. Then M 7→ TracesM is the unique

map h : (X, ζ) // (Strat+f ,Ψ).

Proof. A function h : X // Strat+f is a map iff the following equations hold for all M ∈ X.

{k ∈ K | k ∈ h(M)} = {k ∈ K | ∃x.M ⇒k x} (A.3)

{s | k.i.s ∈ h(M)} =
⋃
M⇒kx

h(x@i) (A.4)

Clearly (A.3)–(A.4) are satisfied by h : M 7→ TracesM . Conversely, suppose h : X // Strat+f satisfies (A.3)–

13
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(A.4). We show that s ∈ h(M) ⇐⇒ s ∈ TracesM by induction on s.

k ∈ h(M) ⇐⇒ M ⇒k x for some x by (A.3)

⇐⇒ k ∈ TracesM

k.i.s ∈ h(M) ⇐⇒ s ∈ h(x@i) for some M ⇒k x by (A.4)

⇐⇒ s ∈ Tracesx@i for some M ⇒k x by inductive hypothesis

⇐⇒ for some M ⇒k x

2

Theorem 3.8: (Strat+f ,Ψ) is a final
⊕

k∈K
∏
i∈Ar(k)-coalgebra. For a coalgebra (A, ζ), the unique coalgebra

morphism (A, ζ) // (Strat+f ,Ψ) is M 7→ TracesM .

Proof. Let (A, ζ) be a
⊕

k∈K
∏
i∈Ar(k)-coalgebra. We say that a k-passive state is a family x = (Mi)i∈Ar(k) of

elements of A. For M ∈ A, a trace of M is a passive-ending play s = k0, i0, . . . , kn such that

ζ(M) = (U0, (y0,k)k∈U0
) k0 ∈ U0

ζ(y0,k0@i0) = (U1, (y1,k)k∈U1
) k1 ∈ U1

· · ·

ζ(yn−1,kn−1
@in−1) = (Un, (yn,k)k∈Un

) kn ∈ Un

The set of traces is written TracesM .
We show that M 7→ TracesM is a semilattice homomorphism. That is: for R ∈ P+

f A, if a passive-ending
play s is a trace of

∨
R then it is a trace of some M ∈ R. We proceed by induction on s. Suppose that s

begins with k. For M ∈ R, we have

ζ(M) = (UM , (yM,k)k∈UM
)

ζ(
∨
R) = (U, (yk)k∈U )

Since ζ is a semilattice homomorphism we have

U =
⋃
M∈R

UM

So k ∈ U iff there is M ∈ R such that k ∈ UM . If s = (k) we are done; otherwise s = k.i.s′ and we may assume
k ∈ U . We have

yk =
∨
M∈R
k∈UM

yM,k

hence yk@i =
∨
M∈R
k∈UM

(yM,k@i)

Now s is a trace of
∨
R iff s′ is a trace of yk@i. By the inductive hypothesis, this is equivalent to the existence

of M ∈ R such that s′ is a trace of yM,k@i i.e. such that s is a trace of M .
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We show that M 7→ TracesM is the unique function h : A // Strat+f such that

A

ζ

��

h // Strat+f

Ψ

��⊕
k∈K

∏
i∈Ar(k)A ⊕

k∈K
∏

i∈Ar(k) h
//⊕

k∈K
∏
i∈Ar(k) Strat

+
f

This diagram says that for any M ∈ A such that ζM = (U, (yk)k∈U ), we have

Inith(M) = U

h(M)/ki = h(yk@i) for k ∈ U and i ∈ Ar(k)

Clearly M 7→ TracesM satisfies these. For any h satisfying them, we show for a passive-ending play s that
s ∈ h(M) iff s ∈ TracesM , by induction on s, separating the cases s = (k) and s = k.i.s′. 2

Proposition 3.12: let (A, ζ) and (A′, ζ ′) be
⊕

k∈K
∏
i∈Ar(k)-coalgebras. Elements M ∈ A and M ∈ A′ are

trace equivalent iff they are bisimilar.

Proof. Although we have defined bisimilarity in terms of a passive bisimulation, it is easily shown equivalent

to the corresponding notion defined in terms of an active bisimulation, i.e. a semilattice relation A pR //A′

such that if M RM ′ then ζM
⊕

k∈K
∏
i∈Ar(k) ζ

′(M ′).

The identity relation on any coalgebra is an (active) bisimulation, and the inverse image of a bisimulation
along coalgebra maps is a bisimulation. Hence the inverse image R of the identity relation on (Strat+f ,Ψ) along

the coalgebra maps (A, ζ) //(Strat+f ,Ψ) and (A′, ζ ′) //(Strat+f ,Ψ) is a bisimulation. This is trace equivalence,
so trace equivalence implies bisimilarity.

Conversely, given an active bisimulation R, let B
def
= f{(N,N ′) ∈ A×A′ | ζ(N)

⊕
k∈K Rk ζ(N ′)}, ordered

componentwise. Binary joins are given componentwise, since R is a semilattice relation. For (N,N ′) ∈ B

with ζN = (U, (yk)k∈k and ζN ′ = (U, (y′k)k∈K we put ξ(N,N ′)
def
= (U, (zk)k∈U ) where zk@i

def
= (yk@i, y′k@i) for

i ∈ Ar(k). Then ξ is a semilattice homomorphism because ζ and ζ ′ are. The projections from (B, ξ) to (A, ζ)
and (A′, ζ ′) are coalgebra morphisms so if M RM ′ then TracesM = Traces (M,M ′) = TracesM ′. 2
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