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Abstract

In this paper, we explore, enrich, and otherwise mildly generalise a prominent definition of weak n-category by Batanin, as refined
by Leinster, to give a definition of weak n-dimensional V-category, with a view to applications in programming semantics. We
require V to be locally presentable and to be (infinitarily) extensive, a condition which ensures that coproducts are suitably
well-behaved. Our leading example of such a V is the category ω-Cpo, ω-Cpo-enriched bicategories already having been used in
denotational semantics.
We illuminate the implicit use of recursion in Leinster’s definition, generating the higher dimensions by a process of repeated
enrichment. The key fact is that if V is a locally presentable and extensive category, then so are the categories of small V-graphs
and small V-categories. Iterating, this produces categories of n-dimensional V-graphs and strict n-dimensional V-categories that
are also locally presentable and extensive. We show that the free strict n-dimensional V-category monad on the category of
n-dimensional V-graphs is cartesian. This, along with results due to Garner, allows us to follow Batanin and Leinster’s approach
for defining weak n-categories. In the case that V = Set, the resulting definition of weak n-dimensional V-category agrees with
Leinster’s definition.
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1 Introduction

Bicategories have been used for many years to model computational phenomena such as concurrency [6] and
binders [17]. The collectivity, Bicat, of bicategories has the structure of a tricategory, which have occasionally
appeared explicitly [16] and more often implicitly [6] in the programming semantics literature. But what is a

1 No data were generated in association with this paper.
2 Email: T.P.Cottrell@bath.ac.uk
3 Email: soichi@is.s.u-tokyo.ac.jp
4 Email: A.J.Power@bath.ac.uk
5 Supported by Royal Society grant IE160402.
6 Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.

c©2018 Published by Elsevier Science B. V.

http://entcs.org
mailto:T.P.Cottrell@bath.ac.uk
mailto:soichi@is.s.u-tokyo.ac.jp
mailto:A.J.Power@bath.ac.uk


Cottrell, Fujii and Power

weak n-category in general? Strict n-categories for arbitrary n have been used to model concurrency [18] and
in connection with rewriting [11]. So it seems only a matter of time until weak n-categories for arbitrary n
prove to be of value for programming semantics too. Here, we explore, enrich, and otherwise mildly generalise
a prominent definition by Batanin [1], as refined by Leinster [15], together with the surrounding theory: they
assumed knowledge of sophisticated mathematics, glossed over the inherent recursion, and did not consider the
concerns of programming semantics.

Batanin and Leinster’s definition of weak n-category starts with the free strict n-category monad T (n),
induced from the canonical adjunction between the category n-Gph of n-graphs and the category n-Cat
of strict n-categories. The monad T (n) is cartesian (see Definition 3.1). For any cartesian monad T on any
category C with finite limits, the slice category C/T1 possesses a canonical monoidal structure (Proposition 5.1).
A monoid in that monoidal category is called a T -operad [15] or sometimes a T -club [13] or a T -category [3]. If
O = ((arO : O −→ T1),m, e) is a T -operad, an O-algebra consists of an object X of C together with an action
of O on X. Leinster introduces the notion of contraction (Definition 6.1) on T (n)-operads, and defines a weak
n-category to be an algebra for the initial T (n)-operad with contraction.

The heart of the induction implicit in Batanin and Leinster’s work is simpler than one might imagine. The
key fact is that if V is an (infinitarily) extensive category with finite limits (see Definition 2.1), then so are the
categories of small V-graphs (Definition 2.2) and of small V-categories. Iterating, this produces the categories

V-Gph(n) (Definition 2.3, enriching n-Gph) and V-Cat(n) (Definition 2.4, enriching n-Cat) that are also

extensive and have finite limits. Extensivity enables one to show that the forgetful functor from V-Cat(n) to

V-Gph(n) admits a left adjoint, and that the induced monad T (n) is cartesian.
We adapt Garner’s conceptual formulation [9] of the notion of contraction to the enriched setting. A weak

n-dimensional V-category is then defined as an algebra for the initial T (n)-operad with contraction. To ensure
that the initial T (n)-operad with contraction actually exists, we impose a mild size condition on V, that of
being locally presentable. This additional condition is harmless to our inductive process, since whenever V is
locally presentable, so is V-Gph. Letting V be the category ω-Cpo allows the modelling of recursion, see for
instance the use of ω-Cpo-enriched bicategories in [17], axiomatising binders [8].

In Section 2, we recall and further develop the notion of infinitary extensivity that we studied broadly in
this context in [7], extending the finitary extensivity condition of Lawvere as developed by Carboni, Lack and
Walters in [5]. In Section 3, we use the extensivity condition to show that the forgetful functor from V-Cat to
V-Gph generates a cartesian monad on V-Gph, and in Section 4, we extend that result to higher dimensions,

yielding a cartesian monad T (n) on V-Gph(n). We then explain T -operads for any cartesian monad T in
Section 5. In Section 6, following but adapting Garner’s homotopy theoretic ideas [9,10], we define contraction
in the enriched setting. Then we show in Section 7 that for every V which is locally presentable and extensive,
the V-enriched version of initial T (n)-operad with contraction exists, generalising Batanin and Leinster’s line
of thought to complete a definition of weak n-dimensional V-category.

2 Extensivity, V-graphs and V-categories

Extensive categories were introduced by Lawvere and developed by Carboni, Lack and Walters [5]. In their
work, extensive categories meant categories with finite coproducts satisfying an additional condition. We need
to extend that to a corresponding infinitary condition, cf [7].

For any category V with small coproducts, and for any set I and I-indexed family (Xi)i∈I of objects of V,
consider the functor ∐

:
∏
i∈I

(V/Xi) −→ V/(
∐
i∈I

Xi) (1)

mapping (fi : Ai −→ Xi)i∈I to (
∐

i∈I fi :
∐

i∈I Ai −→
∐

i∈I Xi).

Definition 2.1 A category V with small coproducts is extensive if for any set I and I-indexed family (Xi)i∈I
of objects of V, the functor

∐
in (1) is an equivalence of categories.

Our leading examples of extensive categories are Set and the category ω-Cpo of posets with sups of ω-

chains, together with, for any extensive category V with finite limits, the categories V-Gph(n) and V-Cat(n),
which are defined recursively. In order to define the former, we first need to define the category of V-graphs.

Definition 2.2 Let V be a category.

(i) A small V-graph G consists of a set ob(G) together with, for each x, y ∈ ob(G), an object G(x, y) ∈ V.
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(ii) A map of V-graphs from G to G′ is a function f : ob(G) −→ ob(G′) together with, for each x, y ∈ ob(G),
a map fx,y : G(x, y) −→ G′(fx, fy) in V.

We denote the category of all small V-graphs and maps by V-Gph. The construction (−)-Gph routinely
extends to an endo-2-functor on the 2-category of locally small categories.

Definition 2.3 For each natural number n and any category V, the category V-Gph(n) is defined as follows:

V-Gph(0) = V; V-Gph(n+1) = (V-Gph(n))-Gph.

Definition 2.4 For each natural number n and any category V with finite products, the category V-Cat(n) is
defined as follows (using the cartesian structure for enrichment):

V-Cat(0) = V; V-Cat(n+1) = (V-Cat(n))-Cat.

When V = Set, we abbreviate V-Gph(n) by n-Gph, and we abbreviate V-Cat(n) by n-Cat.
We now show that if V is an extensive category with finite limits, then so are V-Gph and V-Cat. Actually,

to ensure that V-Gph and V-Cat are extensive, the much weaker requirement of V having a strict initial
object suffices. Recall that an initial object 0 in a category is called strict if every morphism going into 0 is
an isomorphism. Every extensive category has a strict initial object; consider the case I = ∅ in (1).

Proposition 2.5 If V is a category with a strict initial object 0, then V-Gph is extensive.

Proof. The coproduct of a set-indexed family (Gi)i∈I of V-graphs is given by ob(
∐

i∈I Gi) =
∐

i∈I ob(Gi) and

(
∐
i∈I

Gi)((i, x), (i′, x′)) =

{
Gi(x, x

′) if i = i′,

0 otherwise.

It is easy to see that the functor
∐

:
∏

i∈I(V-Gph/Gi) −→ V-Gph/(
∐

i∈I Gi) (as in (1)) is full and faithful.
For any object (f : H −→

∐
i∈I Gi) in V-Gph/(

∐
i∈I Gi), define an object (fi : Hi −→ Gi)i∈I ∈

∏
i∈I(V/Gi)

by the pullbacks of f along the coprojections σi : Gi −→
∐

i∈I Gi; note that these pullbacks always exist,
and Hi are just the suitable “full sub” V-graphs of H. Since 0 is strict, (

∐
i∈I fi :

∐
i∈I Hi −→

∐
i∈I Gi) is

isomorphic to f . Hence
∐

is also essentially surjective. 2

Proposition 2.6 If V is a category with a strict initial object and finite products, then V-Cat is extensive.

Proof. Similar to the above. See [7, Proposition 2.6] for details (note that in a category V with an initial
object 0 and finite products, 0 is strict if and only if 0×B ∼= 0 for every B ∈ V). 2

Finite limits in V-Gph or V-Cat are straightforward. We will treat pullbacks as an example, as they will
play an important role in Sections 3 and 4.

Proposition 2.7 Let V have finite limits. A commutative square

P B

A X

k

gh

f

in V-Gph or in V-Cat is a pullback if and only if the square as on the left of the following diagram is a pullback
in Set, and for any pair p1, p2 ∈ ob(P ), writing ai = h(pi), bi = k(pi) and xi = f(ai) = g(bi) for i = 1, 2, the
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square as on the right is a pullback in V.

ob(P ) ob(B)

ob(A) ob(X)

k

gh

f

P (p1, p2) B(b1, b2)

A(a1, a2) X(x1, x2)

kp1,p2

gb1,b2hp1,p2

fa1,a2

We need several results about extensivity in order to prove cartesianness of a monad in later sections, so
we collect those results in the remainder of this section, extending work from [7].

Proposition 2.8 A category V with small coproducts is extensive if and only if for any set I, I-indexed family
(Xi)i∈I of objects of V, morphism f : A −→

∐
i∈I Xi in V, and I-indexed family of commutative squares

Ai A

Xi

∐
i∈I Xi

τi

ffi

σi

(2)

in V (in which σi is the i-th coprojection), each square (2) is a pullback square if and only if (τi)i∈I defines a
coproduct (that is, A =

∐
i∈I Ai with τi the i-th coprojection).

Proof. See [7, Proposition 2.3]. 2

Proposition 2.9 Let V be an extensive category. For any set I and I-indexed family of pullback squares in V
as on the left of the following diagram, the square as on the right is a pullback.

Pi Bi

Ai Xi

qi

gipi

fi

∐
i∈I Pi

∐
i∈I Bi

∐
i∈I Ai

∐
i∈I Xi

∐
i∈I qi

∐
i∈I gi

∐
i∈I pi

∐
i∈I fi

Proof. By the definition of extensivity, the functor
∐

:
∏

i∈I(V/Xi) −→ V/(
∐

i∈I Xi) is an equivalence of
categories and, in particular, it preserves binary products. 2

Proposition 2.10 Let V be an extensive category with finite products. For any B ∈ V, the functor (−) ×
B : V −→ V preserves small coproducts.

Proof. In any category, a square as on the left of the following diagram is always a pullback. Hence for any
object B ∈ V, set I, and I-indexed family (Xi)i∈I of objects of V, for each i ∈ I the square as on the right is
a pullback.

A×B C ×B

A C

h×B

π1π1

h

Xi ×B (
∐

i∈I Xi)×B

Xi

∐
i∈I Xi

σi ×B

π1π1

σi

Therefore by Proposition 2.8, (
∐

i∈I Xi)×B ∼=
∐

i∈I(Xi ×B). 2

4



Cottrell, Fujii and Power

Proposition 2.11 Let V be an extensive category. For any object Y ∈ V, the slice category V/Y is again
extensive.

Proof. Clearly V/Y has small coproducts given by
∐

i∈I(fi : Xi −→ Y ) = ([fi]i∈I :
∐

i∈I Xi −→ Y ). Also note
that for any object (f : X −→ Y ) of V/Y , the canonical functor (V/Y )/f −→ V/X which maps (h : (g : A −→
Y ) −→ f) ∈ (V/Y )/f to (h : A −→ X) ∈ V/X is an isomorphism of categories. For any set I and I-indexed
family (fi : Xi −→ Y )i∈I of objects of V/Y , the diagram

∏
i∈I((V/Y )/fi) (V/Y )/[fi]i∈I

∏
i∈I(V/Xi) V/(

∐
i∈I Xi)

∐
∼=∼= ∐

(in which the vertical arrows are the canonical isomorphisms mentioned above) commutes. Since the lower
∐

is an equivalence by the assumption, so is the upper one. 2

Corollary 2.12 Let V be an extensive category with pullbacks.

(i) For any morphism g : B −→ X in V, set I, and I-indexed family of pullback squares in V as on the left of
the following diagram, the square as on the right is a pullback.

Pi B

Ai X

qi

gpi

fi

∐
i∈I Pi B

∐
i∈I Ai X

[qi]i∈I

g
∐

i∈I pi

[fi]i∈I

(ii) For any object X ∈ V, set I, I-indexed family of morphisms (fi : Ai −→ X)i∈I in V, set J , J-indexed
family of morphisms (gj : Bj −→ X)j∈J in V, and (I × J)-indexed family of pullback squares in V as on
the left of the following diagram, the square as on the right is a pullback.

Pi.j Bj

Ai X

qi,j

gjpi,j

fi

∐
i∈I,j∈J Pi,j

∐
j∈J Bj

∐
i∈I Ai X

∐
j∈J ([qi,j ]i∈I)

[gj ]j∈J
∐

i∈I([pi,j ]j∈J )

[fi]i∈I

Proof.

(i) By the assumption, the slice category V/X has finite products ×X (given by pullbacks in V), and is
extensive (Proposition 2.11). Hence by Proposition 2.10, binary product by (g : B −→ X) ∈ V/X preserves
small coproducts, that is, (

∐
i∈I fi)×X g ∼=

∐
i∈I(fi ×X g).

(ii) Using (i) iteratively, we obtain (
∐

i∈I fi)×X (
∐

j∈J gj)
∼=
∐

i∈I,j∈J(fi ×X gj).
2

3 A cartesian monad on V-Gph

In this section, subject to conditions on V, we show that the monad on V-Gph induced by the forgetful functor
U : V-Cat −→ V-Gph is cartesian, meaning the following.

Definition 3.1 (i) A natural transformation is called cartesian if all the naturality squares of it are pull-
backs.
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(ii) For any category C with pullbacks, a monad T = (T, µ, η) on C is cartesian if the functor T preserves
pullbacks, and if µ and η are cartesian natural transformations.

Proposition 3.2 If V has finite products and small coproducts, and if for any B ∈ V the functor (−)×B : V −→
V preserves small coproducts, then the forgetful functor U : V-Cat −→ V-Gph admits a left adjoint.

Proof. Given a V-graph G = (ob(G), (G(x, y))x,y∈ob(G)), the free V-category on G is given by the V-graph

(
ob(G),

(∐
n∈N

∐
w0,...,wn∈ob(G)

w0=x,wn=y

G(wn−1, wn)× · · · ×G(w0, w1)

)
x,y∈ob(G)

)

with evident composition laws (defined using the assumption that (−) × B preserves small coproducts) and
identity elements. 2

Examples of categories V satisfying the assumptions of Proposition 3.2 include cartesian closed categories
with small coproducts [19] and extensive categories with finite products (by Proposition 2.10).

Proposition 3.3 If V is an extensive category with finite limits, then the left adjoint to the forgetful functor
U : V-Cat −→ V-Gph determined by Proposition 3.2 preserves pullbacks.

Proof. This follows from Proposition 2.7, Proposition 2.9, and Corollary 2.12 (ii). 2

Proposition 3.4 If V has a strict initial object 0 and finite products, then the categories V-Gph and V-Cat
admit small coproducts and the forgetful functor U : V-Cat −→ V-Gph preserves small coproducts.

Proof. In both V-Gph and V-Cat, small coproducts are given by taking disjoint union of objects and setting
the hom-objects between objects from different components to be 0 (cf. the proof of Proposition 2.5). 2

Proposition 3.5 If V is an extensive category with finite limits, then the unit η : idV-Gph =⇒ UF of the
adjunction F a U in Proposition 3.2 is cartesian.

Proof. This follows from Proposition 2.8. 2

Proposition 3.6 If V is an extensive category with finite limits, then for each natural number m, the natural
transformation

(V-Gph)m (V-Cat)m V-Cat

V-Gph

V-Cat,
Fm

∏ U F

idV-Cat

ε

where ε is the counit of the adjunction F a U in Proposition 3.2 and
∏

is the m-ary product functor, is
cartesian.

Proof. Let (f (1), . . . , f (m)) : (G(1), . . . , G(m)) −→ (G′(1), . . . , G′(m)) be a morphism in (V-Gph)m. Our aim is
to show that the square

FU(FG(1) × · · · × FG(m)) FG(1) × · · · × FG(m)

FU(FG′(1) × · · · × FG′(m)) FG′(1) × · · · × FG′(m)

εFG(1)×···×FG(m)

Ff (1) × · · · × Ff (m)FU(Ff (1) × · · · × Ff (m))

εFG′(1)×···×FG′(m)

in V-Cat is a pullback. By Proposition 2.7 it suffices to show that for every pair of objects
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(x(1), . . . , x(m)), (y(1), . . . , y(m)) ∈ ob(FU(FG(1) × · · · × FG(m))) = ob(G(1) × · · · ×G(m)), the square

FU
(∏m

i=1(FG(i))(x(i), y(i))
) ∏m

i=1(FG(i))(x(i), y(i))

FU
(∏m

i=1(FG′(i))(f (i)x(i), f (i)y(i))
) ∏m

i=1(FG′(i))(f (i)x(i), f (i)y(i))

in V is a pullback. This follows by appropriate applications of Proposition 2.10, Proposition 2.9 and Corol-
lary 2.12 (ii). 2

Let T = (T, µ, η) be the monad on V-Gph induced by the adjunction F a U : V-Cat −→ V-Gph.

Theorem 3.7 If V is an extensive category with finite limits, then the monad T on V-Gph is cartesian.

Proof. This follows from Proposition 3.3, Proposition 3.5, and Proposition 3.6 (take m = 1). 2

4 A cartesian monad on V-Gph(n)

In this section we show that the forgetful functor from the category of strict n-dimensional V-categories to
that of n-dimensional V-graphs has a left adjoint. We assume throughout that V is extensive and has finite
limits. It follows that V-Gph and V-Cat are likewise (by Propositions 2.5, 2.6 and 2.7), and so, by induction,

for each natural number n, the categories V-Gph(n) and V-Cat(n) are also extensive with finite limits.

Recall that, by Propositions 2.10 and 3.2, the forgetful functor U : (V-Cat(n))-Cat −→ (V-Cat(n))-Gph
admits a left adjoint F .

Definition 4.1 For each natural number n, we define an adjunction F (n) a U (n) : V-Cat(n) −→ V-Gph(n)

recursively as follows:

(i) F (0) = U (0) = idV ;

(ii) F (n+1) a U (n+1) is the composite:

(V-Cat(n))-Cat.(V-Cat(n))-Gph(V-Gph(n))-Gph
F

a

U

F (n)-Gph

a

U(n)-Gph

Proposition 4.2 For each natural number n, F (n) : V-Gph(n) −→ V-Cat(n) preserves pullbacks.

Proof. For n = 0, the assertion is trivial. Proceeding inductively, if F (n) preserves pullbacks, so does F (n)-Gph

by Proposition 2.7. The functor F : (V-Cat(n))-Gph −→ (V-Cat(n))-Cat preserves pullbacks by Proposi-
tion 3.3. 2

Proposition 4.3 For each natural number n, U (n) : V-Cat(n) −→ V-Gph(n) preserves small coproducts.

Proof. For n = 0, the assertion is trivial. Proceeding inductively, if U (n) preserves small coprod-
ucts, it preserves initial objects, and so the functor U (n)-Gph preserves small coproducts. The functor

U : (V-Cat(n))-Cat −→ (V-Cat(n))-Gph also preserves small coproducts by Proposition 3.4. 2

Proposition 4.4 For each natural number n, the unit η(n) : idV-Gph(n) =⇒ U (n)F (n) of the adjunction F (n) a
U (n) is cartesian.

Proof. Observe that adjunctions whose units are cartesian are closed under composition. Proceeding
inductively, if η(n) is cartesian, so is η(n)-Gph by Proposition 2.7. The unit of the adjunction F a
U : (V-Cat(n))-Cat −→ (V-Cat(n))-Gph is cartesian by Proposition 3.5. 2
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Proposition 4.5 For each pair of natural numbers n and m, the natural transformation

(V-Gph(n))m (V-Cat(n))m V-Cat(n)

V-Gph(n)

V-Cat(n),
(F (n))m

∏ U(n) F (n)

idV-Cat(n)

ε(n)

where ε(n) is the counit of the adjunction F (n) a U (n) and
∏

is the m-ary product functor, is cartesian.

Proof. By induction on n. Suppose the claim is true for n = k and for all m. For brevity, we will write the
adjunction F (k)-Gph a U (k)-Gph as F ′ a U ′, and whose counit ε(k)-Gph as ε′. We aim to show that for every

morphism (f (1), . . . , f (m)) : (G(1), . . . , G(m)) −→ (G′(1), . . . , G′(m)) in (V-Gph(k+1))m, the outer rectangle in
the diagram

FF ′U ′U(
∏m

i=1 FF
′G(i)) FU(

∏m
i=1 FF

′G(i))

FF ′U ′U(
∏m

i=1 FF
′G′(i)) FU(

∏m
i=1 FF

′G′(i))

∏m
i=1 FF

′G(i)

∏m
i=1 FF

′G′(i)

Fε′
U(

∏m
i=1 FF ′G(i))

FU(
∏m

i=1 FF
′f (i))FF ′U ′U(

∏m
i=1 FF

′f (i))

Fε′
U(

∏m
i=1 FF ′G′(i))

ε∏m
i=1 FF ′G(i)

∏m
i=1 FF

′f (i)

ε∏m
i=1 FF ′G′(i)

in V-Cat(k+1) is a pullback. The right square is a pullback by Proposition 3.6, so we shall show that the left
square is also a pullback. Since F preserves pullbacks by Proposition 3.3, it suffices to show that the square

F ′U ′U(
∏m

i=1 FF
′G(i)) U(

∏m
i=1 FF

′G(i))

F ′U ′U(
∏m

i=1 FF
′G′(i)) U(

∏m
i=1 FF

′G′(i))

ε′
U(

∏m
i=1 FF ′G(i))

U(
∏m

i=1 FF
′f (i))F ′U ′U(

∏m
i=1 FF

′f (i))

ε′
U(

∏m
i=1 FF ′G′(i))

in (V-Cat(k))-Gph is a pullback. By Proposition 2.7, it suffices to show that for every pair of objects
(x(1), . . . , x(m)), (y(1), . . . , y(m)) ∈ ob(F ′U ′U(

∏m
i=1 FF

′G(i))) = ob(G(1) × · · · ×G(m)), the square

F (k)U (k)(
∏m

i=1(FF ′G(i))(x(i), y(i)))
∏m

i=1(FF ′G(i))(x(i), y(i))

F (k)U (k)(
∏m

i=1(FF ′G′(i))(f (i)x(i), f (i)y(i)))
∏m

i=1(FF ′G′(i))(f (i)x(i), f (i)y(i))

in V-Cat(k) is a pullback. This follows from Proposition 2.10, Proposition 4.3 for n = k, that the left adjoint
F (k) preserves small coproducts, Proposition 2.9, Corollary 2.12 (i), and the induction hypothesis. 2

For each natural number n, let T (n) = (T (n), µ(n), η(n)) be the monad on V-Gph(n) induced by the adjunc-

tion F (n) a U (n) : V-Cat(n) −→ V-Gph(n).

Theorem 4.6 For each natural number n, the monad T (n) is cartesian.

Proof. This follows from Proposition 4.2, Proposition 4.4, and Proposition 4.5 (take m = 1). 2

This theorem will allow us to use the theory of T -operads, which we now explain.

8
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5 T -operads

In this section we shall review T -operads and their algebras for a cartesian monad T [15].

Proposition 5.1 If T is a cartesian monad on a category C with finite limits, with terminal object 1, the slice
category C/T1, with objects (p : P −→ T1), has a monoidal structure as follows. The monoidal product is

(p : P −→ T1)⊗ (q : Q −→ T1) = (q̄ ◦ π2 : (P, p) ∗Q −→ T1),

where (P, p) ∗Q is defined by the pullback below, and q̄ = µ1 ◦ Tq is the Kleisli extension of q:

(P, p) ∗Q TQ

P T1

T1
π2

T !π1

p

q̄

The unit is I = (η1 : 1 −→ T1), and the coherence isomorphisms are determined by the universal property of
pullbacks.

Definition 5.2 Let T be a cartesian monad on a category C with finite limits. A T -operad is a monoid in
the monoidal category (C/T1,⊗, I).

The idea is that a cartesian monad T determines a notion of algebraic theory in which T -operads are
algebraic theories. In that notion of algebraic theory, the object of arities is given by T1, and the underlying
object (arO : O −→ T1) ∈ C/T1 of a T -operad O = ((arO : O −→ T1),m, e) represents a family of operations
indexed by arities.

We denote the category of T -operads, i.e., the category of monoids in (C/T1,⊗, I), by T -Opd. Note that
we have a canonical forgetful functor

V : T -Opd −→ C/T1. (3)

The objective of an algebraic theory is to define a notion of algebra. In the case of T -operads, we define an
algebra of a T -operad O to be an object C of C (the base category of the monad T ) equipped with an action
of O. We start with a general definition of an action of a monoid in a monoidal category.

Let M = (M,⊗, I) be a monoidal category and A a category. A pseudo action of M on A is a strong
monoidal functor from M to the strict monoidal category ([A,A], ◦, idA) of endofunctors on A. We often
transport the structure of a strong monoidal functor along the 2-adjunction (−)×A a [A,−] and give a pseudo
action in terms of a functor ∗ : M×A −→ A together with coherent natural isomorphisms

(X ⊗ Y ) ∗A ∼= X ∗ (Y ∗A), I ∗A ∼= A

where X,Y ∈M and A ∈ A.
Given a pseudo action ∗ of M on A, we can define an action of a monoid (M,m, e) in M on an object A

of A to be a morphism
a : M ∗A −→ A

in A satisfying the associativity and unit axioms of action.
Now we return to the setting of T -operad. We have a canonical pseudo action of the monoidal category

(C/T1,⊗, I) on the category C given by the functor ∗ : (C/T1) × C −→ C which maps (p : P −→ T1) ∈ C/T1
and C ∈ C to (P, p) ∗ C ∈ C defined as a pullback

(P, p) ∗ C TC

P T1.

π2

T !π1

p

9
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An O-algebra for a T -operad O is then defined as an action of O.

Example 5.3 If we let C = Set and T be the free monoid monad, then T -operads coincide with non-
symmetric operads. The arities are the natural numbers: T1 ∼= N.

In more detail, the data of a T -operad in this case consist of a set O, and functions arO : O −→ N,
m : (O, arO) ∗ O −→ O and e : 1 −→ O. Unravelling this, we obtain a family of sets (On)n∈N, a family of
functions (mn,k1,...kn

: On ×Ok1
× · · · ×Okn

−→ Ok1+···+kn
)n,k1,...,kn∈N, and an element e ∈ O1. We interpret

On as the set of all (derived) operations of arity n, and mn,k1,...kn
maps a tuple (φ, θ1, . . . , θn) of operations

to their substitution φ(θ1, . . . , θn). Non-symmetric operads correspond to the subclass of equational theories
called strongly regular equational theories [4], that is, theories in which the same variables appear in the same
order, without repetition, on either side of any equation. Examples of strongly regular equational theories
include the theories of monoids and of monoid actions, but not those of commutative monoids or of groups.

An O-algebra consists of a set C together with a function (O, arO)∗C −→ C satisfying the axioms of action.
Since (O, arO) ∗ C =

∐
n∈NOn × Cn, such a function corresponds to a family of functions [[φ]] : Cn −→ C for

each n ∈ N and φ ∈ On (the interpretation of φ).

Example 5.4 If we let C = n-Gph = Set-Gph(n) and T = T (n) be the free strict n-category monad, then
T (n)-operads are known as n-globular operads [15, Section 9.3]. The arities form a n-graph T (n)1, whose
element can be seen as a globular pasting scheme.

More precisely, define for any pair of natural numbers n and k ∈ {0, . . . , n}, a k-cell of an n-graph recursively
on n as follows: a 0-cell of an n-graph G is an element of ob(G); a (k + 1)-cell of G is a triple (x, y, θ) where
x, y ∈ ob(G) and θ is a k-cell of G(x, y). Then a k-cell of T (n)1 is a k-dimensional globular pasting scheme.
We draw the picture of a typical 2-dimensional globular pasting scheme:

• • • •

The multiplication of an n-globular operad ((arO : O −→ T1),m, e) composes a cell φ of the n-graph O and a
family of cells of O aligned in the shape of the arity of φ.

An O-algebra consists of an n-graph C together with a map of n-graphs (O, arO) ∗ C −→ C. A k-cell of
the n-graph (O, arO) ∗C is a k-cell φ of O together with a family of cells in C aligned in the shape of the arity
of φ. See [15] for more details.

Example 5.5 If we let C = V-Gph(n) for an extensive category V with finite limits and T = T (n) be the free
strict n-dimensional V-category monad, then the T (n)-operads are an enriched version of n-globular operads.
They are pretty much the same as n-globular operads, the only difference being that it no longer makes sense
to talk about individual n-cells; they now form an object of V.

6 Contractions

In this section we describe the notion of contraction, introduced by Leinster [15], and generalise it to the
enriched setting. We follow Garner [9] and define contraction as a choice of certain diagonal fillers. The
following definition is an example of the construction described in [10, Proposition 3.8].

Definition 6.1 Let C be a category, J a set, and F = (fj : Aj −→ Bj)j∈J a J-indexed family of morphisms
in C.

(i) A contraction (with respect to F) on a morphism g : C −→ D in C is a J-indexed family of functions
(κj)j∈J such that for each j ∈ J , κj assigns to every pair of morphisms (h, k) in V which makes the
perimeter of (4) commute, a morphism κj(h, k) making the whole diagram (4) commute.

Aj C

Bj D

h

gfj

k

κj(h, k) (4)

10
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(ii) A map of morphisms with contractions from (g : C −→ D, (κ)j∈J) to (g′ : C ′ −→ D′, (κ′j)j∈J) is a
map of morphisms (u : C −→ C ′, v : D −→ D′) from g to g′ which commutes with contractions: for each
j ∈ J and (h, k) in the domain of κj , u ◦ κj(h, k) = κ′j(u ◦ h, v ◦ k).

Aj C

Bj D

C ′

D′

h

g

fj

k

u

v

g′κj(h, k)

κ′j(uh, vk)

In other words, for each j ∈ J , κj is a section of the function ρj below, induced by the universality of
pullback.

C(Bj , C)

Pj C(Bj , D)

C(Aj , C) C(Aj , D)

C(fj , D)

C(Aj , g)

C(Bj , g)

C(fj , C)

ρj

As observed in [9], Leinster’s notion of contraction, for each natural number n, is a special case of Defini-

tion 6.1 where C = n-Gph and F is a certain family F (n) = (f
(n)
0 , . . . , f

(n)
n+1) consisting of n+ 2 morphisms in

n-Gph. Before giving a precise definition, we wish to give an intuitive idea of them by drawing a suggestive
picture. For example, when n = 2 the family can be drawn as

F (2) =



( )

(
•
)f (2)0

,

(
• •

)

(
• •

)f
(2)
1

,

(
• •

)

(
• •

)f
(2)
2

,

(
• •

)

(
• •

)f
(2)
3


.

The idea is that an element of F (n) is “the inclusion of a sphere into a ball”, although f
(n)
n+1 is no longer a

monomorphism due to lack of cells of dimension greater than n.

To give a recursive definition of F (n) in the enriched setting, we start with auxiliary definitions. For any
category V ′ with an initial object 0, define the suspension functor Σ: V ′ −→ V ′-Gph which maps X ∈ V to
ΣX = ({s, t}, (ΣX(i, j))i,j∈{s,t}) given by ΣX(s, t) = X, ΣX(i, j) = 0 if (i, j) 6= (s, t); cf. [15, Section 9.3].
Also define the discrete V ′-graph functor D : Set −→ V ′-Gph which maps a set I to DI = (I, (0)i,j∈I). The
functor D is the left adjoint of ob(−) : V ′-Gph −→ Set.

Definition 6.2 Let V be an extensive category with finite limits. For each natural number n, define a family

F (n) = (f
(n)
0 , . . . , f

(n)
n+1) of morphisms in V-Gph(n) recursively as follows.

(i) f
(0)
0 : 0 −→ 1 and f

(0)
1 : 1 + 1 −→ 1 are the unique morphisms in V into the terminal object 1.

(ii) f
(n)
0 : D∅ −→ D{∗}, where ∅ and {∗} are the empty set and a singleton respectively, is the unique morphism

in V-Gph(n) out of the initial object D∅, and for each i ∈ {1, . . . , n+ 1}, f (n)i = Σf
(n−1)
i−1 .

For each object X ∈ V-Gph(n), we have the category ContrF(n)(X) of morphisms into X with contractions
(with respect to F (n)), whose objects are morphisms g with contractions as in Definition 6.1 (i) such that the

11
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codomain of g isX, and whose morphisms are maps of morphisms with contractions (u, v) as in Definition 6.1 (ii)
such that v = idX . Note that we have the canonical forgetful functor

V ′ : ContrF(n)(X) −→ V-Gph(n)/X. (5)

We will in particular be concerned with the case where X = T (n)1.

7 Weak n-categories enriched over locally presentable and extensive categories

Following Leinster, for any extensive category V with finite limits (with additional condition; see below) and
any natural number n, we define a weak n-dimensional V-category to be an algebra of the initial T (n)-operad
with contraction. More precisely, define the category T (n)-OC of T (n)-operads with contraction to be the
following pullback of categories:

T (n)-OC ContrF(n)(T (n)1)

T (n)-Opd V-Gph(n)/T (n)1,

V ′

V

where the forgetful functors V and V ′ are the suitable instances of (3) and (5) respectively. If the category
T (n)-OC has an initial object ((arL : L −→ T (n)1),m, e, κ), then by the initial T (n)-operad with contraction
we mean its underlying T (n)-operad ((arL : L −→ T (n)1),m, e) (forgetting the contraction κ).

Our final task, therefore, is to prove that T (n)-OC actually has an initial object, perhaps under some
additional condition on V. For this, we have the following theorem.

Theorem 7.1 If V is a locally presentable and extensive category, then for any natural number n the category
T (n)-OC has an initial object.

Proof. We shall follow the argument in [15, Appendix G] (where V = Set and n = ω) and show that

V-Gph(n)/T (n) is locally presentable (hence is both complete and cocomplete), and that V and V ′ are monadic
and have ranks (i.e., preserve α-filtered colimits for some regular cardinal α). Then by [12, Theorem 27.1] it

follows that the forgetful functor from T (n)-OC to V-Gph(n)/T (n)1 is also monadic, thus in particular T (n)-OC

has an initial object, given by the free algebra over the initial object in V-Gph(n)/T (n)1.
If V ′ is locally presentable, then so is V ′-Gph (see e.g., [14, Proposition 4.4]). Applying this iteratively,

we see that V-Gph(n) is locally presentable. Hence so is V-Gph(n)/T (n)1, being its slice. The functor V is
monadic because it is the forgetful functor from a category of monoids and admits a left adjoint G (which,
incidentally, is of a particularly simple form GP =

∐
n∈N P

⊗n thanks to Proposition 4.3). It is routine to show
that V has a rank. That the functor V ′ is monadic and has a rank can be deduced easily from [2]. 2

The condition of V being locally presentable and extensive is an axiomatic reason why Batanin and Leinster’s
approach works. Of course the category Set satisfies this condition, but in their work this fact is used only
implicitly, often in the form of concrete set-theoretic manipulation.

Definition 7.2 Let V be a locally presentable extensive category and n a natural number. A weak n-
dimensional V-category is an algebra of the initial T (n)-operad with contraction, where T (n) is the free

strict n-dimensional V-category monad on V-Gph(n).

We remark that when V(1,−) is not conservative, it might be more appropriate to replace (i) of Definition 6.2
by the family of morphisms 0 −→ X and X + X −→ X (codiagonal) where X ranges over a set of strong
generators of V (exists if V is locally presentable). We thank an anonymous reviewer for pointing this out.

Example 7.3 If we let V = Set and n = 2, then weak 2-categories (weak 2-dimensional Set-categories) are
equivalent to unbiased bicategories, which are a variant of bicategories equipped with for each natural number
m, an m-ary horizontal composition operation. See [15, Section 9.4] for details.

Example 7.4 If we let V = ω-Cpo and n = 2, then weak 2-dimensional ω-Cpo-categories are the unbiased
version of ω-Cpo-enriched bicategories as in [17].
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