Full solution to the swimming / running optimization problem (Last example given in class on Wednesday, July 28).

Example: You are standing on the bank of a river that is 100 m wide, and see someone needing help 300 m up the opposite shore. You can swim at $3 \mathrm{~m} / \mathrm{s}$ and run at $5 \mathrm{~m} / \mathrm{s}$, and you want to get to the person as quickly as possible. To what point on the opposite shore should you swim, before running the rest of the way?

Solution:

(1)-(3) Let x be the distance up along the opposite shore where I get out of the river and start running. Let T be the total time, which is to be minimized.

(4) $T=$ swim time + run time. Recall that time $=\frac{\text { distance }}{\text { speed }}$. How far do I swim?

From the picture we see the swim distance is $\sqrt{x^{2}+100^{2}}$. Running distance is $300-x$. Dividing by the speeds for each distance, this gives

$$
T=\frac{\sqrt{x^{2}+100^{2}}}{3}+\frac{300-x}{5} .
$$

(5) The expression for T is already in terms of only one variable.
(6) $T^{\prime}=\frac{1}{3}\left(\frac{2 x}{2 \sqrt{x^{2}+100^{2}}}\right)-\frac{1}{5}=\frac{5 x-3 \sqrt{x^{2}+100^{2}}}{3 \sqrt{x^{2}+100^{2}}} . \quad T^{\prime}=0 \quad \Rightarrow \quad 5 x=3 \sqrt{x^{2}+100^{2}}$ $\Rightarrow \quad 25 x^{2}=9 x^{2}+9\left(100^{2}\right) \quad \Rightarrow \quad 16 x^{2}=9\left(100^{2}\right) \quad \Rightarrow \quad 4 x=3(100) \quad \Rightarrow \quad x=75$.
So $x=75$ is a critical number; $T^{\prime}(70)<0$ and $T^{\prime}(100)>0$ so T is decreasing until $x=75$ and increasing after, which means there is a relative minimum at $x=75$. Now, x can be any value in the closed interval $[0,300]$. So we must check to see if one of the endpoints 0 or 300 is the absolute minimum.

$$
T(0)=\frac{100}{3}+\frac{300}{5} \approx 93.3, \quad T(75) \approx 66.6, \quad T(300) \approx 105.4
$$

so the shortest time (absolute minimum of T) is 66.6 seconds, which occurs when $x=75$. Thus, I should swim to a point 75 m up the opposite shore and then run the rest of the way.

