
1

Quantitative Global Memory⋆

Sandra Alves1, Delia Kesner2,3, and Miguel Ramos4,⋆⋆

1 CRACS/INESC-TEC, DCC, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre s/n, 4169–007 Porto, Portugal

2 Université Paris Cité, CNRS, IRIF
3 Institut Universitaire de France

4 LIACC, DCC, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre s/n, 4169–007 Porto, Portugal

Abstract. We show that recent approaches to static analysis based on
quantitative typing systems can be extended to programming languages
with global state. More precisely, we define a call-by-value language
equipped with operations to access a global memory, together with a
semantic model based on a (tight) multi-type system that captures ex-
act measures of time and space related to evaluation of programs. We
show that the type system is quantitatively sound and complete with
respect to the operational semantics of the language.

1 Introduction

The aim of this paper is to extend quantitative techniques of static analysis based
on multi-types to programs with effects.

Effectful Programs. Programming languages produce different kinds of
effects (observable interactions with the environment), such as handling excep-
tions, read/write from a global memory outside its own scope, using a database
or a file, performing non-deterministic choices, or sampling from probabilistic
distributions. The degree to which these side effects are used depends on each
programming paradigm [24] (imperative programming makes use of them while
declarative programming does not). In general, avoiding the use of side effects
facilitates the formal verification of programs, thus allowing to (statically) ensure
their correctness. For example, the functional language Haskell eliminates side
effects by replacing them with monadic actions, a clean approach that continues
to attract growing attention. Indeed, rather than writing a function that returns
a raw type, an effectful function returns a raw type inside a useful wrapper – and
that wrapper is a monad [34]. This approach allows programming languages to

⋆Supported by: National Funds through the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia -, within project LA/P/0063/2020, and the
project and individual research grant 2021.04731.BD; Base Funding UIDB/00027/2020
of the Artificial Intelligence and Computer Science Laboratory – LIACC - funded
by national funds through the FCT/MCTES (PIDDAC); and Cost Action CA20111
EuroProofNet.

⋆⋆Corresponding author.

2

combine the qualities of both the imperative and declarative worlds: programs
produce effects, but these are encoded in such a way that formal verification can
be performed very conveniently.

Quantitative Properties. We address quantitative properties of programs
with effects using multi-types, which originate in the theory of intersection type
systems. They extend simple types with a new constructor ∩ in such a way
that a program t is typable with σ ∩ τ if t is typable with both types σ and
τ independently. Intersection types were first introduced as models capturing
computational properties of functional programming in a broader sense [14]. For
example, termination of different evaluation strategies can be characterized by
typability in some appropriate intersection type system: a program t is termi-
nating if and only if t is typable. Originally, intersection enjoys associativity,
commutativity, and in particular idempotency (i.e. σ ∩ σ = σ). By switching
to a non-idempotent intersection constructor, one naturally comes to represent
types by multisets, which is why they are called multi-types. Just like their
idempotent precursors, multi-types still allow for a characterization of several
operational properties of programs, but they also grant a substantial improve-
ment: they provide quantitative measures about these properties. For example,
it is still possible to prove that a program is terminating if and only if it is
typable, but now an upper bound or exact measure for the time needed for its
evaluation length can be derived from the typing derivation of the program. This
shift of perspective, from idempotent to non-idempotent types, goes beyond low-
ering the logical complexity of the proof: the quantitative information provided
by typing derivations in the non-idempotent setting unveils crucial quantitative
relations between typing (static) and reduction (dynamic) of programs.

Upper Bounds and Exact Split Measures. Multi-types are extensively
used to reason about programming languages from a quantitative point of view,
as pioneered by de Carvalho [12,13]. For example, they are able to provide upper
bounds, in the sense that the evaluation length of a program t plus the size of its
result (called normal form) can be bounded by the size of the type derivation of t.
A major drawback of this approach, however, is that the size of normal forms can
be exponentially bigger than the length of the evaluation reaching those normal
forms. This means that bounding the sum of these two natural numbers at the
same time is too rough, and not very relevant from a quantitative point of view.
Fortunately, it is possible to extract better measures from a multi-type system.
A crucial point to obtain exact measures, instead of upper bounds, is to consider
minimal type derivations, called tight derivations. Moreover, using appropriate
refined tight systems it is also possible to obtain independent measures (called
exact split measures) for length and for size. More precisely, the quantitative
typing systems1 are now equipped with constants and counters, together with
an appropriate notion of tightness, which encodes minimality of type derivations.
For any tight type derivation Φ of a program t with counters b and d, it is now
possible to show that t evaluates to a normal form of size d in exactly b steps.

1 In this paper, by quantitative types we mean non-idempotent intersection types.
Another meaning can be found in [6].

3

Therefore, the type system is not only sound, i.e. it is able to guess the number
of steps to normal form as well as the size of this normal form, but the opposite
direction providing completeness of the approach also holds.

Contribution. The focus of this paper is on effectful computations, such
as reading and writing on a global memory able to hold values in cells. Tak-
ing inspiration from the monadic approach adopted in [16], we design a tight
quantitative type system that provides exact split measures. More precisely, our
system is not only capable of discriminating between length of evaluation to
normal form and size of the normal form, but the measure corresponding to the
length of the evaluation is split into two different natural numbers: the first one
corresponds to the length of standard computation (β-reduction) and the second
one to the number of memory accesses. We show that the system is sound i.e.
for any tight type derivation Φ of t ending with counters (b,m, d), the term t is
normalisable by performing b evaluation steps and m memory accesses, yielding
a normal form having size d. The opposite direction, giving completeness of the
model, is also proved.

In order to gradually present the material, we first develop the technique for
a weak (open) call-by-value (CBV) calculus, which can be seen as a contribution
per se, and then we encapsulate these preliminary ideas in the general framework
of the language with global state.

Summary. Sec. 2 illustrates the technique on a weak (open) CBV calculus.
We then lift the technique to the λ-calculus with global state in Sec. 3 by follow-
ing the same methodology. More precisely, Sec. 3.1 introduces the λgs-calculus,
Sec. 3.2 defines a quantitative type system P. Soundness and completeness of P
w.r.t. λgs are proved in Sec. 3.3. We conclude and discuss related work in Sec. 4.
Due to space limitations we do not include proofs, but they are available in [5].

Preliminary General Notations. We start with some general notations.
Given a (one-step) reduction relation →R, ↠R denotes the reflexive-transitive
closure of →R. We write t ↠b u for a reduction sequence from t to u of length
b. A term t is said to be (1) in R-normal form (written t ̸→R) iff there is no
u such that t →R u, and (2) R-normalizing iff there is some R-normal form
u such that t ↠R u. The reduction relation R is normalizing iff every term is
R-normalizing.

2 Weak Open CBV

In this section we first introduce the technique of tight typing on a simple lan-
guage without effects, the weak open CBV. Sec. 2.1 defines the syntax and
operational semantics of the language, Sec. 2.2 presents the tight typing system
O and discusses soundness and completeness of O w.r.t. the CBV language.

2.1 Syntax and Operational Semantics

Weak open CBV is based on two principles: reduction is weak (not performed
inside abstractions), and terms are open (may contain free variables). Value,

4

terms and weak contexts are given by the following grammars, respectively:

v, w ::= x | λx.t t, u, p ::= v | tu W ::= □ | Wt | tW

We write Val for the set of all values. Symbol I is used to denote the identity
function λz.z.

The sets of free and bound variables of terms and the notion of α-conversion
are defined as usual. A term t is said to be closed if t does not contain any free
variable, and open otherwise. The size of a term t, denoted |t|, is given by:
|x| = |λx.t| = 0; and |tu| = 1 + |t| + |u|. Since our reduction relation is weak,
i.e., reduction does not occur in the body of abstractions, we assign size zero to
abstractions.

We now introduce the operational semantics of our language, which models
the core behavior of programming languages such as OCaml, where CBV eval-
uation is weak. The deterministic reduction relation (written →), is given
by the following rules:

(βv)
(λx.t)v → t{x\v}

t → t′
(appL)

tu → t′u

t ̸→ u → u′
(appR)

tu → tu′

Terms in →-normal form can be characterized by the following grammars:
no ::= Val | ne and ne ::= x no | no ne | ne no.

Proposition 1. Let t be a term. Then t ∈ no iff t ̸→.

In closed CBV [31] (only reducing closed terms), abstractions are the only
normal forms, but in open CBV, the following terms turn out to be also accept-
able normal forms: xy, x(λy.y(λz.z)) and (λx.x)(y(λz.z)).

2.2 A Quantitative Type System for the Weak Open CBV

The untyped λ-calculus can be interpreted as a typed calculus with a single type
D, where D = D ⇒ D [33]. Applying Girard’s [22] “boring” CBV translation of
intuitionistic logic into linear logic, we get D = !D ⊸ !D [1]. Type system O is
built having this equation in mind.

The set of types is given by the following grammar:

(Tight Constants) tt ::= v | a | n
(Value Types) σ ::= v | a | M | M ⇒ τ
(Multi-Types) M ::= [σi]i∈I where I is a finite set
(Types) τ ::= n | σ

Tight constants are minimal types assigned to terms reducing to normal
forms (v for persistent variables, a for abstractions or variables that are going to
be replaced by abstractions, and n for neutral terms). Given an arbitrary tight
constant tt0, we write tt0 to denote all the other tight constants in tt different
from tt0. Multi-types are multisets of value types. A (typing) environment,
written Γ,∆, is a function from variables to multi-types, assigning the empty

5

multi-type [] to all but a finite set of variables. The domain of Γ is dom(Γ) :=
{x | Γ (x) ̸= []}. The union of environments, written Γ + ∆, is defined by
(Γ + ∆)(x) = Γ (x) ⊔ ∆(x), where ⊔ denotes multiset union. An example is
(x : [σ1], y : [σ2]) + (x : [σ1], z : [σ2]) = (x : [σ1, σ1], y : [σ2], z : [σ2]). This
notion is extended to a finite union of environments, written +i∈IΓi (the empty
environment is obtained when I = ∅). We write Γ \\x for the environment
(Γ \\x)(x) = [] and (Γ \\x)(y) = Γ (y) if y ̸= x and we write Γ ;x : M for
Γ + (x : M), when x ̸∈ dom(Γ). Notice that Γ and Γ ;x : [] are the same
environment.

A judgement has the form Γ ⊢(b,s) t : τ , where b and s are two natural
numbers, representing, respectively, the number of β-steps needed to normalize
t, and the size of the normal form of t. The typing system O is defined by the
rules in Fig. 1. We write ▷Γ ⊢(b,s) t : τ if there is a (tree) type derivation of the
judgement Γ ⊢(b,s) t : τ using the rules of system O. The term t is O-typable
(we may omit the name O) iff there is an environment Γ , a type τ and counters
(b, s) such that ▷Γ ⊢(b,s) t : τ . We use letters Φ, Ψ, . . . to name type derivations,
by writing for example Φ ▷ Γ ⊢(b,s) t : τ .

(ax)
x : [σ] ⊢(0,0) x : σ

Γ ⊢(b,s) t : τ
(λ)

Γ \\x ⊢(b,s) λx.t : Γ (x) ⇒ τ

Γ ⊢(b,s) t : M ⇒ τ ∆ ⊢(b′,s′) u : M
(@)

Γ +∆ ⊢(1+b+b′,s+s′) tu : τ

(Γi ⊢(bi,si) v : σi)i∈I
(m)

+i∈IΓi ⊢(+i∈Ibi,+i∈Isi) v : [σi]i∈I

(λp)
⊢(0,0) λx.t : a

Γ ⊢(b,s) t : a ∆ ⊢(b′,s′) u : tt
(@p1)

Γ +∆ ⊢(b+b′,1+s+s′) tu : n

Γ ⊢(b,s) t : tt ∆ ⊢(b′,s′) u : n
(@p2)

Γ +∆ ⊢(b+b′,1+s+s′) tu : n

Fig. 1. Typing Rules of System O

Notice that in rule (ax) of Fig. 1 variables can only be assigned value types σ
(in particular no type n): this is because they can only be substituted by values.
Due to this fact, multi-types only contain value types. Regarding typing rules
(ax), (λ), (@), and (m), they are the usual rules for non-idempotent intersection
types [10]. Rules (λp), (@p1), and (@p2) are used to type persistent symbols, i.e.
symbols that are not going to be consumed during evaluation. More specifically,
rule (λp) types abstractions (with type a) that are normal regardless of the
typability of its body. Rule (@p1) types applications that will never reduce to an
abstraction on the left (thus of any tight constant that is not a, i.e. a), while any
term reducing to a normal form is allowed on the right (of tight constant tt).
Rule (@p2) also types applications, but when values will never be obtained on

6

the right (only neutral terms of type n). Rule (ax) is also used to type persistent
variables, in particular when σ ∈ {v, a}.

A type τ is tight if τ ∈ tt. We write tight(M), if every σ ∈ M is tight. A
type environment Γ is tight if it assigns tight multi-types to all variables. A
type derivation Φ ▷ Γ ⊢(b,s) t : τ is tight if Γ and τ are both tight.

Example 1. Let t = (λx.(xx)(yy))(λz.z). Let Φ be the following typing deriva-
tion:

(ax)
x : [[a] ⇒ a] ⊢(0,0) x : [a] ⇒ a

(ax)
x : [a] ⊢(0,0) x : a

(m)
x : [a] ⊢(0,0) x : [a]

(@)
x : [[a] ⇒ a, a] ⊢(1,0) xx : a

And Ψ be the following typing derivation:

Φ

(ax)
y : [v] ⊢(0,0) y : v

(ax)
y : [v] ⊢(0,0) y : v

(@p1)
y : [v, v] ⊢(0,1) yy : n

(@p2)
x : [[a] ⇒ a, a], y : [v, v] ⊢(1,1) (xx)(yy) : n

(λ)
y : [v, v] ⊢(1,2) λx.(xx)(yy) : [[a] ⇒ a, a] ⇒ n

Then, we can build the following tight typing derivation Φt for t:

Ψ

(λp)
z : [a] ⊢(0,0) z : a

(λ)
⊢(0,0) λz.z : [a] ⇒ a

(λp)
⊢(0,0) λz.z : a

(m)
⊢(0,0) λz.z : [[a] ⇒ a, a]

(@)
y : [v, v] ⊢(2,2) (λx.(xx)(yy))(λz.z) : n

The type system O can be shown to be sound and complete w.r.t. the op-
erational semantics → introduced in Sec. 2.1. Soundness means that not only
a tightly typable term t is terminating, but also that the tight type derivation
of t gives exact and split measures concerning the reduction sequence from t to
normal form. More precisely, if Φ▷Γ ⊢(b,s) t : τ is tight, then there exists u ∈ no

such that t ↠b u with |u| = s. Dually for completeness. Because we are going to
show this kind of properties for the more sophisticated language with global state
(Sec. 3.3), we do not give here technical details of them. However, we highlight
these properties on our previous example. Consider again term t in Ex. 1 and
its tight derivation Φt with counters (b, s) = (2, 2). Counter b is different from 0,
so t /∈ no, but t normalizes in two βv-steps (b = 2) to a normal form having size
s = 2. Indeed, (λx.(xx)(yy))(λz.z) →βv

((λz.z)(λz.z))(yy) →βv
(λz.z)(yy) and

|(λz.z)(yy)| = 2.

3 A λ-Calculus with Global State

Based on the preliminary presentation of Sec. 2, we now introduce a λ-calculus
with global state following a CBV strategy. Sec. 3.1 defines the syntax and

7

operational semantics of the λ-calculus with global state. Sec. 3.2 presents the
tight typing system P, and Sec. 3.3 shows soundness and completeness.

3.1 Syntax and Operational Semantics

Let l be a location drawn from some set of location names. Values, terms,
states and configurations of λgs are defined respectively as follows:

v, w ::= x | λx.t t, u, p ::= v | vt | getl(λx.t) | setl(v, t)
s, q ::= ϵ | updl(v, s) c ::= (t, s)

Notice that applications are restricted to the form vt. This, combined with
the use of a deterministic reduction strategy based on weak contexts, ensures
that composition of effects is well behaved. Indeed, this kind of restriction is
usual in computational calculi [30,32,16,19].

Intuitively, operation getl(λx.t) interacts with the global state by retrieving
the value stored in location l and binding it to variable x of the continuation t.
And operation setl(v, t) interacts with the state by storing value v in location
l and (possibly) overwriting whatever was previously stored there, and then
returns t.

The size function is extended to states and configurations: |s| := 0, and
|(t, s)| := |t|. The update constructor is commutative in the following sense:

updl(v, updl′(w, s)) ≡c updl′(w, updl(v, s)) if l ̸= l′

We denote by ≡ the equivalence relation generated by the axiom ≡c. We write
l ∈ dom(s), if s ≡ updl(v, q), for some value v and state q. Moreover, these v
and q are unique. For example, if l1 ̸= l2, then s1 = updl1(v1, updl2(v2, q)) ≡
updl2(v2, updl1(v1, q)) = s2, but updl1(v1, updl1(v2, s)) ̸≡ updl1(v2, updl1(v1, s)).
As a consequence, whenever we want to access the content of a particular location
in a state, we can simply assume that the location is at the top of the state.

The operational semantics of the λgs-calculus is given on configurations. The
deterministic reduction relation → is defined to be the union of the rules
→r (r ∈ {βv, g, s}) below. We write (t, s) ↠(b,m) (u, q) if (t, s) reduces to (u, q)
in b βv-steps and m g/s-steps.

(βv)
((λx.t)v, s) →βv

(t{x\v}, s)
s ≡ updl(v, q)

(get)
(getl(λx.t), s) →g (t{x\v}, s)

(t, s) →r (u, q) r ∈ {βv, g, s}
(appR)

(vt, s) →r (vu, q)
(set)

(setl(v, t), s) →s (t, updl(v, s))

Note that in reduction rule (appR), the r appearing as the name of the
reduction rule in the premise is the same as the one appearing in the reduction
rule in the conclusion.

8

Example 2. Consider the configuration c0 = ((λx.getl(λy.yx))(setl(I, z)), ϵ).
Then we can reach an irreducible configuration as follows:

((λx.getl(λy.yx))(setl(I, z)), ϵ) →g ((λx.getl(λy.yx))z, updl(I, ϵ))
→βv (getl(λy.yz), updl(I, ϵ)) →g (Iz, updl(I, ϵ)) →βv (z, updl(I, ϵ))

A configuration (t, s) is said to be blocked if either t = getl(λx.u) and l ̸∈
dom(s); or t = vu and (u, s) is blocked. A configuration is unblocked if it is not
blocked. As an example, (getl(λx.x), ϵ) is obviously blocked. As a consequence,
the following configuration reduces to a blocked one: ((λy.y getl(λx.x))z, ϵ) →
(z getl(λx.x), ϵ). This suggests a notion of final configuration: (t, s) is final
if either (t, s) is blocked; or t ∈ no, where neutral and normal terms are given
respectively by the grammars ne ::= x no | (λx.t) ne and no ::= Val | ne.

Proposition 2. Let (t, s) be a configuration. Then (t, s) is final iff (t, s) ̸→.

Notice that when (t, s) is an unblocked final configuration, then t ∈ no. These
are the configurations captured by the typing system P in Sec. 3.2. Consider the
final configurations c0 = (getl(λx.x), ϵ), c1 = (z getl(λx.x), ϵ), c2 = (y, s) and
c3 = ((λx.x)(yz), s). Then c0 and c1 are blocked, while c2 and c3 are unblocked.

3.2 A Quantitative Type System for the λgs-calculus

We now introduce the quantitative type system P for λgs. To deal with global
states, we extend the language of types with the notions of state, configuration
and monadic types. To do this, we translate linear arrow types according to
Moggi’s [30] CBV interpretation of reflexive objects in the category of λc-models:
D = !D ⊸ !D becomes D = !D ⊸ T (!D), where T is a monad. Type system
P was built having this equation in mind, similarly to what was done in [21].

The set of types is given by the following grammar:

(Tight Constants) tt ::= v | a | n
(Value Types) σ ::= v | a | M | M ⇒ δ
(Multi-types) M ::= [σi]i∈I where I is a finite set
(Liftable Types) µ ::= v | a | M
(Types) τ ::= n | σ
(State Types) S ::= {(li : Mi)}i∈I where all li are distinct
(Configuration Types) κ ::= τ × S
(Monadic Types) δ ::= S ≫ κ

In system P, the minimal types to be assigned to normal forms distinguish
between variables (v), abstractions (a), and neutral terms (n). A multi-type is
a multi-set of value types. A state type is a partial function mapping labels to
(possibly empty) multi-types. A configuration type is a product type, where
the first component is a type and the second is a state type. A monadic type
associates a state type to a configuration type. We use symbol T to denote a
value type or a monadic type. Typing environments and operations over types
are defined in the same way as in system O.

9

The domain of a state type S is the set of all its labels, i.e. dom(S) := {l |
(l : M) ∈ S}. Also, when l ∈ dom(S), i.e. (l : M) ∈ S, we write S(l) to denote
M. The union of state types is defined as follows:

(S ⋓ S ′)(l) = if (l : M) ∈ S then (if (l : M′) ∈ S ′ then M⊔M′ else M)

else (if (l : M′) ∈ S ′ then M′ else undefined)

Example 3. Let S = {(l1 : [σ1, σ2]), (l2 : [σ1])} ⋓ {(l2 : [σ1, σ2]), (l3 : [σ3])}.
Then, S(l1) = [σ1, σ2], S(l2) = [σ1, σ1, σ2], S(l3) = [σ3], and S(l) = undefined,
assuming l ̸= li, for i ∈ {1, 2, 3}.

Notice that dom(S ⋓ S ′) = dom(S) ∪ dom(S ′). Also {(l : [])} ⋓ S ̸= S, if
l ̸∈ dom(S), while x : [];Γ = Γ . Indeed, typing environments are total func-
tions, where variables mapped to [] do not occur in typed programs. In contrast,
states are partial functions, where labels mapped to [] correspond to positions
in memory that are accessed (by get or set), but ignored/discarded by the typed
program. We use {(l : M)};S for {(l : M)} ⋓ S if l ̸∈ dom(S).

A term type judgement (resp. state type judgment and configuration
type judgment) has the form Γ ⊢(b,m,d) t : T (resp. Γ ⊢(b,m,d) s : S and
Γ ⊢(b,m,d) (t, s) : κ) where b,m, d are three natural numbers, the first and
second representing, respectively, the number of β-steps and g/s-steps needed
to normalize t, and the third representing the size of the normal form of t. The
typing system P is defined by the rules in Fig. 2. We write ▷J if there is a
type derivation of the judgement J using the rules of system P. The term t
(resp. state s, configuration (t, s)) is P-typable iff there is an environment Γ ,
a type T (resp. S, κ) and counters (b,m, d) such that ▷Γ ⊢(b,m,d) t : T (resp.
▷Γ ⊢(b,m,d) s : S, ▷Γ ⊢(b,m,d) (t, s) : κ). As before, we use letters Φ, Ψ, . . . to
name type derivations.

Rules (ax), (λ), (m), and (@) are essentially the same as in Fig. 1, but with
types lifted to monadic types (i.e. decorated with state types). Rule (@) assumes
a value type associated to a value v on the left premise and a monadic type
associated to a term t on the right premise. To type the application vt, it is
necessary to match both the value type M inside the type of t with the input
value type of v, and the output state type S ′ of t with the input state type of v.
Rule (↑) is used to lift multi-types or tight constants v and a (the type of values)
to monadic types. Rules (get) and (set) are used to type operations over the
state. Rule (emp) types empty states, rule (upd) types states, and (conf) types
configurations.

A type τ is tight, if τ ∈ tt. We write tight(M) if every σ ∈ M is tight. A
state type S is tight if tight(S(l)) holds for all l ∈ dom(S). A configuration
type τ × S is tight, if τ and S are tight. A monadic type S ≫ κ is tight, if κ
is tight. The notion of tightness of type derivations is defined in the same way
as in system O, i.e. a type derivation Φ is tight if the type environment and
the type of the conclusion of Φ are tight.

10

Rules for Terms

(ax)
x : [σ] ⊢(0,0,0) x : σ

Γ ⊢(b,m,d) v : µ
(↑)

Γ ⊢(b,m,d) v : S ≫ (µ× S)

Γ ⊢(b,m,d) t : S ≫ κ
(λ)

Γ \\x ⊢(b,m,d) λx.t : Γ (x) ⇒ (S ≫ κ)

(Γi ⊢(bi,mi,di) v : σi)i∈I
(m)

+i∈IΓi ⊢(+i∈Ibi,+i∈Imi,+i∈Idi) v : [σi]i∈I

Γ ⊢(b,m,d) v : M ⇒ (S ′ ≫ κ) ∆ ⊢(b′,m′,d′) t : S ≫ (M×S ′)
(@)

Γ +∆ ⊢(1+b+b′,m+m′,d+d′) vt : S ≫ κ

Γ ⊢(b,m,d) t : S ≫ κ
(get)

Γ \\x ⊢(b,1+m,d) getl(λx.t) : {(l : Γ (x))} ⋓ S ≫ κ

Γ ⊢(b,m,d) v : M ∆ ⊢(b′,m′,d′) t : {(l : M)};S ≫ κ
(set)

Γ +∆ ⊢(b+b′,1+m+m′,d+d′) setl(v, t) : S ≫ κ

(λp)
⊢(0,0,0) λx.t : a

Γ ⊢(b,m,d) t : S ≫ (tt× S ′)
(@p1)

(x : [v]) + Γ ⊢(b,m,1+d) xt : S ≫ (n× S ′)

Γ ⊢(b,m,d) u : S ≫ (n× S ′)
(@p2)

Γ ⊢(b,m,1+d) (λx.t)u : S ≫ (n× S ′)

Rules for States

(emp)
⊢(0,0,0) ϵ : ∅

Γ ⊢(b,m,d) v : M ∆ ⊢(b′,m′,d′) s : S
(upd)

Γ +∆ ⊢(b+b′,m+m′,d+d′) updl(v, s) : {(l : M)};S

Rule for Configurations

Γ ⊢(b,m,d) t : S ≫ κ ∆ ⊢(b′,m′,d′) s : S
(conf)

Γ +∆ ⊢(b+b′,m+m′,d+d′) (t, s) : κ

Fig. 2. Typing Rules for λgs.

Example 4. Consider configuration c0 from Ex. 2. Let M = [[v] ⇒ ∅ ≫ (v×∅)],
and Φ be the following typing derivation:

(ax)
y : M ⊢(0,0,0) y : [v] ⇒ ∅ ≫ (v× ∅)

(ax)
x : [v] ⊢(0,0,0) x : v

(m)
x : [v] ⊢(0,0,0) x : [v]

(↑)
x : [v] ⊢(0,0,0) x : ∅ ≫ ([v]× ∅)

(@)
y : M, x : [v] ⊢(1,0,0) yx : ∅ ≫ (v× ∅)

(get)
x : [v] ⊢(1,1,0) getl(λy.yx) : {(l : M)} ≫ (v× ∅)

(λ)
⊢(1,1,0) λx.getl(λy.yx) : [v] ⇒ ({(l : M)} ≫ (v× ∅))

11

And Φ′ be the following typing derivation:

(ax)
x : [v] ⊢(0,0,0) x : v

(↑)
x : [v] ⊢(0,0,0) x : ∅ ≫ (v× ∅)

(λ)
⊢(0,0,0) I : [v] ⇒ ∅ ≫ (v× ∅)

(m)
⊢(0,0,0) I : M

(ax)
z : [v] ⊢(0,0,0) z : v

(m)
z : [v] ⊢(0,0,0) z : [v]

(↑)
z : [v] ⊢(0,0,0) z : {(l : M)} ≫ ([v]× {(l : M)})

(set)
z : [v] ⊢(0,1,0) setl(I, z) : ∅ ≫ ([v]× {(l : M)})

Then we can build the following tight typing derivation Φc for c:

Φ Φ′
(@)

z : [v] ⊢(2,2,0) (λx.getl(λy.yx))(setl(I, z)) : ∅ ≫ (v× ∅)
(emp)

⊢(0,0,0) ϵ : ∅
(conf)

z : [v] ⊢(2,2,0) ((λx.getl(λy.yx))(setl(I, z)), ϵ) : v× ∅

We will come back to this example at the end of Sec. 3.3.

3.3 Soundness and Completeness

In this section, we show the main properties of the type system P with respect
to the operational semantics of the λ-calculus with global state introduced in
Sec. 3.1. The properties of type system P are similar to the ones for O, but now
with respect to configurations instead of terms. Soundness does not only state
that a (tightly) typable configuration (t, s) is terminating, but also gives exact
(and split) measures concerning the reduction sequence from (t, s) to a final
form. Completeness guarantees that a terminating configuration (t, s) is tightly
typable, where the measures of the associated reduction sequence of (t, s) to final
form are reflected in the counters of the resulting type derivation of (t, s). This
is the first work providing a model for a language with global memory being able
to count the number of memory accesses.

We start by noting that type system P does not type blocked configurations,
which is exactly the notion that we want to capture.

Proposition 3. If Φ ▷ Γ ⊢(b,m,d) (t, s) : κ, then (t, s) is unblocked.

We also show that counters capture the notion of normal form correctly, both
for terms and states.

Lemma 1.

1. Let Φ ▷ Γ ⊢(0,0,d) t : δ be tight. Then, (1) t ∈ no and (2) d = |t|.
2. Let Φ ▷ ∆ ⊢(0,0,d) s : S be tight. Then d = 0.

In fact, we can show the following stronger property with respect to the
counters for the number of βv- and g/s-steps.

Lemma 2. Let Φ ▷ Γ ⊢(b,m,d) t : δ be tight. Then, b = m = 0 iff t ∈ no.

12

The following property is essential for tight type systems [2], and it shows
that tightness of types spreads throughout type derivations of neutral terms,
just as long as the environments are tight.

Lemma 3 (Tight Spreading). Let Φ ▷Γ ⊢(b,m,d) t : S ≫ (τ ×S ′), such that
Γ is tight. If t ∈ ne, then τ ∈ tt.

The two following properties ensure tight typability of final configurations.
For that we need to be able to tightly type any state, as well as any normal
form. In fact, normal forms do not depend on a particular state since they are
irreducible, so we can type them with any state type.

Lemma 4 (Typability of States and Normal Forms).

1. Let s be a state. Then, there exists Φ ▷ ⊢(0,0,0) s : S tight.
2. Let t ∈ no. Then for any tight S there exists Φ ▷ Γ ⊢(0,0,d) t : S ≫ (tt× S)

tight s.t. d = |t|.

Finally, we state the usual basic properties.

Lemma 5 (Substitution and Anti-Substitution).

1. (Substitution) If Φt ▷ Γt;x : M ⊢(bt,mt,dt) t : δ and Φv ▷ Γv ⊢(bv,mv,dv) v :
M, then Φt{x\v} ▷ Γt + Γv ⊢(bt+bv,mt+mv,dt+dv) t{x\v} : δ.

2. (Anti-Substitution) If Φt{x\v} ▷Γt{x\v} ⊢(b,m,d) t{x\v} : δ, then Φt ▷Γt;x :

M ⊢(bt,mt,dt) t : δ and Φv ▷Γv ⊢(bv,mv,dv) v : M, such that Γt{x\v} = Γt+Γv,
b = bt + bv, m = mt +mv, and d = dt + dv.

Lemma 6 (Split Exact Subject Reduction and Expansion).

1. (Subject Reduction) Let (t, s) →r (u, q). If Φ ▷ Γ ⊢(b,m,d) (t, s) : κ is
tight, then Φ′ ▷ Γ ⊢(b′,m′,d) (u, q) : κ, where r = β implies b′ = b − 1 and
m′ = m, while r ∈ {g, s} implies b′ = b and m′ = m− 1.

2. (Subject Expansion) Let (t, s) →r (u, q). If Φ′ ▷ Γ ⊢(b′,m′,d) (u, q) : κ
is tight, then Φ ▷ Γ ⊢(b,m,d) (t, s) : κ, where r = β implies b′ = b − 1 and
m′ = m, while r ∈ {g, s} implies b′ = b and m′ = m− 1.

Soundness (resp. completeness) is based on exact subject reduction (resp.
expansion), in turn based on the previous substitution (resp. anti-substitution)
lemma.

Theorem 1 (Quantitative Soundness and Completeness).

1. (Soundness) If Φ▷Γ ⊢(b,m,d) (t, s) : κ tight, then there exists (u, q) such that
u ∈ no and (t, s) ↠(b,m) (u, q) with b β-steps, m g/s-steps, and |(u, q)| = d.

2. (Completeness) If (t, s) ↠(b,m,d) (u, q) and u ∈ no, then there exists Φ ▷
Γ ⊢(b,m,|(u,q)|) (t, s) : κ tight.

Example 5. Consider again configuration c0 from Ex. 2 and its associated tight
derivation Φc0 . The first two counters of Φc are different from 0: this means that
c is not a final configuration, but normalizes in two βv-step (b = 2) and two g/s-
steps (m = 2), to a final configuration having size d = 0 = |z| = |(z, updl(I, ϵ))|.

13

4 Conclusion and Related Work

This paper provides a foundational step into the development of quantitative
models for programming languages with effects. We focus on a simple language
with global memory access capabilities. Due to the inherent lack of confluence in
such framework we fix a particular evaluation strategy following a (weak) CBV
approach. We provide a type system for our language that is able to (both)
extract and discriminate between (exact) measures for the length of evaluation,
number of memory accesses and size of normal forms. This study provides a
valuable insight into time and space analysis of languages with global memory,
with respect to length of evaluation and the size of normal forms, respectively.

In future work we would like to explore effectful computations involving
global memory in a more general framework being able to capture different
models of computation, such as the CBPV [28] or the bang calculus [9]. Further-
more, we would like to apply our quantitative techniques to other effects that
can be found in programming languages, such as non-termination, exceptions,
non-determinism, and I/O.

Related Work. Several papers proposed quantitative approaches for dif-
ferent notions of CBV (without effects). But none of them exploits the idea of
exact and split tight typing. Indeed, the first non-idempotent intersection type
system for Plotkin’s CBV is [18], where reduction is allowed under abstractions,
and terms are considered to be closed. This work was further extended to [11],
where commutation rules are added to the calculus. None of these contributions
extracts quantitative bounds from the type derivations. A calculus for open CBV
is proposed in [3], where fireball –normal forms– can be either erased or dupli-
cated. Quantitative results are obtained, but no split measures. Other similar
approaches appear in [23]. A logical characterization of CBV solvability is given
in [4], the resulting non-idempotent system gives quantitative information of the
solvable associated reduction relation. A similar notion of solvability for CBV
for generalized applications was studied in [26], together with a logical charac-
terization provided by a quantitative system. Other non-idempotent systems for
CBV were proposed [29,25], but they are defective in the sense that they do not
enjoy subject reduction and expansion. Split measures for (strong) open CBV
are developed in [27].

In [17], a system with universally quantified intersection and reference types
is introduced for a language belonging to the ML-family. However, intersections
are idempotent and only (qualitative) soundness is proved.

More recently, there has been a lot of work involving probabilistic versions of
the lambda calculus. In [20], extensions of the lambda calculus with a probabilis-
tic choice operator are introduced. However, no quantitative results are provided.
In [8], monadic intersection types are used to obtain a (non-exact) quantitative
model for a probabilistic calculus identical to the one in [20].

Concerning (exact) quantitative models for programming languages with
global state, the state of the art is still underexplored. Some sound but not com-
plete approaches are given in [7,15], and quantitative results are not provided.
Our work is inspired by a recent idempotent (thus only qualitative and not quan-

14

titative) model for CBV with global memory proposed by [16]. This work was
further extended in [21] to a more generic framework of algebraic effectful com-
putation, still the model does not provide any quantitative information about
the evaluation of programs and the size of their results.

References

1. Accattoli, B.: Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci.
606, 2–24 (2015). https://doi.org/10.1016/j.tcs.2015.08.006

2. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds,
fully developed. J. Funct. Program. 30(e14), 1–101 (2020). https://doi.org/10.
1017/S095679682000012X

3. Accattoli, B., Guerrieri, G.: Types of fireballs. In: 16th Asian Symposium Pro-
gramming Languages and Systems, (APLAS), 2018, Wellington, New Zealand.
Lecture Notes in Computer Science, vol. 11275, pp. 45–66. Springer (2018).
https://doi.org/10.1007/978-3-030-02768-1_3

4. Accattoli, B., Guerrieri, G.: The theory of call-by-value solvability. Proc. ACM
Program. Lang. 6(ICFP), 855–885 (2022). https://doi.org/10.1145/3547652

5. Alves, S., Kesner, D., Ramos, M.: Quantitative global memory (2023), https:

//arxiv.org/abs/2303.08940

6. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A., Grädel,
E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, (LICS), 2018, Oxford, UK. pp. 56–65. ACM (2018). https:
//doi.org/10.1145/3209108.3209189

7. Benton, N., Kennedy, A., Beringer, L., Hofmann, M.: Relational semantics for
effect-based program transformations: higher-order store. In: Porto, A., López-
Fraguas, F.J. (eds.) 11th International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming, (PPDP), 2009, Coimbra, Por-
tugal. pp. 301–312. ACM (2009). https://doi.org/10.1145/1599410.1599447,
https://doi.org/10.1145/1599410.1599447

8. Breuvart, F., Lago, U.D.: On intersection types and probabilistic lambda calculi. In:
Sabel, D., Thiemann, P. (eds.) Proceedings of the 20th International Symposium on
Principles and Practice of Declarative Programming, (PPDP), 2018, Frankfurt am
Main, Germany. pp. 8:1–8:13. ACM (2018). https://doi.org/10.1145/3236950.
3236968

9. Bucciarelli, A., Kesner, D., Ŕıos, A., Viso, A.: The bang calculus revisited. In: Func-
tional and Logic Programming, 15th International Symposium, (FLOPS), 2020,
Akita, Japan, Proceedings. Lecture Notes in Computer Science, vol. 12073, pp.
13–32. Springer (2020). https://doi.org/10.1007/978-3-030-59025-3_2

10. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for
the lambda-calculus. Log. J. (IGPL) 25(4), 431–464 (2017). https://doi.org/
10.1093/jigpal/jzx018

11. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: 17th International Conference on Foundations of Software Science
and Computation Structures, (FOSSACS), 2014, Grenoble, France. Lecture Notes
in Computer Science, vol. 8412, pp. 103–118. Springer (2014). https://doi.org/
10.1007/978-3-642-54830-7_7

12. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. These de
doctorat, Université Aix-Marseille II (2007)

https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1145/3547652
https://doi.org/10.1145/3547652
https://arxiv.org/abs/2303.08940
https://arxiv.org/abs/2303.08940
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7

15

13. de Carvalho, D.: Execution time of λ-terms via denotational semantics and in-
tersection types. Math. Struct. Comput. Sci. 28(7), 1169–1203 (2018). https:

//doi.org/10.1017/S0960129516000396
14. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for lambda-terms.

Archiv für Math. Logik 19, 139–156 (1978)
15. Davies, R., Pfenning, F.: Intersection types and computational effects. In: Pro-

ceedings of the Fifth ACM SIGPLAN International Conference on Functional Pro-
gramming, (ICFP), 2000, Montreal, Canada. pp. 198–208. ACM (2000). https:
//doi.org/10.1145/351240.351259

16. de’Liguoro, U., Treglia, R.: Intersection types for a λ-calculus with global store. In:
Veltri, N., Benton, N., Ghilezan, S. (eds.) 23rd International Symposium on Prin-
ciples and Practice of Declarative Programming, (PPDP), 2021, Tallinn, Estonia.
pp. 5:1–5:11. ACM (2021). https://doi.org/10.1145/3479394.3479400

17. Dezani-Ciancaglini, M., Giannini, P., Rocca, S.R.D.: Intersection, universally quan-
tified, and reference types. In: 18th Annual Conference of the EACSL on Computer
Science Logic, 23rd international Workshop, (CSL), 2009, Coimbra, Portugal. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5771, pp. 209–224. Springer
(2009). https://doi.org/10.1007/978-3-642-04027-6_17

18. Ehrhard, T.: Collapsing non-idempotent intersection types. In: 26th International
Workshop/21st Annual Conference of the EACSL on Computer Science Logic,
(CSL), 2012, Fontainebleau, France. LIPIcs, vol. 16, pp. 259–273. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2012). https://doi.org/10.4230/LIPIcs.CSL.
2012.259

19. Faggian, C., Guerrieri, G., de’Liguoro, U., Treglia, R.: On reduction and normaliza-
tion in the computational core. Math. Struct. Comput. Sci. 32(7), 934–981 (2022).
https://doi.org/10.1017/S0960129522000433

20. Faggian, C., Rocca, S.R.D.: Lambda calculus and probabilistic computation. In:
34th Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS), 2019,
Vancouver, BC, Canada. pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.
2019.8785699

21. Gavazzo, F., Vanoni, G., Treglia, R.: On monadic intersection types (2023), draft
22. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/

10.1016/0304-3975(87)90045-4
23. Guerrieri, G.: Towards a semantic measure of the execution time in call-by-value

lambda-calculus. In: 12th Workshop on Developments in Computational Models
and Ninth Workshop on Intersection Types and Related Systems, (DCM/ITRS),
2018, Oxford, UK. EPTCS, vol. 293, pp. 57–72 (2018). https://doi.org/10.4204/
EPTCS.293.5

24. Jones, S.L.P., Wadler, P.: Imperative functional programming. In: Conference
Record of the Twentieth Annual (ACM) (SIGPLAN-SIGACT) Symposium on
Principles of Programming Languages, (POPL), 1993, Charleston, South Carolina,
USA. pp. 71–84. ACM Press (1993). https://doi.org/10.1145/158511.158524

25. Kerinec, A., Manzonetto, G., Rocca, S.R.D.: Call-by-value, again! In: 6th In-
ternational Conference on Formal Structures for Computation and Deduction,
(FSCD), 2021, Buenos Aires, Argentina (Virtual Conference). LIPIcs, vol. 195,
pp. 7:1–7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https:
//doi.org/10.4230/LIPIcs.FSCD.2021.7

26. Kesner, D., Peyrot, L.: Solvability for generalized applications. In: 7th International
Conference on Formal Structures for Computation and Deduction, (FSCD), 2022,
Haifa, Israel. LIPIcs, vol. 228, pp. 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022). https://doi.org/10.4230/LIPIcs.FSCD.2022.18

https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/3479394.3479400
https://doi.org/10.1145/3479394.3479400
https://doi.org/10.1007/978-3-642-04027-6_17
https://doi.org/10.1007/978-3-642-04027-6_17
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1017/S0960129522000433
https://doi.org/10.1017/S0960129522000433
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2022.18
https://doi.org/10.4230/LIPIcs.FSCD.2022.18

16

27. Kesner, D., Viso, A.: Encoding tight typing in a unified framework. In: 30th EACSL
Annual Conference on Computer Science Logic, (CSL), 2022, Göttingen, Germany
(Virtual Conference). LIPIcs, vol. 216, pp. 27:1–27:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.CSL.2022.27

28. Levy, P.B.: Call-by-push-value: A subsuming paradigm. In: Typed Lambda Calculi
and Applications, 4th International Conference, (TLCA’99), 1999, L’Aquila, Italy,
Proceedings. Lecture Notes in Computer Science, vol. 1581, pp. 228–242. Springer
(1999). https://doi.org/10.1007/3-540-48959-2_17

29. Manzonetto, G., Pagani, M., Rocca, S.R.D.: New semantical insights into call-
by-value λ-calculus. Fundamenta Informaticae 170(1-3), 241–265 (2019). https:
//doi.org/10.3233/fi-2019-1862

30. Moggi, E.: Computational lambda-calculus and monads. In: 4th Annual Sym-
posium on Logic in Computer Science, (LICS), 1989, Pacific Grove, California,
USA. pp. 14–23. IEEE Computer Society (1989). https://doi.org/10.1109/

LICS.1989.39155

31. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci. 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)

90017-1

32. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997). https://doi.org/10.1145/267959.269968

33. Treglia, R.: The computational core: reduction theory and intersection type disci-
pline. Phd thesis, Università di Torino (2022)

34. Wadler, P.: Monads for functional programming. In: 1st International Spring School
on Advanced Functional Programming Techniques on Advanced Functional Pro-
gramming, (AFP), 1995, B̊astad, Sweden, Tutorial Text. Lecture Notes in Com-
puter Science, vol. 925, pp. 24–52. Springer (1995). https://doi.org/10.1007/
3-540-59451-5_2

https://doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.4230/LIPIcs.CSL.2022.27
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.3233/fi-2019-1862
https://doi.org/10.3233/fi-2019-1862
https://doi.org/10.3233/fi-2019-1862
https://doi.org/10.3233/fi-2019-1862
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/267959.269968
https://doi.org/10.1145/267959.269968
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2

	Introduction
	Weak Open CBV
	Syntax and Operational Semantics
	A Quantitative Type System for the Weak Open CBV

	A Lambda-Calculus with Global State
	Syntax and Operational Semantics
	A Quantitative Type System for the LambdaCC-calculus
	Soundness and Completeness

	Conclusion and Related Work

