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The Hilbert space formulation of quantum theory has remained difficult to interpret ever since it was
first described by von Neumann [19]. Over the years this has led to numerous attempts to understand
the quantum world from more basic, operational or formal principles. Most recently there has been a
great interest in ‘reconstructions’ of quantum theory as a theory of information [11, 4, 12, 21, 20, 14].
In these, quantum theory is singled out via operational axioms, referring to the likelihoods assigned to
experimental procedures, from amongst all such general probabilistic theories.

Typically, a central aspect of any such theory is the specification of certain allowed physical systems
and processes between them, which may be composed like pieces of apparatus in a laboratory. It is
well-known that such ‘process theories’ correspond precisely to monoidal categories [9], very general
mathematical structures which come with an intuitive graphical calculus allowing one to reason using
‘circuit diagrams’ [16]. In the usual approach to reconstructions, one then explicitly adds further proba-
bilistic structure using an assumption known as finite tomography, which enforces that the processes of
any given type generate a finite-dimensional real vector space.

However, there is a second tradition in the foundations literature characterised by avoiding these
tomography assumptions, instead studying physical theories such as quantum theory purely in terms of
their diagrammatic or categorical aspects, and collectively referred to as categorical quantum mechanics
(CQM) [2]. The categorical approach has proven highly successful in studying numerous aspects of
quantum foundations and computing [10, 7, 1, 6]. As such it is natural to ask whether one may recover
quantum theory itself in this framework, and a reconstruction theorem for CQM has long been desired [8].
In the full version1 of this article, we present such a category-theoretic reconstruction of quantum theory.

The Framework We work in the framework of dagger theories. Firstly, such a theory specifies a
symmetric monoidal category (C,⊗), in which morphisms may be represented by boxes with input and
output wires labelled by objects. In particular there is a trivial system I corresponding to the empty dia-
gram, and we call morphisms of the form I→ A, A→ I and I→ I states, effects and scalars, respectively.
Moreover we require that each object comes with a distinguished effect denoted A which we think of as
simply discarding a system, and suppose the presence of a dagger † operation allowing us to ‘reverse’
morphisms and so flip diagrams upside-down.

Along with this the theories we consider are compact allowing us to bend wires in our diagrams and
thus exchange inputs and outputs of morphisms, and come with zero morphisms denoted by 0. It will
be useful to mention some definitions; we call an object A non-trivial when idA 6= 0 and A is not an
isomorphism, a pair of states |0〉, |1〉 of the same object orthonormal when |0〉† ◦ |0〉 = idI = |1〉† ◦ |1〉
and |1〉† ◦ |0〉= 0, and a morphism f causal when it satisfies ◦ f = .
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2 A Categorical Reconstruction of Quantum Theory

The Principles

We say that a compact dagger theory C satisfies the operational principles when it contains a non-trivial
object and satisfies the following.

1. Purification. Any non-zero morphism f has a dilation g which is pure in the sense that it has only
trivial dilations:

f = g where == =⇒ ρg ghh for some causal ρ

Further we require that every non-zero object has a causal pure state which is causal, that pure mor-
phisms form a dagger monoidal subcategory containing all zero morphisms, and that purifications are
essentially unique [3] and form an environment structure [5] amounting to:
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for some pure unitary morphism U .

2. Kernels. Every morphism f has a dagger kernel, that is, an isometry ker( f ) satisfying

f

g 0= ⇐⇒ (∃h) g = h

ker( f )

(1)

Moreover for any such kernel k we define k⊥ := ker(k†) and require that any morphisms f ,g having
equal composites with each of ◦ k† and ◦ k⊥† in fact have ◦ f = ◦g.

3. Pure Exclusion. Every causal pure state ψ of a non-trivial object has f ◦ψ = 0 for some non-zero
morphism f .

4. Conditioning. For every pair of orthonormal states |0〉, |1〉 and every pair of states ρ,σ of some object
there is a morphism f with f ◦ |0〉= ρ and f ◦ |1〉= σ .

This last principle is very mild, and when the the others hold is in fact equivalent to the presence of a
basic operational feature, namely the ability to ‘coarse-grain’ processes using a well-behaved addition
operation f + g. In particular, this makes the collection of scalars R = C(I, I) a semi-ring. Finally, we
will call R bounded when no scalar r has that for all n ∈ N there is some rn with r = n+ rn; for example
the positive reals R+ are certainly bounded.

Operational motivation for the principles comes from their resemblance to those of the reconstruction
due to Chiribella, D’Ariano and Perinotti (CDP) [4], being essentially a reformulation of these for the
setting of dagger compact categories, under the following correspondence:

CDP Axioms Categorical Features
Coarse-graining Conditioning

Causality Discarding
Atomicity of composition

Environment structure
Purification

Perfect distinguishability Kernels +
Ideal compressions pure exclusion

Essential uniqueness
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Since our framework extends beyond probabilistic theories, our results will apply to not only quantum
theory, but a broader class of generalised quantum-like theories.
Examples. The dagger theory Quant has as objects finite-dimensional Hilbert spaces and as morphisms
completely positive linear maps f : B(H )→ B(K ), with discarding given by the trace. More generally,
for any commutative involutive semi-ring (S,†) let MatS be the category of S-valued matrices. Then
using Selinger’s CPM construction [15], we define a theory QuantS := CPM(MatS). Whenever S is a
field with suitable properties, QuantS satisfies our principles. In particular so do Quant 'QuantC and
the quantum theory QuantR on real Hilbert spaces [17, 13].

The Reconstruction

Our main result is then the following.
Theorem. Let C be a dagger theory satisfying the operational principles, with scalars R. Then there is
an embedding of theories QuantS ↪→ C for some commutative involutive ring S with R' {s† · s | s ∈ S}.
Moreover if R is bounded this is an equivalence of theories C'QuantS.

The relationship between R and S generalises that between R+ and C in the case of Quant, and
we can greatly strengthen this analogy under one extra assumption. Firstly, it in fact follows that R has
cancellative addition and so may be freely extended to a ring, denoted D(R). Let us then write D(R)[i] for
the involutive ring with elements a+b · i for a,b ∈D(R), where 1 =−i2 = i · i†, and a† = a for a ∈D(R).
Proposition. If R = C(I, I) is bounded and has square roots of all elements then the involutive ring S is
equivalent to either D(R) or D(R)[i].

Finally, specialising to the typical case where C is probabilistic, meaning that it comes with an
isomorphism of semi-rings C(I, I)' R+, we immediately obtain the following.
Corollary. Any probabilistic theory satisfying the above principles is equivalent to QuantR or QuantC.

These results are unlike previous reconstructions in that they are entirely category-theoretic, not
assuming any form of tomography or even any linear structure, and treat probabilistic theories only as
a special case. In particular avoiding the use of local tomography [13] has allowed us to recover both
standard quantum theory and that over real Hilbert spaces.

The Proof Our technique is based on a novel approach to describing superpositions in general process
theories due to the author in [18]. Previously, such as in [2], these have been modelled using biproducts
in the category Hilb of Hilbert spaces and linear maps. However, only the morphisms in its quotient
Hilb∼ after identifying global phases have a direct physical interpretation. To describe superpositions in
the latter category we introduce the new notion of a phased biproduct. In fact in [18] it is shown that
from any suitable category B possessing these one may construct a new category GP(B) with biproducts;
for example GP(Hilb∼)'Hilb. This provides a general ‘recipe’ for quantum reconstructions which lies
at the heart of our proof and we hope to be applicable to further reconstruction results in the future.

Future Work Our results are suggestive of a new approach to reconstructing physical theories purely
in terms of their process-theoretic properties, and there are many avenues for future research. Most
notably, it would now be desirable to avoid, or rather derive, the dagger operation, which lacks a clear in-
terpretation for general mixed processes. This would provide a reconstruction which is fully operational,
as well as categorical, and allow infinite-dimensional systems to be considered. Connections with other
quantum reconstructions also remain to be explored; notable are the recent probabilistic reconstructions
due to Coecke, Selby and Scandolo [14] and van de Wetering [20].
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