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Abstract. We define a new relatively simple Skolemization method
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1 Introduction

Skolem functions are one of the most important features of classical and related
first-order logics. They represent quantifiers within the term language, similar
to epsilon calculus. A Skolemization is a functional from a closed formula with
distinct bound variables to a closed formula with distinct bound variables, which
replaces some occurrences of bound variables by Skolem terms (terms of bound
variables and new functions) such that all bound variables in the Skolem term
belong to not replaced quantifiers where the term is in the scope.

For satisfiability of formulas, the main precondition of the introduction of
Skolem functions is the preservation of soundness. For validity of formulas the
dual main precondition is that the original formula is valid when the Skolemized
formula is valid. In this contribution we work with Skolemization in the sense of
satisfiability.

The standard Skolemization in the satisfiability case is based on the re-
placement of positive existential and negative universal quantifiers by Skolem
functions depending on all negative existential and positive universal quantifiers
where the replaced quantifier is in the scope.

Example 1. Consider the formula

∀x(∃yP (y) ∨ ∀u∃v(R(x, u) ∨Q(x, v)).

Then its Skolemization is

∀x(P (f(x)) ∨ ∀u(R(x, u) ∨Q(x, g(x, u)).

The quantified variable y is replaced by f(x), where f is a fresh Skolem function
symbol, and the quantified variable v is replaced by g(x, u), for the fresh Skolem
function symbol g.

? Supported by FWF projects I 5848, I 4427, and P 36571.
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The standard Skolemization is sound because the addition of Skolem axioms

∀x(∃yA(y, x)) ⊃ A(f(x), x) and ∀x(A(f(x), x) ⊃ ∀yA(y, x))

to a satisfiable set of sentences is conservative (it is possible to argue also directly
replacing quantifiers within the formulas). The conservativity of Skolem axioms
corresponds to the fact that in the case of validity Skolemized formulas are not
weaker than the original ones. The introduction of Skolem formulas by projection
of positive universal and negative existential quantifiers is always possible.3

Andrews Skolemization [2, 3] is an optimized form of standard Skolemiza-
tion, where positive existential and negative universal quantifiers are replaced
by Skolem functions depending only on the negative existential or positive uni-
versal quantifiers which bind in the subformula that begins with the quantifier
to be replaced.

Example 2. Consider the formula

∀x(∃yP (y) ∨ ∀u∃v(R(x, u) ∨Q(x, v)).

Then its Andrews Skolemization is

∀x(P (c) ∨ ∀u(R(x, u) ∨Q(x, g(x, u)).

Here, the quantified variable y is replaced by the Skolem constant c (as x does
not occur in P (y), and the quantified variable v is replaced by g(x, u), as x and
u occur in R(x, u) ∨Q(x, v).

To refute a formula in theorem proving based on resolution refutation, the for-
mula has first to be Skolemized, then transformed into its clause form, and finally
refuted with the resolution method. It was shown that Andrews Skolemization
allows for a non-elementarily4 bounded speed-up of the resolution proofs with
regard to standard Skolemization [8]. In this contribution we present a simple
algorithm for a Skolemization method, which is more effective than Andrews
Skolemization: There is a speed-up even over Andrews Skolemization.

3 It is obvious that the validity of the argument for the conservativity of Skolem axioms
is equivalent to the validity of the full axiom of choice. To demonstrate that valid
Skolemized formulas can be retransferred to their original form needs at most the
completeness of first-order logic, i.e. the validity of König’s lemma, which is much
weaker than the axiom of choice. This difference can be explained as follows: The
argument for conservativity of Skolem axioms validitates automatically the Skolem
functions as functions, i.e. their identity axioms x = y ⊃ f(x) = f(y). Such axioms
are not automatically eliminated when resetting Skolemized formulas in the validity
sense.

4 A primitive recursive function f(x) is elementary if it is bound by a fix stack of 2:

22.
..
x

.
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2 Standard Skolemization and Andrews Skolemization

In this section the standard Skolemization method and the Andrews Skolemiza-
tion method are introduced and compared.

Definition 1 (standard Skolem form w.r.t. satisfiability). Let A be a
closed first-order formula. If A does not contain positive existential or nega-
tive universal quantifiers, we define its standard Skolemization as sk(A) = A.

Suppose now that A contains positive existential or negative universal quantifiers
and (Qy) is the first positive existential or negative universal quantifier occur-
ring in A. If (Qy) is not in the scope of negative existential or positive universal
quantifiers, then its standard Skolemization is

sk(A) = sk(A\(Qy){y ← c}),

where A\(Qy) denotes the formula A after omission of (Qy) and c is a constant
symbol not occurring in A. If (Qy) is in the scope of the negative existential or
positive universal quantifiers (Q1x1) . . . (Qnxn), then its standard Skolemization
is

sk(A) = sk(A\(Qy){y ← f(x1, . . . , xn)}),

where f is a function symbol (Skolem function) not occurring in A.

In Andrews’ method the introduced Skolem functions do not depend on the pos-
itive existential or negative universal quantifiers (Q1x1) . . . (Qnxn) dominating
the positive universal or negative existential quantifier (Qx), but on the subset
of {x, . . . , xn} appearing (free) in the subformula dominated by (Qx). In general,
this method leads to smaller Skolem terms.

Definition 2 (Andrews Skolem form w.r.t. satisfiability). Let A be a
closed first-order formula. If A does not contain positive existential or negative
universal quantifiers, we define its Andrews Skolemization as skA(A) = A.

Suppose now that A contains positive existential or negative universal quantifiers,
(Qy)B is a subformula of A and (Qy) is the first positive existential or negative
universal quantifier occurring in A (in a tree-like ordering). If (Qy)B has no
free variables which are quantified by a negative existential or positive universal
quantifier, then its Andrews Skolemization is

skA(A) = skA(A\(Qy){y ← c}),

where A\(Qy) denotes the formula A after omission of (Qy) and c is a constant
symbol not occurring in A. If (Qy)B has n variables x1, . . . , xn which are quan-
tified by a negative existential or positive universal quantifier from outside, then
its Andrews Skolemization is

skA(A) = skA(A\(Qy){y ← f(x1, . . . , xn)}),

where f is a function symbol not occurring in A.
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Let Γ → ∆ be a sequent, and let F =
∧
Γ ⊃

∨
∆ and skA(F ) =

∧
Π ⊃

∨
Λ,

then we define the Andrews Skolemization of the sequent Γ → ∆ as

skA(Γ → ∆) = Π → Λ.

The usual Skolemizations are outside-in. This uses the global knowledge which
of the bound variables are bound by positive universal or negative existential
quantifiers. If we define standard Skolemization locally (i.e. inside-out), the result
is an iteration of the Skolem functions within the Skolem semi-terms5.

Example 3. Consider the formula

∃x∀y∃u∀vA(x, y, u, v).

Following the standard Skolemization (outside-in) we obtain

∀y∀vA(c, y, f(y), v),

and following the standard Skolemization inside-out we obtain

∀y∀vA(c, y, g(c, y), v).

The Skolem functions in the Skolem semi-terms are ordered in occurrence. Let
g and h be Skolem function symbols that occur in a Skolem semi-term as
h(. . . g(. . .) . . .), then we say that h < g. The iteration of the Skolem terms
poses no problem by the following proposition which allow their elimination. We
call such Skolem terms normalized.

Proposition 1. The formulas A and A′ are equi-satisfiable, where A is ob-
tained from A′ by replacing different iterated Skolem semi-terms h(. . . g(. . .) . . .)
by Skolem semi-terms fi(. . .) with new function symbols.

Proof. ⇒: obvious.

⇐: A <-minimal Skolem semi-term g(. . .) corresponds directly to one fi(. . .)
w.r.t. satisfiability. In the iterated case the Skolem semi-term h(. . . g(. . .) . . .)
w.r.t. satisfiability corresponds also directly to a fj(. . .), as g(. . .) is already
determined.

From now on we will denote with # the operator that normalizes Skolem semi-
terms according to Proposition 1.

Theorem 1. The Andrews Skolemization preserves soundness.

Proof. Proposition 1 allows us to argue locally, i.e. to replace positive existential
or negative universal quantifiers inside-out. Assume the innermost still existing
such quantifier is existential (analogously for the case of an universal quantifier).
Then

A(. . . ∃xB(x, y) . . .) is satisfiable, where the occurrence of ∃xB(x, y) is positive

5 Semi-terms are terms that might contain bound variables.
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⇓

A(. . . F (y) . . .) ∧ ∀y(F (y) ⊃ ∃xB(x, y)) ∧ ∀y(∃xB(x, y) ⊃ F (y)) is satisfiable

⇓

A(. . . F (y) . . .) ∧ ∀y(F (y) ⊃ B(f(y), y)) ∧ ∀y(B(f(y), y) ⊃ F (y)) is satisfiable

by standard Skolemization with f and instantiation

⇓

A(. . . B(f(y), y) . . .) is satisfiable

⇓

A(. . . ∃xB(x, y) . . .) is satisfiable.

Theorem 2 ([8]). There is a sequence of refutable formulas A1, A2, . . . such
that the length of the shortest resolution refutations of their standard clause
forms6 with standard Skolemization cannot be elementarily bounded in the length
of the shortest resolution refutations of their standard clause forms with Andrews
Skolemization.

Proof (Sketch). The validity variant of standard Skolemization, i.e. the replace-
ment of positive universal and negative existential quantifiers by Skolem terms
corresponds exponentially in the length of cut-free proofs to usual sequent calcu-
lus LK, whereas Andrews Skolemization corresponds exponentially in the length
of cut-free proofs to sequent calculus LK+ [1]. LK+ is obtained from LK by
weakening the eigenvariable condition. The resulting calculus is therefore glob-
ally but possibly not locally sound. This means that all derived statements are
true but that not every sub-derivation is meaningful. LK+-proofs are based on
the side variable relation <ϕ,LK. We say b is a side variable of a in ϕ (written
a <ϕ,LK b) if ϕ contains a positive universal or negative existential quantifier
inference of the form

Γ → ∆,A(a, b, c)
∀r

Γ → ∆, ∀xA(x, b, c)

or of the form

A(a, b, c), Γ → ∆
∃l∃xA(x, b, c), Γ → ∆

Proofs are determined by LK+-suitable quantifier inferences. We say a quantifier
inference is suitable for a proof ϕ if either it is a positive existential or negative
universal quantifier inference, or the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LK is acyclic.

6 See Definition 7.
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– (weak regularity) the eigenvariable of an inference is not the eigenvariable of
another positive universal or negative existential quantifier inference in ϕ.

LK+ is obtained from LK by replacing the usual eigenvariable conditions by
LK+-suitable ones. LK+ admits cut-elimination and there is a non-elementary
speed-up of cut-free LK+-proofs w.r.t. cut-free LK-proofs.

The following proposition is obvious.

Proposition 2. Standard Skolemization and Andrews Skolemization coincide
on prenex formulas.

3 Atomic Skolemization

For simplicity we define the new algorithm for satisfiability and closed formu-
las with distinct bound variables in negation normal form (NNF). Therefore,
existential quantifiers are replaced by Skolem terms.

Similar to Andrews Skolemization, atomic Skolemization is based on the
elimination of the innermost quantifiers, i.e. generating iterated Skolem semi-
terms in principle. This situation can be stratified using Proposition 1.

Definition 3. Let F be a closed NNF formula with distinct bound variables.
Then <F is a total order of the bound variables occurring in F , such that when-
ever Qx occurs in the scope of Q′y, we have that x <F y, where Q,Q′ ∈ {∀,∃}
and x, y are bound variables in F .

Note that we might omit the subscript F in <F whenever it is clear from the
context. For simplicity reasons in the Skolemization procedure, we will introduce
the notion of corresponding quantifier of a bound variable.

Definition 4. Let F be a closed NNF formula with distinct bound variables. Let
x be such a bound variable. Then its corresponding quantifier is denoted by Ψ(x),
i.e.

Ψ(x) =

{
∃ if x is bound by ∃,
∀ if x is bound by ∀.

The atomic Skolemization of a closed NNF formula F with distinct bound vari-
ables is computed based on the set of atomic semi-formulas occurring in F and
containing the bound variables, and on the substitutions of Skolem semi-terms
for these bound variables. We first give a description of the procedure, and then
a formal definition of the algorithm for atomic Skolemization.

In a first step we consider all the atoms of the formula F and construct a
set of sets of bound variables by collecting all the bound variables occurring in
each of the atoms, which are not empty (this set will later be denoted with Ln).
The substitution is initialized with the identity substitution. As long as Ln is
not empty, we pick the <F -minimal bound variable x and the corresponding
sets in Ln containing x. Note that these sets might contain also other variables,
which we denote by y. In case the corresponding quantifier of x is existential,
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i.e. Ψ(x) = ∃, we delete all sets {x, yi} from Ln and add {y} to the remaining
variables. Furthermore, we add {x ← f(y)}, where f is a new function symbol
to the set of substitutions. Alternatively, in case Ψ(x) = ∀, the sets {x, yi} are
again deleted from Ln and we add a set {y} to the remaining variables, but the
set of substitutions is not updated. ({y} is only added when it is maximal under
inclusion and the initial L0 is stratified in this respect.) Finally, the iterated
Skolem terms are replaced by uniterated ones according to Proposition 1.

Definition 5. Let F be a closed NNF formula with distinct bound variables
V (F ). Then its atomic Skolemization AS(F ) is computed by the following steps:

1. L0 = {{γ1, . . . , γn} | {γ1, . . . , γn} ∈ V (F )(and 6= ∅) which occur jointly
in an atom of F}.

2. σ0 = id (σn will substitute Skolem semi-terms for bound variables).
3. Ln = Ln\{γ1, . . . , γn} if {γ1, . . . , γn} is not maximal in Ln w.r.t. inclusion.
4. while Ln 6= ∅

6. Let x be the <F -minimal variable in Ln and
∆n+1 = {{γ1, . . . , γn} | {γ1, . . . , γn} in Ln containing x}.
Let x, y all the variables in ∆n+1.

7. If Ψ(x) = ∃:
Ln+1 = Ln\∆n ∪ {y} if {y} is maximal in Ln\∆n, Ln\∆n otherwise,
σn+1 = σn ∪ {x← f(y)},where f a new function symbol.

8. If Ψ(x) = ∀:
Ln+1 = Ln\∆n ∪ {y} if {y} is maximal in Ln\∆n, Ln\∆n otherwise.

9. Ln = ∅ ⇒ σ = σn.
10. Let F ′ be F after deletion of ∃. Then AS(F ) = #F ′σ.

Note that this algorithm is at most quadratic in the number of symbols of the
original formula. However, its verification will need exponentially many steps.

Example 4. Let F be the formula

∀x(∃yP (y) ∨ ∀u∃v(R(x, u) ∨Q(x, v)).

We calculate its atomic Skolemization AS(F ). To start, we initialize the set
L0 = {{y}, {x, u}, {x, v}}, with the ordering v <F u <F y <F x.

As Ψ(v) = ∃ we obtain

L1 = {L0\{x, v}} ∪ {x}, σ1 = σ0 ∪ {v ← h(x)}.

A <F -minimal variable is now u. Then, as Ψ(u) = ∀, we obtain

L2 = {L1\{x, u}}, σ2 = σ1

as {x} is already in L1. Now y is <F -minimal. As Ψ(y) = ∃ we obtain in a next
step

L3 = L2\{y}, σ3 = σ2 ∪ {y ← c}.
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In a last step, as Ψ(x) = ∀, we obtain

L4 = L3\{x} = L3\L3 = ∅, σ4 = σ3

F ′ is F after deletion of all occurrences of ∃, and F ′σ4 is

∀x(P (c) ∨ ∀u(R(x, u) ∨Q(x, h(x)))

which is also #F ′σ = AS(F ) as no iterated Skolem terms occur.

Proposition 3. Skolem functions can be combined over disjunctions. Let xi ∈ x

∀x
∨
i

Ai(fi(xi)) ⊃ ∀x
∨
i

Ai(f(x))

is satisfiable, where f is a new function symbol.

Theorem 3 (Soundness of atomic Skolemization).

Proof. Consider step 3. in the AS-algorithm given in Definition 5. We have Ln 6=
0 and x the <F -minimal variable.

∆n+1 = {{γ1, . . . , γn} | {γ1, . . . , γn} in Ln containing x},

x, y all the bound variables in ∆n. Let ∃xA(x, y) be the corresponding subfor-
mula.

|= ∀y∀z(∃xA(x, y)↔ ∃x

(×)︷ ︸︸ ︷∨
i

(
∧
j

Bi,j(x, yi,j)) ∧ Ci(y, z)),

where yi = ∪j(yi,j), (×) is a suitable CNF where the Bi,j atomic contain x and
the Ci atomic do not.

|= ∀y∀z(∃x(×)↔

(××)︷ ︸︸ ︷∨
i

(∃x
∧
j

Bi,j(x, yi,j)) ∧ Ci(y, z)), yi,j ⊆ y

|= ∀y∀z((××)→

(×××)︷ ︸︸ ︷∨
i

∧
j

Bi,j(fi(y), yi,j)) ∧ Ci(y, z))

by Andrews Skolemization

|= ∀x∀z((×××)→

(××××)︷ ︸︸ ︷∨
i

(
∧
j

Bi,j(f(y), y)) ∧ Ci(y, z))

by Proposition 3

|= ∀x∀z((××××)→ ∃x

(×)︷ ︸︸ ︷∨
i

∧
j

Bi,j(x, y) ∧ Ci(y, z))
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Now let ∀xA(x, y) be the corresponding subformula.

|= ∀y∀z(∀xA(x, y)↔ ∀x(

(◦)︷ ︸︸ ︷∧
i

(
∨
j

Bi,j(x, yi,j) ∧ Ci(y, z))),

where yi = ∪j(yi,j), (◦) is a suitable CNF where the Bi,j contain x and the Ci,j
do not.

|= ∀y∀z(∀x(◦)↔
∧
i

(∀x
∨
j

Bi,j(x, yi,j)) ∧ Ci(y, z))).

Now introduce new predicates Fi and add suitable

∀y(F (yi,j)↔ ∀x
∨
j

Bi,j(x, yi,j))

and continue to work with the formula after replacement. Semi-subformulas con-
taining x disappear from the main formula. The consideration to work with y
instead of the subsets yi might lead to larger dependencies, but not incorrect
ones as all relevant variables are contained in y.

As an application we obtain:

Corollary 1. The monadic fragment of classical first-order logic is decidable.

Proof. For a monadic function-free formula A, AS(A) contains only constants as
Skolem functions, and therefore it is decidable whether a Herbrand expansion
for AS(A) exists.

Proposition 4. The arity of the Skolem function symbols w.r.t. atomic Skolem-
ization is less or equal to the arity of the Skolem function symbols w.r.t. Andrews
Skolemization which is less or equal to the arity of Skolem function symbols in
standard Skolemization. The number of introduced Skolem function symbols is
not increased.

4 Speed-up Result for Cut-Free Proofs

In this section we demonstrate that there is a non-elementary speed-up for
cut-free proofs of atomic Skolemization w.r.t. standard Skolemization and An-
drews Skolemization. Let τ = {QxA(x) ∨QDxA(x) closed | Q quantifier string,
QD dual quantifier sequence, A atomic}. Our argument is based on the following
theorem.

Theorem 4. There is a sequence of sequents

A1 →, A2 →, . . . , Ai →,

where A1, . . . , Ai are in NNF containing universal quantifiers only such that
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1. there is a bound for a sequence of cut-free LK-proofs for

∆1, A1 →, ∆2, A2 →, . . .

elementary in the complexity of A1 →, A2 →, . . . for suitable ∆i ⊆ τ .
2. there is no elementary bound for any sequence of cut-free proofs for

A1 →, A2 →, . . .

in the complexity of A1 →, A2 →, . . . , Ai →.

Proof. Consider Statman’s sequence of provable quantifier-free statements fol-
lowing from universal formulas where the cut-free proofs grow non-elementarily
versus the proofs with cuts, which are elementarily bounded [10, 7]. Cuts can
be closed by inferring A ⊃ A on the left side instead of the cut, closing A ⊃ A
with universal quantifiers and cutting it. Replace all cuts by prenex cuts in an
elementary way [6]. Code the matrices of the cuts by using coding formulas

∀x(F (x)↔M(x))

added to the antecedents and replace the cuts:

Πi → Γi,M(si)

...
...

...

Π → Γ,QxM(x)

M(si), Λj → ∆j

...
...

...

QxM(x), Λ→ ∆

Π,Λ→ Γ,∆

⇓

Πi → Γi,M(si) F (si)→ F (si)

M(si) ⊃ F (si), Πi → Γi, F (si)

F (si)→ F (si) M(si), Λj → ∆j

F (si) ⊃M(si), Λj → ∆j , F (si)

Apply ∧ : l and ∀ : l to infer the equivalence ∀x(Fi(x)↔Mi(x)).

⇓

Π → Γ,QxF (x) QxF (x), Λ→ ∆

∀x(F (x)↔M(x)), Π, Λ→ Γ,∆

These codings do not shorten the cut-free proofs much, as they can be imme-
diately eliminated by replacing F by M and eliminating ∀x(M(x) ↔ M(x))
by universal cuts whose elimination is at most double exponential. By an easy
transformation we obtain cut-free proofs by adding QxF (x) ∨QDx¬F (x).

Note that for standard, Andrews, and atomic Skolemization it holds that the
Skolemization of A w.r.t. satisfiability corresponds to the Skolemization of A→
w.r.t. validity.
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Definition 6. H(A), where A ∈ τ (A = QxA(x) ∨ QDxA(x)) is the prenexifi-
cation of A such that ∀ always stands in front of the dual ∃, and H(∆), where
∆ ⊆ τ , is {H(A) | A ∈ ∆}.

Example 5. H(∃x∀yB(x, y) ∨ ∀u∃v¬B(u, v)) = ∀u∃x∀y∃v(B(x, y) ∨ ¬B(u, v)).

Theorem 5. There is a sequence of formulas B1, B2 . . . such that

1. there is a bound for a sequence of cut-free proofs for

AS(B1)→,AS(B2)→, . . .

elementary in the complexity of B1, B2 . . ..
2. there is no elementary bound for any sequence of cut-free proofs for

sk(B1)→, sk(B2)→, . . .

in the complexity of B1, B2 . . ..
3. there is no elementary bound for any sequence of cut-free proofs for

skA(B1)→, skA(B2)→, . . .

in the complexity of B1, B2 . . ..

Proof. By Proposition 2 standard Skolemization and Andrews Skolemization co-
incide for prenex formulas. Therefore, we argue only for standard Skolemization.
Let Bi =

∧
H(∆i)∧Ai

from Theorem 4 (note that Bi is in NNF). Assume that
there is an elementary bound for the cut-free proofs of

sk(B1)→, sk(B2)→, . . . .

Therefore, there is an elementary bound for cut-free proofs of

sk(C1
1 ), . . . sk(C1

n), sk(A′1)→, sk(C2
1 ), . . . sk(C2

n), sk(A′2)→, . . . ,

where ∆i is Ci1, . . . C
i
n and A′i is obtained from Ai by shifting the universal

quantifiers outside. By [5] there is an elementary bound for the corresponding
Herbrand sequent. Note that the Skolem terms always depend on the dual posi-
tion, w.l.o.g.

D(. . . tj . . .) ∨ ¬D(. . . fi(. . . tj . . .) . . .).

Now replace all occurrences of fi(. . . tj . . .) inside-out by tj . As the Herbrand
expansion is propositionally valid, and the term is replaced on all positions by
the same term, the result remains valid. Finally all Skolem terms disappear, and
the original Skolemized formulas in H(∆) are transformed into formulas of the
form Ei ∨ ¬Ei, which do not influence the validity of the remaining sequent.
Hence, the size of the remaining sequents is elementarily bounded and therefore
the cut-free proofs are elementarily bounded. Contradiction to Theorem 4.

Now consider
AS(B1),AS(B2), . . . .
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Note that the bound variables in QxA(x) and QDxA(x) in QxA(x)∨QDxA(x) ∈
∆i are distinct, which remains invariant w.r.t. any prenexation. Therefore, the
atomic Skolemization of

H(QxA(x) ∨QDxA(x))

is the standard Skolemization of QxA(x)∨QDxA(x). Deskolemization of cut-free
proofs is exponential [4], therefore the cut-free proofs of

AS(B1)→,AS(B2)→, . . .

are elementarily bounded.

5 Cut-Free LK-Proofs With Positive Existential /
Negative Universal Quantifiers and Resolution

As we are interested in this paper mainly in the impact of different forms of
Skolemization we allow any elementary form of clause form constructions (for
the purpose of this paper it is not necessary to specify the exact form of res-
olution proofs, as they simulate each other within elementary bounds in the
complexity of the proofs). This leads to a non-elementary speed-up of resolution
proofs presupposing atomic Skolemization w.r.t. resolution proofs presupposing
standard Skolemization or Andrews Skolemization.

Definition 7. Let A be a formula which contains only positive existential or
negative universal quantifiers when written on the left side of the sequent sign and
therefore only positive universal or negative existential quantifiers when written
on the right side of the sequent sign. An admissible clause form construction
consists of sequents A → C and C → A elementary in the complexity of A,
where

1. C (the clause form) is a conjunction of universally quantified disjunctions
of literals (negated or unnegated atomic formulas),

2. A→ C and C → A are cut-free elementary derivable in the complexity A.

Note that both, structural clause forms and standard clause forms fall under this
definition, together with clause forms which allow for atom evaluation etc. [9].

Theorem 6.

1. Let ϕ be a cut-free LK-proof of the sequent

A1, . . . , An → B1, . . . , Bm

with positive existential or negative universal quantifiers only. Then there is
a resolution refutation of an admissible clause form of

A1 ∧ . . . ∧An ∧ ¬B1 ∧ . . . ∧ ¬Bm

elementary in the complexity of ϕ.
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2. Let ϕ′ be a resolution refutation of an admissible clause form of

A1 ∧ . . . ∧An ∧ ¬B1 ∧ . . . ∧ ¬Bm.

Then there is a cut-free LK-proof of

A1, . . . , An → B1, . . . , Bm

with positive existential or negative universal quantifiers only elementary in
the complexity of ϕ′.

Proof. See [8, 9].

The next theorem follows directly from the theorem above.

Theorem 7. There is a sequence of formulas B1, B2 . . . such that

1. there is a bound for a sequence of resolution refutation of standard clause
forms of

AS(B1)→, AS(B2)→, . . .

elementary in the complexity of B1, B2 . . ..
2. there is no elementary bound for any sequence of resolution refutations of

standard clause forms of

sk(B1)→, sk(B2)→, . . .

in the complexity of B1, B2, . . ..
3. there is no elementary bound for any sequence of resolution refutations of

standard clause forms of

skA(B1)→, skA(B2)→, . . .

in the complexity of B1, B2, . . ..

6 Conclusion

The worst case sequences constructed in this paper are highly artificial. It might
be asked if they have an impact in the real world. It is however a known fact that
worst case examples with extreme complexities correspond to practical examples
which are not that bad, but bad enough.
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