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Abstract. Traditional epistemic and doxastic logics cannot deal with inconsistent beliefs nor do
they represent the evidence an agent possesses. So-called ‘evidence logics’ have been introduced
to deal with both of those issues. The semantics of these logics are based on neighbourhood or
hypergraph frames. The neighbourhoods of a world represent the basic evidence available to an
agent. On one view, beliefs supported by evidence are propositions derived from all maximally
consistent collections evidence. An alternative concept of beliefs takes them to be propositions
derivable from consistent partitions of one’s inconsistent evidence; this is known as Schotch-Jennings
Forcing. This paper develops a modal logic based on the hypergraph semantics to represent Schotch-
Jennings Forcing. The modal language includes an operator U(φ1, . . . , φn;ψ) which is similar to one
introduced in Instantial Neighbourhood Logic. It is of variable arity and the input formulas are enjoy
distinct roles. The U operator expresses that all evidence at a particular world that supports ψ can
be supported by at least one of the φis. U can then be used to express that all the evidence available
can be unified by the finite set of formulas φ1, . . . , φn if ψ is taken to be ⊺. Future developments
will then use that semantics as the basis for a doxastic logic akin to evidence logics.
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1 Introduction

In [4] and [2] the authors proffer modal logics for reasoning about beliefs which are based on evidence.
Traditionally, epistemic and doxastic logics are about how an agent reasons from propositions they know
or believe. How the agent arrives at those propositions they reason from is not part of the model. However,
these new “Evidence Logics” include an explicit representation of what evidence an agent has. They then
can go on to define conditions for belief on the basis of what evidence the agent possesses.

One of the challenges of doxastic and epistemic logic has been that agents often possess inconsistent
evidence. Traditional modal logics based on (binary) relational semantics cannot tolerate inconsistency;
everything is believed when beliefs are inconsistent. These evidence models suggest a different approach.
They allow the evidence one accumulates to be inconsistent, while restraining beliefs based on that
evidence in ways that ensure consistency of resulting belief—at least in the case of [2]. Filtering beliefs
from evidence requires novel ways of combining the evidence and deriving conclusions from it that will
avoid—if not eliminate—inconsistencies.

The approaches to evidence based belief in [2] and [4] relate to the method of dealing with inconsistent
data/premises proposed by [12] in which one reasons from maximally consistent subsets of one’s data.
We take a different starting point, namely, the preservationist approach to paraconsistency in [8]. The
preservationist method of reasoning from inconsistent data is to reason from special partitions of one’s
data; when something follows from one of these partitions, that conclusion is forced, and this inference
method is called forcing. The relationship between these two approaches to paraconsistent propositional
inference has been studied in [11]. Before any application of this preservationist approach can be made
in the present context—to the modal logic representation of evidence—it must first be given a semantic
representation (§ 3) that facilitates comparison between the two starting points.

The meeting point of the two views is the use of neighbourhood models to represent the evidence
of an agent: the collection of neighbourhoods is the set of basic evidence available at that world. The
preservationist approach to paraconsistency was inspired by modal logics which use n-ary relation frames,
cf. [7], [1]. It came to be understood that those frames corresponded to neighbourhood frames for modal
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logic [9]. The paraconsistent n-ary modal logics could be interpreted on those neighbourhood frames when
a variation on the truth condition for the ◻ operator is used: in order for ◻φ to be true at x, there must
be a neighbourhood of x where that φ is true throughout. This differs from the usual truth condition, in
which all the worlds where φ is true must be a neighbourhood of x. A thorough study of the relations
between n-ary modal logics and n-relation modal logics has been conducted in [6] which explores these
connections via neighbourhood semantics.

Here, we offer a way to use neighbourhood models to represent a preservationist approach of deriving
belief from evidence. The goal of this paper is to capture the general forcing relation in a neighbourhood
semantics. To do this, we introduce an operator, similar to that found in [3], which takes two arguments:
a non-empty list of formulas and a formula. This operator expresses the sufficiency of the formulas in
the list of the first argument for implying the formula in the second argument. What we show is that
a semantics can be given which represents Schotch-Jennings forcing on classical propositional logic, and
provide a logic which is sound and complete for that semantics.

1.1 Evidence Models

Evidence models are built on the standard set up from modal logic where we have a non-empty set of
ways the world might be W , i.e., possible worlds, and propositions or facts that might be true in those
worlds represented by subsets of W . An agent’s evidence will be represented by a so-called ‘evidence
frame’

F = ⟨W,E⟩

consisting ofW and a function E ∶W → P(P(W )). For each x ∈W , E(x) represents the evidence the agent
has collected at x; the agent’s basic evidence at x. The only conditions that we will impose on E(x)—at
the moment—are that ∅ ∉ E(x) ≠ ∅. Thus, the agent can never collect a contradiction as evidence. There
are no conditions at this point on whether E(x) must be closed under various set-theoretic operations like
supersets or intersection. We will consider an agent to have evidence that X ⊆W , when there is Y ∈ E(x)
such that Y ⊆ X. That is, agents have all evidence that their basic evidence, taken individually, implies.
That makes the requirement of closure under supersets unnecessary.

Although the evidence an agent has is simply what that agent’s evidence individually implies, what
an agent’s evidence supports is an holistic matter. Intuitively, evidential support should be computed by
combining the basic evidence somehow, but it is not clear how that should be done. We have not assumed
that E(x) is factual or even consistent: the actual world may not be in ⋂E(x) nor is it guaranteed that

⋂E(x) ≠ ∅, respectively. So a simple combining of one’s basic evidence via taking what is common between
all of it may result in “supporting” everything since all propositions are implied by an inconsistent set:
when ⋂E(x) = ∅, ⋂E(x) ⊆ X for any X ⊆ W . The authors van Benthem et al. and Baltag et al. have
suggested two fruitful ways of combining evidence. Inspired by their ideas, we here offer a method of
combining evidence by using a representation of Schotch-Jennings Forcing in modal logic.

Schotch-Jennings Forcing offers a way to disentangle any inconsistency, and then to infer from the
disentangled collection. In the following section we will review the syntactic account of this method,
survey the extant connections between modal logic and forcing, and then develop a semantic analog of
forcing in neighbourhood models, suitable as a basis for a modal logic.

1.2 Forcing and Level

In a series of papers, [13], [7], and [14] Jennings and Schotch developed a method of drawing inferences
from inconsistent sets which they refer to as ‘forcing’. The set up is to find the minimal way to partition
the premises so that each element, or ‘cell’, of the partition is consistent. Then one reasons from those
consistent cells. Taking the smallest or minimal partitions of a set, if some conclusion follows from at
least one cell in every such partition, then the set forces that conclusion.

More precisely, lets say that a partition Π is a cover of a set of formulas Γ iff, ⋃Π = Γ and for
all π ∈ Π, π ⊬ � where ⊢ is simply the consequence relation of classical logic. We will also refer to the
cardinality of Π as its width. There is another definition of a syntactic cover as follows: a collection of
consistent sets of sentences Π (not necessarily a partition of Γ ) such that for each γ ∈ Γ , there is π ∈ Π
such that π ⊢ γ. If we introduce C(Γ ) = {α ∶ Γ ⊢ α } to refer to the deductive closure of Γ , then we can
say that Π is a cover of Γ when Γ ⊆ ⋃π∈Π C(π) and each π is consistent. Partitions are a special case of
this more general kind of cover and are thus referred to as ‘partition covers’.
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The level of Γ , ℓ(Γ ), is a kind of measure of how inconsistent Γ is, and it is determined by the
minimum width a set of sets must have in order to be a cover of Γ , but if there is no such minimum, its
level is ∞. Thus:

ℓ(Γ ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 Γ ⊆ C(∅)

min{ ∣Π ∣ ∶Π is a cover of Γ } if it exists & Γ /⊆ C(∅)

∞ otherwise

We assign the level of 0 to the special case where Γ is a set of theorems. We can then say that Γ
forces α, Γ ⊩ α iff in any cover of Γ (partition or otherwise), Π, such that ∣Π ∣ = ℓ(Γ ), there is π ∈ Π
such that π ⊢ α. However, it can be shown that forcing is determined by the collection of partition covers
since we can always generate a partition cover from a cover.

Most conceptions of consequence are based on considering what is true across all the ways things
could be and forcing incorporates this ‘all the ways things could be’ kind of thinking by consulting all
covers of Γ to determine the forcing consequences. It is interesting to note that this does not simply
mean looking at all ℓ(Γ )-tuples of distinct maximally consistent subsets of Γ . This could seem odd since
obviously each cell in a (partition) cover of Γ can be extended to a maximally consistent subset (i.e., Γ ′

is a maximally consistent subset of Γ iff Γ ′ ⊆ Γ , Γ ′ ⊬ � and for any α ∈ Γ ∖Γ ′, Γ ′∪{α } ⊢ �). The issue is
that some maximally consistent subsets may not be reachable by such extensions. For example, consider
the following set from classical logic:

Φ = {¬q ∧ p, q → r,¬r, q,¬p}

This set gives rise to maximally consistent subsets. We will not list all of them, but for instructional
purposes here are two of them:

(A) { q → r,¬r,¬p}, and
(B) { q → r,¬r,¬q ∧ p}, and

It is easy to see that ℓ(Φ) = 2 since it is inconsistent but we only need a cover of width 2:

{{ q → r,¬r,¬q ∧ p} ,{ q,¬p}} .

What this means is that the covers that would be used to determine the forcing consequences of Φ would
all have width 2. This gives rise to a curious situation when we consider set A above. Set A would never
appear in a cover of Φ that was used to calculate forcing consequences. The reason is that, if set A is
removed from Φ, the set that is left over has level 2 as well. That means no cover of Φ with width 2 could
be constructed with set A as a cell.

If one ends up with inconsistent evidence, another way to make inferences from it, or another way
to calculate what the evidence supports, is by what the evidence forces. Of course, if one’s evidence is
consistent, then the conclusions one can draw are simply all those which follow, classically speaking. We
now consider a semantics for forcing which relates it to the semantics of prior evidence logics.

2 Forcing and Modal Logic

Although we are interested in representing forcing in an evidence logic manner, there already exist some
connections between modal logics and forcing. In fact, these modal logics are non-normal and have natural
semantics in terms of evidence logic-like semantics. First we will define a language which we will add to
as we encounter problems. The basic semantic set up is just like that for evidence logics; we start with a
frame and then a model:

Definition 1. A structure F = ⟨W,E⟩ is a hypergraph/evidence frame iff:

1. W ≠ ∅, and
2. E ∶W → P(P(W )) such that for all x ∈W

(a) ∅ ∉ E(x), and
(b) E(x) ≠ ∅.
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A hypergraph/evidence model is a structure M = ⟨F, V ⟩ where F is a hypergraph/evidence frame and
V ∶At→ P(W ) where At is the set of atomic formulas of a propositional language.

For simplicity we will refer to hypergraph frames as ‘hyperframes’. We can then define the semantics
for a language on such models which we will sometimes refer to simply as ‘models’. The language consists
of the boolean operators and the unary operator ‘Eφ’ which is meant to be interpreted, intuitively, as
that there is evidence supporting the proposition φ among one’s basic evidence. Its dual is denoted as
⟨E⟩. LetM = ⟨F, V ⟩ be a model, the semantics is:

– M, x ⊧ p iff x ∈ V (p) for all p ∈At
– Boolean cases as usual,
– M, x ⊧ Eφ iff there is X ∈ E(x) such that X ⊆ JφK,
– M, x ⊧ ⟨E⟩φ iff for all X ∈ E(x), X ∩ JφK ≠ ∅.

Of course M satisfies φ iff there is x ∈ W such that M, x ⊧ φ and satisfies a set of sentences Γ iff
M satisfies all members of Γ at some world x ∈ W . As is also standard, Γ ⊧E φ iff for all M and x, if
M, x ⊧ Γ , thenM, x ⊧ φ. As is well known [5], this logic can be axiomatized as follows:

CL All theorems of classical propositional logic.
D ⊢E ¬E�
N ⊢E E⊺

M

⊢E p→ q

⊢E Ep→ Eq
With rules

MP Modus Ponens, and
US Uniform Substitution.

This is the basic logic of hypergraphs as we have defined them above. But as one might expect it is
nowhere near expressive enough to capture forcing. But there are near-by logics based on hyperframes that
connect to forcing and are fairly well understood. First, there are the Kn modal logics which sometimes
represent the forcing consequences of a set of formulas.

The modal logics Kn are non-normal modal logics which are axiomatized in the following way:3

CL All theorems of classical propositional logic.
N ⊢Kn ⟨E⟩⊺

K◊n ⊢Kn (⟨E⟩p1 ∧ . . . ∧ ⟨E⟩pn+1)→ ⟨E⟩⋁1≤i<j≤n+1(pi ∧ pj)
With rules

M

⊢Kn p→ q

⊢Kn ⟨E⟩p→ ⟨E⟩ q
MP Modus Ponens, and
US Uniform Substitution.

What is unique about these modal logics is the axiom K◊n
4 which weakens the adjunctive properties of

the logic and keeps inconsistent formulas from interacting. The modal logic Kn axiomatizes the logic
valid on the class of all n-bounded hyperframes. A hyperframe is n-bounded when for all X ∈ E(x) and
x ∈ W , ∣X ∣ ≤ n. This doesn’t mean that an n-bounded hyperframe is finite, just that each edge in each
hypergraph is finite.

What can be shown is that if the level of a set Γ is n, then

Γ ⊩ α iff ⟨E⟩ [Γ ] ⊢Kn ⟨E⟩α

where ⟨E⟩ [Γ ] = { ⟨E⟩γ ∶ γ ∈ Γ }. These logics, however, are not suitable for forcing in general. They
capture what is called ‘fixed-level forcing’ which is when one consults all of the covers of Γ which have
a fixed width, say, n.5 The problem with Kn is two fold. If Γ ’s level is less than n, then one will lose
many forcing consequences. And if the level of Γ is larger than n, then Γ is treated as inconsistent, so it
‘fixed-level forces’ everything. The source of the issue is that the Kn logics cannot discern what level a
set of sentences has before determining its consequences.

There are also the Pn logics studied in [6]. These logics are axiomatized as follows:

3 Usually, they are presented with Es (◻s) in the place of all the ⟨E⟩ (◊s) which makes the connection to the
modal logic K clearer in which K1 = K. But we are choosing to remain consistent with the notation in the
literature on evidence logic.

4 This is the name of the axiom as presented in [6].
5 A more appropriate name would be ‘fixed-width forcing’.
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CL All theorems of classical propositional logic.
N ⊢Pn E⊺
Pn ⊢Pn (Ep1 ∧ . . . ∧Epn+1)→ ⋁1≤i<j≤n+1E(pi ∧ pj)

With rules

M

⊢Pn p→ q

⊢Pn Ep→ Eq
MP Modus Ponens, and
US Uniform Substitution.

The Pn logics are determined by the class of all consistent and n-bounded in degree hyperframes. A
hyperframe is n-bounded in degree iff for all x ∈W , ∣E(x)∣ ≤ n and consistent iff for all X ∈ E(x), ∣X ∣ ≥ 1
for all x ∈W .

These logics have the resources to determine what level a set of sentences has. If Γ has level n and
m < n, then E[Γ ] ⊢Pm �. That is because if M, x ⊧ E[Γ ], then for all γ ∈ Γ there is X ∈ E(x) such
that X ⊆ JγK. Now, if ∣E(x)∣ < ℓ(Γ ), then by a pigeon hole argument we could create a syntactic cover of
Γ whose width is less than ℓ(Γ ); but that should be impossible when ℓ(Γ ) = n. So, when E[Γ ] ⊢Pm �,
ℓ(Γ ) ≥ m. Similarly, if E[Γ ] ⊬Pm � then ℓ(Γ ) ≤ m. If Γ is finite, then ℓ(Γ ) ≤ ∣Γ ∣. So, for finite sets Γ ,
ℓ(Γ ) = n iff E[Γ ] ⊢Pn−1 � and E[Γ ] ⊬Pn �.

But just because the Pn logics can determine the level of a set, that doesn’t mean that it can determine
the forcing consequences. Indeed, it doesn’t. The logic Kn determines the forcing consequences of sets
which have level n.

The fundamental issue is that forcing is a dynamic, global and contextual conception of consequence.
Generally, the logical consequences of a set of sentences are dependent on what the set contains but
are not influenced by global properties of that set. Forcing, on the other hand, contextually adapts to
a particular, and important, global property of the set, namely the set’s level. Typically, logics do not
change their behaviour from context to context; that is kind of the point of them. But forcing must, since
it depends on preserving the overall coherence of the set of premises, not just interactions between some
individual premises. So to develop a semantics for forcing we have to find a way to overcome that narrow
focus. We need a logic that can both determine the level of a set and its forcing consequences.

3 Covers: Syntactic vs. Semantic

Although there are various logics that can represent certain kinds of forcing, none captures forcing in
general. The goal is to represent forcing using an evidence logic style semantics. The first thing which is
needed is a semantic analog of a cover in order to represent the level of a set via a semantic object, i.e.,
an evidence set.

Given a set X of subsets of a set W , we can define the level of this set in much the same way as we
defined the level of a set of formulas since, after all, subsets of W are supposed to represent propositions.
We start with a cover.6 A cover of X is a set Y ⊆ P(W ) ∖ {∅} such that for each X ∈ X , there is Y ∈ Y
and Y ⊆X. Again,

ℓ(X ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 when X = {W }

min{ ∣Π ∣ ∶Π is a cover of X } if it exists

∞ otherwise

Like in the syntactic case, ℓ(X ) =∞ iff there is a self-inconsistent proposition in X , i.e., ∅ ∈ X . The
conditions on evidence frames will rule out ∅ ever being in an E(x), so no evidence set will have level ∞.
A major difference is that since E(x) could be uncountable, ℓ(E(x)) could be an uncountable cardinal,
which cannot happen in the syntactic case when one is only working with countable languages. But even
in the syntactic case one could have an evidence set of level ω. An evidence set like that would have covers
where the extension of each formula is in its own cell. However, given an evidence set whose narrowest
cover is of size ω, its forcing consequences boil down to only what follows from the individual pieces of
evidence on their own.

6 We could define a cover of X as a subset of P(P(W )), Π such that for each π ∈Π, ∩π ≠ ∅ and for each X ∈ X
there is π ∈Π such that ∩π ⊆X and if Π is a partition of X we say that Π would be a partition cover. However,
the definition on offer is slightly more economical.
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Another fact which is easy to see is that if Y is a cover of X , then ℓ(Y) ≥ ℓ(X ). For suppose that Y ′

is a cover of minimal width of Y. Then ∣Y ′∣ = ℓ(Y). But the transitivity of ⊆ means that Y ′ is also a cover
of X . Thus, ℓ(X ) ≤ ∣Y ′∣ = ℓ(Y).

We now introduce some closely related concepts to connect semantic covers to syntactic covers via the
evidence models. These concepts help us discuss the various ways that sets of sentences may relate to sets
of basic evidence, given a model and point within it. Note that if M is a model, JΓ KM = { JγK ∶ γ ∈ Γ }
rather than the more common understanding of that notation as ⋂{ JγK ∶ γ ∈ Γ }. We will usually omit
the subscriptM.

Definition 2. LetM be a model, x ∈W , Γ a set of sentences, and X ∈ E(x). We will say,

– M covers Γ at x iff ∀γ ∈ Γ ,∃X ∈ E(x),X ⊆ JγK.
– M strongly covers Γ at x iff JΓ K ⊆ E(x).
– M is unified by Γ at x iff ∀X ∈ E(x),∃γ ∈ Γ , JγK ⊆X.
– M is strongly unified by Γ at x iff JΓ K ⊆ E(x) andM is unified by Γ at x.

In the vocabulary of evidence models from section 1,M covers Γ at x iff there is evidence that γ at x
for each γ ∈ Γ , and strong covering is, intuitively, the claim that Γ is among the basic evidence at x. For
unification,M unifies Γ at x when every piece of basic evidence is evidenced by something in Γ . Finally,
strong unification is when the evidence at x is unified by a subset of the evidence at x. These concepts
(and those that can be defined in terms of them) exhausts the ways in which we will need to refer to the
relationships between theories and evidence sets, in order to establish a correspondence between syntactic
covers of Γ and semantic covers of E(x). Moreover, note that covering is stable under subsets of Γ and
it is easy to see thatM covers Γ at x iffM, x ⊧ E[Γ ]. Also, whenM is unified by Γ at x, then JΓ K is a
cover of E(x).

The natural epistemic interpretation of unification is that the evidence at x can be theoretically unified
by taking Γ as a set of hypotheses, e.g., each piece of evidence can be predicted by the propositions in
Γ . When we have Γ in hand, this is clearly an epistemic virtue often sought after in scientific theories:
good theories should imply our evidence.7 While philosophically important, we neglect further discussion
of the intuitive philosophical interpretation of these concepts. Instead, we show that unification provides
a relationships between evidence sets E(x) and theories Γ that suffices for a preservationist approach to
evidence, by ensuring that syntactic level and semantic level coincide.

Notice first that covering does not suffice. WhenM covers Γ at x, the level of E(x) is not guaranteed
to be the same as the level of Γ . Take Γ = {p, q, r,¬p, r → ¬q }. This set has level 2 since

Π = {π1 = {p, q, r } , π2 = {¬p, r → ¬q }}

is a partition cover. Then take any modelM in which ∩Jπ1K ≠ ∅ and ∩Jπ2K ≠ ∅ such that there are a, b, c
for which a ⊂ JpK ∖ JqK ∪ JrK and b ⊂ JqK ∖ JpK ∪ JrK and c ⊂ JrK ∖ JqK ∪ JpK. Let E(x) = {a, b, c}. Then M
covers Γ at x, since for each γ ∈ Γ one of a, b, c is a subset of its extension. (Obvious for p, q and r).
Consider J¬qK, e.g. a ⊂ J¬qK, and likewise a ⊂ JrKc ∪ JqKc.8 But now we have an M that covers Γ at x
but where ℓ(E(x)) > ℓ(Γ ), since a, b, c all pairwise disjoint, ℓ(E(x)) = 3. We will also notice that in this
model ℓ(JΓ K) > ℓ(Γ ). In general, by a similar pigeon hole argument as above, it will always be the case
that ℓ(JΓ K) ≥ ℓ(Γ ) for any Γ .

However, althoughM covers Γ does not ensure that the semantic cover has the same level as Γ , ifM
is also unified by Γ then the evidence set will have the same level as the extensions of all of the sentences
in Γ .

Observation 1. Let M be a model and x ∈W . If M is unified by Γ at x, then ℓ(JΓ KM) ≥ ℓ(E(x)). If,
in addition,M covers Γ at x, then ℓ(JΓ KM) = ℓ(E(x)).

Proof. ℓ(JΓ KM) ≥ ℓ(E(x)) is immediate since JΓ KM is a cover of E(x) whenM is unified by Γ at x.
Suppose also that for all JγK ∈ JΓ KM, there is X ∈ E(x) such that X ⊆ JγK, i.e., M covers Γ at x.

That means E(x) is a cover of JΓ KM and as we have observed, then, ℓ(E(x)) ≥ ℓ(JΓ KM). Therefore,
ℓ(E(x)) = ℓ(JΓ KM)
7 Of course, it is also a property that can be trivially satisfied by taking Γ to be large enough—assuming that
each X ∈ E(x) can be represented by a formula. Of course, if Γ has other properties, e.g., finiteness, that makes
a better case for a non-trivial unification.

8 Xc is the relative complement of X with respect to W .
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In the modal language introduced so far, we can express covering, but not unification. The above result
thus gives us reason to introduce an operator which allows us to express in the object language that a set
of sentences unifies one’s evidence. This operator, having variable arity, will be somewhat unorthodox.
However, a similar operator has been introduced by [3] in the development of Instantial Neighbourhood
Logic (INL).9 The operator is constructed as follows:

If φ1, . . . , φn, ψ are formulas, so is U(φ1, . . . , φn;ψ).
10

The inclusion of the formula at the end ‘. . . ;ψ)’ is an effort to build a logic that is parallel with INL. In
future work we intend to investigate classes of operators—which we call ‘pointed operators’, with ψ is the
point—that all have the same syntactic form and whose truth conditions have a similar shape. Having
said that, the pointedness of the formula provides some very useful, and perhaps required, expressive
power. The semantics of this operator is as one might expect given the discussion above:

M, x ⊧ U(φ1, . . . , φn;ψ)⇐⇒ for all X ∈ E(x), if X ⊆ JψK then there is i ≤ n s.t. JφiK ⊆X.

We have yet to bring syntactic and semantic conceptions of level together and a major stumbling
block is that the syntactic consistency of a set of formulas requires looking at all the models whereas
semantic level is determined merely by the model at hand. In some cases this gap can be bridged. Let
At(Γ ) = {p ∈At ∶ p is mentioned in Γ } whereAt is the set of atomic sentences. Note that in the following
observation we will just be using the conceptions of syntactic level derived from classical consequence.
Let’s call a modelM consistency comprehensive for Γ when for all X ⊆At(Γ ), there is x ∈W such
that for all p ∈At(Γ ),M, x ⊧ p iff p ∈X.

Observation 2. Suppose Γ is a set of pure Boolean formulas. If M = ⟨F, V ⟩ is a consistency compre-
hensive model, then ℓ(Γ ) = ℓ(JΓ KM).

Proof. First notice that if Γ contains some formula equivalent to �, then ∅ ∈ JΓ KM, and ℓ(Γ ) = ∞ =
ℓ(JΓ KM).

Next, notice that if Γ ′ ⊆ Γ and is propositionally consistent, there is a truth value assignment v to the
atoms that are mentioned in Γ ′ such that ⊧v Γ

′. Let X = {p ∶ v(p) = T } ∩At(Γ ). Then, by hypothesis
there is a x ∈W such thatM, x ⊧ p iff p ∈X for all p ∈At(Γ ), soM, x ⊧ Γ ′.

Let Π be a (syntatic) cover of Γ of width ℓ(Γ ). Without loss of generality, we can assume that all
logically equivalent formulas are in the same cells of the partition. Now form the following partition of
JΓ KM by

Π ′ = {{ JγK ∶ γ ∈ π } ∶ π ∈Π } .

Claim: If π′ ∈ Π ′, then ∩π′ ≠ ∅. Since π ⊆ Γ is a consistent subset of Γ (it is a cell in a cover of Γ ),
by the observation above there is x ∈W such thatM, x ⊧ π. Thus, x ∈ ∩π′. Hence Π ′′ = {∩π′ ∶ π′ ∈Π ′ }
is a cover of JΓ KM and its width is ℓ(Γ ) by construction. Thus ℓ(JΓ KM) ≤ ℓ(Γ ). Since ℓ(JΓ KM) cannot
be less than ℓ(Γ ), ℓ(JΓ KM) = ℓ(Γ ).

For a finite and purely Boolean Γ , consistency comprehensiveness can be expressible if we include a
standard modal operator: ◊φ meaning that φ is true at some “related” world. Although a relation could
be added to interpret ◊, we will simply interpret ◊ as a global modality:

M, x ⊧ ◊φ⇐⇒ there is w ∈W s.t.M,w ⊧ φ.

9 The operator in [3] is ◻(φ1, . . . , φn;ψ) which is true at M, x iff there is X ∈ E(x) such that X ⊆ JψK and
X ∩ JφiK ≠ ∅ for each i ≤ n. Its dual would be true, then, iff for all X ∈ E(x) if X ⊆ JψK, then X ⊆ JφiK for
some i ≤ n. Whereas that operator says that all of the evidence is sufficient for at least one of φis—when it is
sufficient for ψ, our U operator says that any piece of evidence is necessary for at least one of the φis, when it
is sufficient for ψ.

10 As abbreviations, we will write φ⃗ to mean φ1, . . . , φn, and (φ⃗/ψ)i to mean

φ1, . . . , φi−1, ψ,φi+1, . . . , φn

for i ≤ n.
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Now we can express consistency comprehensiveness. When Γ is finite and purely Boolean, let ◊At(Γ )
be the formula:

⋀
Γ ′⊆At(Γ )

◊(( ⋀
p∈Γ ′

p) ∧ ⋀
q∈At(Γ )∖Γ ′

(¬q)).

So, for example, if At(Γ ) = {p, q, r }, then ◊At(Γ ) is

◊(p ∧ q ∧ r) ∧ ◊(p ∧ q ∧ ¬r) ∧ ◊(p ∧ ¬q ∧ r)∧

◊(¬p ∧ q ∧ r) ∧ ◊(p ∧ ¬q ∧ ¬r) ∧ ◊(¬p ∧ q ∧ ¬r)∧

◊(¬p ∧ ¬q ∧ r) ∧ ◊(¬p ∧ ¬q ∧ ¬r)

As is easily verified,M satisfies ◊At(Γ ) iffM is consistency comprehensive for Γ .
While the results above assumed a particular proof theoretic relation to define the syntactic covers,

none of its specifics beyond being an extension of classical propositional logic were used. It can be
replaced by any extension of CPL even one that is merely determined by a semantics. In the latter case
we replace consistency with satisfiability and consequence with entailment, both relative to whatever
semantics is being used. As long as the resulting (semantic) consequence relation is reflexive, transitive
and monotonic, the syntactic covers and thus the level function will have all the necessary properties.
This is fortunate since the subsequent extensions we have made to the language have not been given
any sort of axiomatization so far. Nonetheless, the results above still hold for our new language which
includes the U operator and ◊/◻. With this observation in mind we can then show the following:

Lemma 1. Suppose that Γ = {γ1, . . . , γn }. IfM, x ⊧ (Eγ1 ∧ . . .∧Eγn)∧U(γ1, . . . , γn;⊺), then ℓ(E(x)) =
ℓ(JΓ KM). If in addition Γ is purely boolean andM is consistency comprehensive for Γ , ℓ(Γ ) = ℓ(E(x)).

Proof. From the previous observations and the definition of U .

Just as a reminder of the goal, we are trying to find a representation for forcing in terms of evidence
logic in the same way that the Kn logics represent ‘fixed-level forcing’. We have so far been able to find
a way to express the level of a set of formulas, at least in the Boolean case (which is all we need).

To express that a formula is a forcing consequence we also need a way to canvas all the relevant covers
of a set of sentences. While we will have to add an operator to the language to express the relevant
relationship, it is expressible by a relation definable on the frames rather than on the models given. To
define this relation we first need the idea of the core of E(x), denoted ‘cor(E(x))’ which is the set of any
⊆-minimal elements of E(x). More precisely, cor(E(x)) = {X ∈ E(x) ∶/∃ Y ∈ E(x), Y ⊆X }, i.e., the set of
elements of E(x) for which there is no proper subset also in E(x). A frame will be said to be core complete
iff the core represents all the sets in E(x) in the sense that if Y ∈ E(x) there is some set X ∈ cor(E(x))
such that X ⊆ Y .

It is fairly easy to see that ℓ(cor(X )) = ℓ(X ). What is also fairly easy to see is that if all the elements
in the core are mutually exclusive, then the size of the core is the level of the set, i.e., ∣cor(X )∣ = ℓ(X ), if
for all distinct X,Y ∈ cor(X ), X ∩ Y = ∅.

Now we define a relation covF ⊆W ×W as follows:

Definition 3. Let F = ⟨W,E⟩ be a hyperframe. For all x, y ∈W , covF(x, y) holds iff

1. for all X ∈ E(x) there is Y ∈ E(y) such that Y ⊆X,
2. for all Y ∈ cor(E(y)) there is X ∈ E(x) such that Y ⊆X, and
3. ∣cor(E(y))∣ = ℓ(E(x)).

The idea is to have covF(x, y) iff the “evidence set” at y forms a cover of minimal width of the evidence
at x relative to F. So, if we were to look at all models on all frames we would be able to find all possible
covers of Γ of width ℓ(Γ ). We can now extend the language to include a new operator F to interpret the
covF relation on the frames, but the relation which interprets F needn’t be all of covF. In fact, it needn’t
be a subset of covF for the application that we have in mind. All that matters is that RF and covF agree
when E(x) is finitely unifiable, but we will discuss this in more detail in section 5. So, we can simply use
a relation RF on W which we will assume agrees with covF on the relevant pairs (x, y).

M, x ⊧ Fφ⇐⇒ ∀w ∈W,RF (x,w),M,w ⊧ φ.
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Define Γ ⊧F φ iff for all hypermodels over the language defined so far with the semantics developed
so far, if M, x ⊧ Γ , then M, x ⊧ φ. ⊧F φ when φ is true at all worlds in all hypermodels. As discussed
above, we can use ⊧F to define syntactic covers and observations 1 and 2 will carry over to the current
context. Just to be explicit about how that is done: Π is a syntactic cover of Γ relative to F iff for each
π ∈Π, π is satisfiable and for each γ ∈ Γ there is π ∈Π such that π ⊧F γ.

Lemma 2. Let M be a hypergraph model. If M covers and is unified by Γ at x and covF(x, y), then
ΠE(y) = {{φ ∶ Y ⊆ JφK} ∶ Y ∈ cor(E(y)) } is a syntactic cover of Γ (not necessarily a partition cover). If,
in addition, Γ is pure boolean and M is consistency comprehensive for Γ , then the width of ΠE(y) is
ℓ(Γ ).

Proof. Consider ΠE(y) = {{φ ∶ Y ⊆ JφK} ∶ Y ∈ cor(E(y)) }. Since M covers Γ at x, for each γ ∈ Γ , there
is X ∈ E(x) such that X ⊆ JγK. By condition 1 in the definition of cov, there is Y ∈ E(y) such that Y ⊆X
and, by definition of the core, there is Y ′ ∈ cor(E(y)) such that Y ′ ⊆ Y . Thus, for any γ ∈ Γ , there is
a Y ′ ∈ cor(E(y)) such that Y ′ ⊆ JγK. That means, for each γ ∈ Γ , there is π ∈ ΠE(y) such that γ ∈ π,
hence π ⊧F γ. Furthermore, by definition of ΠE(y), for each π ∈ΠE(y) there is a Y ∈ cor(E(y)) such that
Y ⊆ ∩JπK and of course Y ≠ ∅ sinceM is a hypermodel and so ∅ ∉ E(y). Hence each π is satisfiable. Thus
ΠE(y) is a syntactic cover of Γ . Also notice that the width of ΠE(y) is ∣cor(E(y))∣.

From observation 1 we know that ℓ(E(x)) = ℓ(JΓ K) since M covers and is unified by Γ at x. So,
∣cor(E(y))∣ = ℓ(JΓ K) by condition 3 in the definition of cov. If we also assume that Γ is pure boolean and
that M is consistency comprehensive for Γ , then by observation 2, ℓ(JΓ K) = ℓ(Γ ). Hence the width of
ΠE(y) is ℓ(Γ ).

Now we can ask the relevant question: is this logic one that allows us to capture classical forcing in
at least the finite cases? The answer, fortunately, is ‘yes’.

Theorem 1. Suppose Γ = {γ1, . . . , γm } and φ are purely Boolean.

Γ ⊩ φ⇐⇒ ⊧F [(Eγ1 ∧ . . . ∧Eγm) ∧U(γ1, . . . , γm;⊺) ∧ ◊At(Γ )]→ FEφ

Proof. The only if direction follows by proving the contrapositive using lemma 2. If ⊭F [(Eγ1 ∧ . . . ∧
Eγm) ∧ U(γ1, . . . , γm;⊺) ∧ ◊At(Γ )] → FEφ, then there is a model and world M, x such that M, x ⊧
(Eγ1 ∧ . . . ∧ Eγm) ∧ U(γ1, . . . , γm;⊺) ∧ ◊At(Γ ), but M, x ⊭ FEφ. Since ◊At(Γ ) is true at x, M is
consistency comprehensive for Γ . And sinceM, x ⊭ FEφ, there is a y ∈W such that cov(x, y) such that
M, y ⊭ Eφ. Now we can apply lemma 2 to E(y) and given that cov(x, y), ∣cor(E(y))∣ = ℓ(Γ ). Given that
∣ΠE(y)∣ = ∣cor(E(y))∣, we get a cover of Γ such that each cell does not entail φ.

For the if direction again we will argue contrapositively. Assume that Γ /⊩ φ. Note that in this case,
⊩ is forcing based on classical propositional logic.

Notice that since Γ is finite ℓ(Γ ) = n ≤ ∣Γ ∣. Since Γ does not force φ there is a syntactic partition
cover Π = {πi ∶ 1 ≤ i ≤ n} of Γ (of width n) such that for all π ∈ Π, π ⊬ φ. Hence there are n truth
value assignments v1, . . . , vn such that for each π ∈ Π, there is i ≤ n such that ⊧vi π and ⊭vi φ by the
completeness of CPL with respect to two-valued truth value assignments.

Define WΠ = { v ∶ ∃X ⊆At(Γ ),∀p ∈At, p ∈X only if v(p) = T }; and VΠ ∶ At → P(W ) such that
VΠ(p) = { v ∈WΠ ∶ v(p) = T }. Finally, define EΠ(v) as

EΠ(v) =

⎧⎪⎪
⎨
⎪⎪⎩

{ JγK ∶ γ ∈ Γ } v = v1

{∩JπK ∶ π ∈Π } v ≠ v1

Let MΠ = ⟨WΠ ,EΠ , VΠ⟩. In the case where Γ is consistent E(v) = {∩JΓ K} for all v ≠ v1. Since all
the vi above are in WΠ , WΠ ≠ ∅. Similarly, for all v ∈ W , and X ∈ EΠ(v), there is vi from above such
that vi ∈ X. So, ∅ ∉ EΠ(v). As we have defined MΠ , it is consistency comprehensive for Γ , and since
EΠ(v1) = { JγK ∶ γ ∈ Γ },MΠ , v1 ⊧ [(Eγ1 ∧ . . . ∧Eγm) ∧U(γ1, . . . , γm;⊺) ∧ ◊At(Γ )].

Let FΠ = ⟨WΠ ,EΠ⟩. Now we must exhibit at least one world that v1 relates to by covFΠ
at which φ

is false. Again sinceMΠ is consistency comprehensive for Γ , by lemma 2,

ℓ(EΠ(v1)) = ℓ(cor(EΠ(v1))) = ℓ(JΓ K) = ℓ(Γ ) = ∣EΠ(v)∣
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for all v ≠ v1. Since for each γ ∈ Γ , there is π ∈ Π such that π ⊧ γ, ∩JπK ⊆ JγK. But also, since each π is a
consistent non-empty subset of Γ , there is γ ∈ Γ such that ∩JπK ⊆ JγK, since γ ∈ π. Thus, covFΠ

(v1, v) for
all v ≠ v1. So, in particular covFΠ

(v1, v2) and we can set RF = covFΠ
.

Finally, each of the vi from above are such that vi ∈ ∩JπiK but vi ∉ JφK for i ≤ n; hence ∩JπiK /⊆ JφK. So,
by definition,MΠ , v2 ⊭ Eφ and soMΠ , v1 ⊭ FEφ. Therefore, ⊭F [(Eγ1 ∧ . . .∧Eγm)∧U(γ1, . . . , γm;⊺)∧
◊At(Γ )]→ FEφ.

Thus, this logic allows one to represent classical forcing via a modal evidence logic. The next step,
is to axiomatize the system. We will first give an axiomatization for a logic with the operators E,◻, F,
and U relative to all hypergraph models for which ∅ ∉ E(x) ≠ ∅. The logic F required by Theorem 1 is
obtained by adding axioms to the logic U and is discussed in section 5.

4 Semantics and Axiomatization for U

We start with the language LU. It is defined by the following BNF:

φ ∶= � ∣ p ∣ ¬φ ∣ Fφ ∣ Eφ ∣ ◻ φ ∣ φ→ φ ∣ U(φ, . . . , φ
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
n−times

;φ) n ∈ Z+

Where p ∈ At the set of atoms. The operators ◊, ⟨F ⟩, and ⟨E⟩ are defined via their duals ¬ ∎ ¬φ for
∎ ∈ {◻, F,E }, and the other Boolean connectives are defined in the usual way. In the interest of limiting
the number of operators to keep it in line with the literature on evidence logics we won’t introduce
additional neighbourhood operators like: for all X ∈ E(x),X ⊆ JφK which have been discussed elsewhere
[10]. Next we have a frame and then a model:

Definition 4. A structure F = ⟨W,E⟩ is a hypergraph frame iff:

1. W ≠ ∅, and
2. E ∶W → P(P(W )) such that for all x ∈W

(a) ∅ ∉ E(x), and
(b) E(x) ≠ ∅

3. RF is a relation on W
4. The frame is augmented when there is an equivalence relation R◻ ⊆W ×W added to the frame.

A hypergraph11 model is a structureM = ⟨F, V ⟩ where F is a hypergraph frame and V ∶At→ P(W ).

LetM = ⟨F, V ⟩ be a hypermodel. The semantics for the logic U for hypermodels is:

– M, x ⊧ p iff x ∈ V (p) for all p ∈At
– Boolean cases as usual,
– M, x ⊧ Eφ iff there is X ∈ E(x) such that X ⊆ JφK,
– M, x ⊧ ⟨E⟩φ iff for all X ∈ E(x), X ∩ JφK ≠ ∅,
– M, x ⊧ ◻φ iff JφK =W ,
– M, x ⊧ ◊φ iff JφK ≠ ∅,
– M, x ⊧ Fφ iff RF (x) ⊆ JφK,
– M, x ⊧ U(φ1, . . . , φn;ψ) iff for all X ∈ E(x), X ⊆ JψK only if for some i ≤ n, JφiK ⊆X

This semantics gives rise to a semantic consequence relation ⊧U, defined in the usual way. This system
is complete with respect to the following axioms, which will give rise to the syntactic system ⊢U. In the
following axioms φ⃗ refers to a tuple of formulas φ1, . . . , φn as before, but in cases where it is not the
only argument on the left of the ‘;’ in a U operator it can be empty. n! refers to all permutations of
{1,2, . . . , n} and σ will be a specific permutation in n! where σ(k) is the number that k is permuted to
by the permutation σ. Let p, q, r, s, pi be in At.

11 We are using a ‘hypergraph model’ in the sense found in [9] rather than in [6]. Our hypergraph models are what
they call neighbourhood models and what [5] calls ‘Minimal Models’. Topologically speaking, it would make
more sense to call neighbourhood models those minimal models ⟨W,E⟩ in which for each x ∈ W , x ∈ ⋂E(x)
since a neighbourhood of x would usually contain x.
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CL All theorems of classical propositional logic.
S5 The axioms of S5 for ◻.
KF (Fp ∧ Fq)←→ F (p ∧ q)
◻F ◻p→ Fp
D ¬E�
N E⊺

E◻ ◻(p→ q)→ (Ep→ Eq)
MergeE (Ep ∧ ◻q)→ E(p ∧ q)

U� U(�; q)
U! U(p1, . . . , pn;ψ)→ (⋀σ∈n!U(pσ(1), . . . , pσ(n); q))
UE ¬U(p⃗; q)→ Eq
U+ U(p⃗; q)→ U(p⃗, r; q)
U- U(p⃗, r, r; q)→ U(p⃗, r; q)
UV (U(p⃗; q) ∧Eq)→ ⋁n

i=1 ◻(pi → q)
U◻R ◻(q → r)→ (U(p⃗; r)→ U(p⃗; q))
U◻L ◻(q → r)→ (U((p⃗/r)i; s)→ U((p⃗/q)i; s))

With rules
US Uniform Substitution,
MP Modus Ponens,
Nec ⊢ φ only if ⊢ ◻φ
UInf

⊢ θ → (◻(p→ ψ)→ (⋀n
j=1 ◊(φj ∧ ¬p)→ ¬Ep))

⊢ θ → U(φ1, . . . , φn;ψ)
p foreign to φ1, . . . , φn, ψ, θ

The usual definitions for Hilbert-style proof theory are used: Γ ⊢U φ iff there are γ1, . . . , γk ∈ Γ such that
⊢U (γ1 ∧ . . . ∧ γn)→ φ. As will be shown in section 6:

Theorem 2. The system ⊢U is sound and complete with respect to ⊧U.

A few comments about the system are in order. The axiomatization is obviously not finite, but it is
recursive. We can also treat the tuple of formulas before the semicolon in the U operators as a set given
axioms U! and U-. The contrapositive of UV is equivalent to ⋀n

i=1 ◊(φi ∧ ¬ψ) → (Eψ → ¬U(φ⃗;ψ)), and
given UE, ⋀n

i=1 ◊(φi ∧ ¬ψ) → (Eψ ←→ ¬U(φ⃗;ψ)) is derivable for any formulas φ⃗, ψ. That also indicates
how to interpret the UInf rule. UInf formalizes the idea that if no proposition that both implies ψ and
is not implied by any of the φis in U(φ1, . . . , φn;ψ), can be in an evidence set at a world when θ is also
true, then U(φ1, . . . , φn;ψ) must be true.

5 Definability and the Logic F

The first thing we will point out is that we know the logic U is distinct from Instantial Neighbourhood
Logic (INL) of [3]. The reason for this is that using the U and E operators we can define ◻ in the context
of the E◻ axiom12:

(U(¬φ;φ) ∧Eφ)←→ ◻φ

While the E operator can be defined in INL—it is a special case of it—the authors show that ◻ is not
definable in INL. Although this means that ◻ isn’t needed in U, it is convenient to treat it as separate.

The system U is complete with respect to the class of all hypermodels. But the system needed to
meet the requirements for the proof of Theorem 1 asks more of the relation RF which interprets the F
operator. The condition that is sufficient for Theorem 1 is the following: If M is a hypergraph model
based on the frame F = ⟨W,E⟩, then for all x ∈W , E(x) is finitely unifiable only if for all y ∈W such that
RF (x, y), covF(x, y). I.e., when E(x) is finitely unifiable, all the RF -realted worlds are minimal covers of
E(x).

12 A syntactic derivation of this equivalence proceeds as follows: Suppose U(¬φ;φ) ∧ Eφ. An instance of UV is
(U(¬φ;φ) ∧ Eφ) → ◻(¬φ → φ), so we can infer ◻(¬φ → φ) which is equivalent to ◻φ in any normal modal
logic. Conversely, suppose ◻φ. Thus, in any normal modal logic ◻φ→ ◻(¬φ→ �) is a theorem. By U�, U(�;φ)
is a theorem of U , and by U◻L, ◻(¬φ → �) → (U(�;φ) → U(¬φ;φ)) is a theorem and thus, U(¬φ;φ) follows.
Since ◻φ→ ◻(⊺→ φ) is a theorem of any normal modal logic, using N, and E◻, we can derive Eφ.
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The task is to find axioms which guarantee that the conditions in the definition of covF(x, y) are
met. Thus, we need to show that if, RF (x, y) and E(x) is finitely unifiable, then 1) for all X ∈ E(x)
there is Y ∈ E(y) such that Y ⊆ X, 2) for all Y ∈ cor(E(y)) there is X ∈ E(x) such that Y ⊆ X, and 3)
∣cor(E(y))∣ = ℓ(E(x)).

These requirements can be achieved by imposing axioms which define certain properties of the frames,
since, after all, the properties that are required depend on the frames rather than the models. As per
usual, a formula α is valid on a frame F = ⟨W,E ,RF ⟩ iff for all models M based on F, and all x ∈ W ,
M, x ⊧ α, and we will denote that α is valid on F by F ⊧ α.

Ensuring that condition 1 is met requires a fairly simple axiom which we refer to as EF: Ep→ FEp.

Proposition 1. Let F be a hyperframe. F ⊧ Ep → FEp iff for all x, y ∈ W , if RF (x, y), then for all
X ∈ E(x) there is Y ∈ E(y) such that Y ⊆X. The proof is standard and uncomplicated, so we will omit it.

To capture the other conditions we will first define some operators as abbreviations to simplify the
expression of the axioms. One of the first things that we can notice is the one can express that a (finite)
set of formulas forms of cover of E(x). We define cov(p⃗):

cov(p1, . . . , pn) ∶=
n

⋀
i=1

◊pi ∧U(p1, . . . , pn;⊺)

When cov(φ⃗) is true at x ∈W , then φ⃗ unifies E(x) so { JφK ∶ φ ∈ φ⃗} could serve as a semantic cover for
E(x) since none of the JφK is empty, but not necessarily a partition cover. But φ⃗ may not strongly unify
M at x when cov(φ⃗) is true.

The next operator indicates that the extensions of the formulas to which it applies are found in the
core of E(x):

core(p1, . . . , pn) ∶=
n

⋀
i=1
(Epi ∧U(pi;pi))

The ability to express that the extension of a formula is in the core of an evidence set is a great side-
effect of making the U operator parallel with those found in the Instantial Neighbourhood Logic of [3].
Without the operator’s “point”—the formula after the semicolon—we could not guarantee that, when
Ep is also true, JpK is the only element of E(x) which is contained in JpK. If we add U(p1, . . . , pn;⊺)
to core(p1, . . . , pn), we get a formula that expresses that E(x) contains a cover of itself as its core, i.e.,
cor(E(x)) = { JpiK ∶ i ≤ n}. This operator expresses that the sequence of formulas constitute the entire
core of E(x):

totalcore(p1, . . . , pn) ∶=
n

⋀
i=1
(Epi ∧U(pi;pi)) ∧U(p1, . . . , pn;⊺).

To capture conditions 2 and 3 in the definition of covF(x, y) we use recursive sets of formulas. While
EF provided condition 1 without the assumption that E(x) is finitely unifiable, our next “axioms” make
that assumption explicit.

While we usually work with individual axioms or collections of various axioms to define frame con-
ditions, the following “axioms” are actually recursive sets of formulas. Define the set of formulas Cor
by

Cor ∶= { totalcore(p1, . . . , pn)→ (⟨F ⟩ core(q)→
n

⋁
i=1

◻(q → pi)) ∶ n > 0 & pi, q ∈At}

Proposition 2. Let F be a hyperframe. F ⊧ Cor iff for all x, y ∈ W if RF (x, y) and E(x) has a finite
and non-empty core, then for all Y ∈ cor(E(y)) there is X ∈ cor(E(x)) such that Y ⊆X.

The condition on frames above is stronger than what condition 2 requires since it says that for each
set in the core of any world that x RF -relates to will imply all the elements of the core of E(x), provided
there is a core. That could pose a problem since condition 2 doesn’t require that all evidence sets have
cores. However, as we discuss at the end of section 6.2, U is complete with respect to the class of core-
complete hyperframes, so we can restrict attention to only core-complete hyperframes in this context as
well. In addition, the proof of Theorem 1 only use a model which is core-complete, so the assumption of
core-completeness leaves all results intact.

Now we can home in on finding conditions for ∣cor(E(y))∣ = ℓ(E(x)). The first thing to notice is that
in section three the results were limited to finite cases, so while there can be evidence sets which have
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infinite levels, we are setting those to the side for the moment. We shall define another set of formulas
UpLev as follows:

UpLev = { cov(q1, . . . , qk)→ (⟨F ⟩ totalcore(p1, . . . , pn)→ U(p1, . . . , pn;⊺)) ∶ n, k ∈ N & pi, qj ∈At}

Proposition 3. Let F be a hyperframe. F ⊧ UpLev iff for all x, y ∈ W , if cor(E(y)) and ℓ(E(x)) are
finite, then RF (x, y) only if cor(E(y)) is a cover of E(x).

The effect of this result is to enforce an upper bound on ℓ(E(x)) when it is finite; hence the name.
Notice that if ∣cor(E(y))∣ is finite and RF (x, y) in an UpLev-frame, i.e., a frame F where all formulas
in UpLev are valid on F, then ℓ(E(x)) ≤ ∣cor(E(y))∣. That follows since if cor(E(y)) is a cover of E(x),
then the level of ℓ(E(x)) can’t be any larger than the size of that cover. What is needed, then, is a lower
bound. For that we define:

LowLev = { cov(r1, . . . , rn)→ (⟨F ⟩ core(p1, . . . , pk)→ (U(q1, . . . , qm;⊺)→
m

⋁
i=1

¬◊qi)) ∶ n, k,m ∈ N &m < k }

Proposition 4. Let F be an hyperframe. F ⊧ LowLev iff for all x, y ∈ W , if RF (x, y), then ℓ(E(x)) ≥
∣cor(E(y))∣ when ℓ(E(x)) is finite.

Proof. Suppose that F is a hyperframe such that for all x, y ∈ W , if RF (x, y), then ℓ(E(x)) ∈ N only if
ℓ(E(x)) ≥ ∣cor(E(y))∣. Now suppose that M is a model based on F and that x ∈ W such that M, x ⊧
cov(r1, . . . , rn)∧ ⟨F ⟩ core(p1, . . . , pk)∧U(q1, . . . , qm;⊺) where m < k. FromM, x ⊧ cov(r1, . . . , rn), we can
infer that ℓ(E(x)) is finite and fromM, x ⊧ ⟨F ⟩ core(p1, . . . , pk) we can infer that there is y ∈W such that
RF (x, y) (and that M, y ⊧ core(p1, . . . , pk)). Thus, by our assumption about F, ℓ(E(x)) ≥ ∣cor(E(y))∣.
SinceM, y ⊧ core(p1, . . . , pk), { JpiK ∶ i ≤ k } ⊆ cor(E(y)), hence, ∣cor(E(y))∣ ≥ k. Now suppose for reductio
that for each i ≤m, JqiK ≠ ∅. SinceM, x ⊧ U(q1, . . . , qm;⊺), { JqiK ∶ i ≤m} is a cover of E(x). In general, if
X is a cover of Y, then ℓ(Y) ≤ ℓ(X ), and ℓ(X ) ≤ ∣X ∣. Thus, ℓ(E(x)) ≤ ℓ({ JqiK ∶ i ≤m}) ≤ ∣ { JqiK ∶ i ≤m} ∣ =
m. Thus,

ℓ(E(x)) ≥ ∣cor(E(y))∣ ≥ k >m ≥ ℓ({ JqiK ∶ i ≤m}) ≥ ℓ(E(x)),

a contradiction. So, some JqiK = ∅. Therefore,M, x ⊧ ⋁m
i=1 ¬◊qi. Since, n,m, and k were arbitrary as was

the modelM based on F, F ⊧ LowLev.
Conversely, suppose that F is such that there are x, y ∈ W such that RF (x, y) and ℓ(E(x)) is finite,

but that ℓ(E(x)) < ∣cor(E(y))∣. Since ℓ(E(x)) is finite suppose it is n and then suppose that {X1, . . . ,Xn }
is a cover of minimal width of E(x). Suppose that {Y1, . . . , Yn+1 } ⊆ cor(E(y)) which must exist since
∣cor(E(y))∣ > n. Define M in which V (ri) = Xi = V (qi) for i ≤ n and V (pj) = Yj for j ≤ n + 1. Since
n < n + 1, the formula:

cov(r1, . . . , rn)→ (⟨F ⟩ core(p1, . . . , pn+1)→ (U(q1, . . . , qm;⊺)→
n

⋁
i=1

¬◊qi))

is in LowLev. Furthermore, since the Xi’s form a cover of E(x) none of them is empty nor are any of the
Yjs since they are from the core of E(y). As we have assumed that RF (x, y), M, y ⊧ core(p1, . . . , pn+1)
and so M, x ⊧ ⟨F ⟩ core(p1, . . . , pn+1). And as we have assumed the Xis are a cover of E(x), M, x ⊧
cov(r1, . . . , rn), but also as part of that M, x ⊧ U(q1, . . . , qn). However, since none of the Xis is empty
M, x ⊭ ⋁n

i=1 ¬◊qi. Thus

M, x ⊭ cov(r1, . . . , rn)→ (⟨F ⟩ core(p1, . . . , pn+1)→ (U(q1, . . . , qm;⊺)→
n

⋁
i=1

¬◊qi))

and so F ⊭ LowLev.

Suppose now that F is a (core-complete) frame on which EF, UpLev, LowLev, and Cor are all valid.
If x ∈W and ℓ(E(x)) is finite, then for any y ∈W such that RF (x, y), ∣cor(E(y))∣ must also be finite by
LowLev. Hence, by UpLev, if RF (x, y), cor(E(y)) must be a cover of E(x). Thus, ∣cor(E(y))∣ = ℓ(E(x)).

We will refer to a hyperframe F which is an EF, LowLev, UpLev, and Cor frame as a forcing-frame.
If F is a forcing-frame, then if x ∈ W and ℓ(E(x)) is finite, then RF (x, y) only if covF(x, y). Thus, the
relation ⊧F and its underlying semantics needed to prove Theorem 1 is the class of forcing frames. As an
example of a forcing frame, one can consider the frame constructed in the proof of theorem 1.

We can then get the proof theory of the logic F by adding to the logic U the additional axioms:
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EF Ep→ FEp
Cor totalcore(p1, . . . , pn)→ (⟨F ⟩ core(q)→ ⋁

n
i=1 ◻(q → pi)) where n > 0

UpLev cov(q1, . . . , qk)→ (⟨F ⟩ totalcore(p1, . . . , pn)→ U(p1, . . . , pn;⊺)) where n > 0
LowLev cov(r1, . . . , rn)→ (⟨F ⟩ core(p1, . . . , pk)→ (U(q1, . . . , qm;⊺)→ ⋁m

i=1 ¬◊qi)) where m < k and n > 0

6 Soundness and Completeness of U

6.1 Soundness

The validity of most of the axioms is straightforward. The ◻ operator is supposed to be a global necessity,
and F is, at this point, just a normal modal operator. D ensures that ∅ ∉ E(x) and N ensures that E(x) ≠ ∅.
The E operator is a classical modal operator in Segerberg’s sense, hence E◻. The other things to notice
is that since ◻ is global necessity, the truth of ◻(φ→ ψ) anywhere in a model translates to JφK ⊆ JψK.

U� is valid becuase ∅ is a subset of any set and U! is valid because the disjunction used to give the
truth condition of U is communative. Similarly, U+ and U- are valid because of properties of disjunction.
The U◻ axioms show that the operator is anti-monotonic on both the left and right side of ‘;’ and follows
because of the transitivity of the subset relation. The validity of UE can be seen by inspecting the truth
condition for U and noticing that it is a conditional with X ⊆ JψK as its antecedent. Finally, UV is valid
again because of the transitivity of the subset relation.

The only really interesting inference rule/axiom is UInf, and to prove that it is sound we need the
following standard fact. Say thatM = ⟨W,RF ,E , V ⟩ andM

′ = ⟨W ′,R′F ,E
′, V ′⟩ differ at most on p ∈ At

iff W =W ′, E = E ′, RF = R
′
F and V (q) = V ′(q) for all q ≠ p from At. Then we have that:

Lemma 3. IfM andM′ differ at most on p, then JφKM = JφKM′ for all φ which do not mention p.

Proof. The usual induction on the complexity of φ.

Proposition 5. UInf is sound.

Proof. Suppose that p is foreign to all of φ1, . . . , φn, ψ, θ and ⊭ θ → U(φ1, . . . , φn;ψ). So there is a model
M = ⟨W,RF ,E , V ⟩ and x ∈ W such that M, x ⊧ θ, but M, x ⊭ U(φ⃗;ψ). By definition there is X ∈ E(x)
such that X ⊆ JψKM and JφjK /⊆ X for all j ≤ n. The last fact means that JφjKM ∩Xc ≠ ∅ for all j ≤ n.
DefineM′ to be just likeM other than V ′(p) = X. Then, sinceM andM′ differ at most on p, by the
lemma above, JθKM = JθKM′ , JψKM = JψKM′ , and JφjKM = JφjKM′ for all j ≤ n. Immediately we have
M′, x ⊧ θ. Furthermore, JφjKM′ ∩ JpKcM′ ≠ ∅ for all j ≤ n, so JφjKM′ ∩ J¬pKM′ ≠ ∅ for all j ≤ n. Hence,
M′, x ⊧ ⋀n

j=1 ◊(φj ∧ ¬p). Since
JpKM′ =X ⊆ JψKM = JψKM′ ,

M′, x ⊧ ◻(p → ψ). Since JpKM′ = X ∈ E(x) = E ′(x), there is an X ∈ E ′(x) such that X ⊆ JpKM′ , thus
M′, x ⊧ Ep, i.e.M′, x ⊭ ¬Ep. Therefore, ⊭ θ → (◻(p→ ψ)→ (⋀n

j=1 ◊(φj ∧ ¬p)→ ¬Ep)).

6.2 Completeness

The completeness proof resembles the Henkin-style completeness proofs for first-order and hybrid logics
in that the domain of the canonical model isn’t simply the collection of all maximally consistent sets
of formulas. The sets need to have an additional property since ¬U(φ⃗;ψ) can be true, while there is no
formula which witnesses that fact, i.e., no formula θ such that Eθ, ◻(θ → ψ) and ⋁n

j=1 ◊(φj∧¬θ) are all in
the set. Naturally, the fix is to choose maximally consistent subsets Γ which are “filled-up” with enough
formulas to witness each case where ¬U(φ⃗, ψ) ∈ Γ . We will call sets with this property U -saturated. Let
Φ(U(φ⃗;ψ), p) = {Ep,◻(p→ ψ),⋀n

j=1 ◊(φj ∧ ¬p) }.

Proposition 6. Each U-consistent set of sentences Γ can be extended to a maximally consistent and
U -saturated set of sentences Γ +.

Proof. Suppose Γ is an U-consistent set of sentences. Then let {pi ∶ i ∈ N} be a set of atoms not mentioned
in Γ . Define a new language which includes the language of Γ and the new atoms and let {ψi ∶ i ∈ Z+ }
be an enumeration of that language. Then we define the following sequence of sets. Let Γ0 = Γ and

Γn =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Γn−1 ∪ {¬ψn } Γn−1 ∪ {ψn } ⊢ �

Γn−1 ∪ {ψn } Γn−1 ∪ {ψn } ⊬ � & ψn ≠ ¬U(φ⃗, ψ), or

Γn−1 ∪ {ψn } ∪Φ(ψn, pi) where i is the least i such that pi is not mentioned in Γn−1 ∪ {ψn }
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We can see that each Γn is consistent by induction on n. The only case that is non-standard to see this
in the inductive step is the third clause in the definition of Γn.

Suppose for reductio that Γn = Γn−1 ∪ {ψn } ∪ Φ(ψn, p) ⊢ � where p is the first pi not mentioned in
Γn−1 ∪ {ψn }. That can happen only when Γn−1 ∪ {ψn } ⊬ �. By definition of ψn and Φ(ψn, p), then,

Γn−1,¬U(φ⃗;ψ),Ep,◻(p→ ψ),
n

⋀
j=1

◊(φj ∧ ¬p) ⊢ �.

By the definition of provability, there is a finite subset of Γn−1, Γ
′ such that

Γ ′,¬U(φ⃗;ψ),Ep,◻(p→ ψ),⋀n
j=1 ◊(φj ∧ ¬p) ⊢ �. It then follows by classical logic that

Γ ′,Ep,◻(p→ ψ),⋀n
j=1 ◊(φj∧¬p) ⊢ U(φ⃗;ψ) and by U◻R, that Γ ′,Ep,◻(p→ ψ),⋀n

j=1 ◊(φj∧¬p) ⊢ U(φ⃗;p).
By the contrapositive of UV, ⊢ ⋀n

j=1 ◊(φj ∧ ¬p) → (Ep → ¬U(φ⃗;p)) so by MP, and the transitivity and
monotonicity of ⊢, Γ ′,Ep,◻(p→ ψ),⋀n

j=1 ◊(φj ∧ ¬p) ⊢ ¬U(φ⃗;p) hence Γ
′,Ep,◻(p→ ψ),⋀n

j=1 ◊(φj ∧ ¬p)
is inconsistent. But that means, by classical logic, that

Γ ′,◻(p→ ψ) ⊢
n

⋀
j=1

◊(φj ∧ ¬p)→ ¬Ep

and so by UInf Γ ′ ⊢ U(φ⃗;ψ). But that implies that Γn−1,¬U(φ⃗;ψ) ⊢ � contrary to assumption. Naturally,
let Γ + = ⋃i∈N Γn.

To define the canonical model, we will start with the set of all maximally U-consistent and U-saturated
sets of sentences, but we will always select only all the R◻-related worlds in order for the ◻ operator to
represent global necessity. The canonical modelM∗ = ⟨W ∗,R∗◻,R

∗
F ,E

∗, V ∗⟩ is augmented and defined in
the following way:

– W ∗ is the set of maximally U-consistent and saturated sets of formulas,
– R∗◻(x) = { y ∈W

∗ ∶ ∀ψ,◻ψ ∈ x⇒ ψ ∈ y },
– R∗F (x) = { y ∈W

∗ ∶ ∀ψ,Fψ ∈ x⇒ ψ ∈ y },
– V ∗(p) = {x ∈W ∗ ∶ p ∈ x}, and
– E∗ is defined by: X ∈ E∗(x) iff there is { θi ∶ i ∈ I } ⊆ { θ ∶ Eθ ∈ x} such that
(a) ⋂i∈I ∣θi∣ =X, and
(b) For all δ, if ⋂i∈I ∣θi∣ ⊆ ∣δ∣, then Eδ ∈ x

Observation 3. If Eθ ∈ x then ∣θ∣ ∈ E∗(x).

Proof. This follows since if ∣θ∣ ⊆ ∣δ∣, then ⊢ θ → δ, so ⊢ ◻(θ → δ), hence if Eθ ∈ x, Eδ ∈ x. Thus { ∣θ∣ }
satisfies conditions (a) and (b).

From the canonical model we can define the model which will be used for counterexamples. For each
y ∈W ∗ defineM∗,y as follows:

– W ∗,y = R∗◻(y),
– R∗,yF (x) = R

∗
F (x) ∩W

∗,y,
– E∗,y(x) = {X ∩W ∗,y ∶X ∈ E∗(x) }, and
– V ∗,y(p) = V ∗(p) ∩W ∗,y.

It is possible to give alternative representations of W ∗,y. For example, W ∗,y = { z ∈W ∗ ∶ ◻(y) ⊆ z }, where
◻(y) = {φ ∶ ◻φ ∈ y }. Since ◻ is an S5 operator it follows that if z ∈ W ∗,y, then ◻(z) = ◻(y). So we can
also represent W ∗,y as { z ∈W ∗ ∶ ◻(z) = ◻(y) }. In fact, since ◻ is an S5 operator, for all z ∈W ∗,y, ◻φ ∈ z
iff ◻φ ∈ y, i.e., all elements of W ∗,y agree on ◻ed formulas. We can also show the following:

Lemma 4. If x ∈W ∗,y for some y ∈W ∗, then all X ∈ E∗,y(x) are non-empty.

Proof. Let X ∈ E∗,y(x). Suppose that X = ∅. By definition, there is { θi }i∈I ⊆ { θ ∶ Eθ ∈ x} such that

⋂i∈I ∣θi∣ ∈ E
∗(x) and ⋂i∈I ∣θi∣ ∩ W

∗,y = X = ∅. Thus, ⋂i∈I ∣θi∣ ∩ W
∗,y = ∅ iff { θi ∶ i ∈ I } ∪ ◻(y) ⊢ �.

By the compactness of ⊢, then there are {φ1, . . . , φk } ⊆ ◻(y) and { θ1, . . . , θn } ⊆ { θi ∶ i ∈ I } such that

⋀k
i=1 φi ∧⋀

n
j=1 θj ⊢ �. Since each θj is one of the θis for some i ∈ I, ⋂i∈I ∣θi∣ ⊆ ∣⋀

n
j=1 θj ∣. So by condition b

in the definition of E∗, E(⋀n
j=1 θj) ∈ x. Due to the fact that x ∈ W ∗,y, ◻(x) = ◻(y), thus ◻(⋀k

i=1 φi) ∈ x.

Then, by MergeE, E(⋀k
i=1 φi ∧⋀

n
j=1 θj). But then, by E◻, E� ∈ x which is impossible since ¬E� ∈ x and

x is consistent.
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Now we can show that the truth lemma forM∗,y is true for any y ∈W ∗.

Lemma 5 (Truth Lemma). For all φ, and x ∈W ∗,y,M∗,y, x ⊧ φ iff φ ∈ x, i.e., JφKM∗,y = ∣φ∣ ∩W ∗,y.

Proof. Let x ∈ W ∗,y. The proof is by induction on the complexity of φ. The atomic case follows by the
definition of V ∗,y. The induction hypothesis (IH) is that for all δ of less complexity than φ, JδKM∗,y =
∣δ∣ ∩W ∗,y. We will omit the subscript ‘M∗,y’ and the ∩W ∗,y from here on, unless it is important. The
Boolean cases are standard and the case for ◻ follows since all members of W ∗,y agree on ◻ed formulas.
The F and E cases are also fairly straightforward, so we will just do the U case.

Suppose φ = U(φ1, . . . , φn; δ). Assume thatM∗,y, x ⊧ U(φ1, . . . , φn; δ). By the truth condition for U ,
∀X ∈ E∗,y(x), X ⊆ JδK only if JφjK ⊆ X for some j ≤ n. Then, by the IH, ∀X ∈ E∗,y(x), X ⊆ ∣δ∣ ∩W ∗,y

only if ∣φj ∣ ∩W
∗,y ⊆X for some j ≤ n.

Now suppose for reductio that U(φ1, . . . , φn; δ) ∉ x, by x’s maximality, ¬U(φ1, . . . , φn; δ) ∈ x. Since x
is U-saturated there is θ such that Φ(U(φ⃗; δ), θ) ⊆ x. From observation 4 above, then, ∣θ∣∩W ∗,y ∈ E∗,y(x)
since Eθ ∈ x. It also follows that, since ◻(θ → δ) ∈ x, ∣θ∣ ∩W ∗,y ⊆ ∣δ∣ ∩W ∗,y because ◻(θ → δ) ∈ z
for all z ∈ W ∗,y. By IH, ∣δ∣ ∩W ∗,y = JδK, so there is X ∈ E∗,y(x) such that X ⊆ JδK. But we also have
that ⋀n

j=1 ◊(φj ∧ ¬θ) ∈ x, thus for each j ≤ n, ◊(φj ∧ ¬θ) ∈ x which implies ∣φj ∣ ∩W
∗,y /⊆ ∣θ∣ ∩W ∗,y.

Since ∣θ∣ ∩ W ∗,y = X ∈ E∗,y(x), that should be impossible according to our first assumption. Thus,
U(φ1, . . . , φn; δ) ∈ x.

Conversely, suppose U(φ1, . . . , φn; δ) ∈ x. Further, suppose that X ∈ E∗,y(x) and that X ⊆ JδK; if not
the conclusion follows vacuously. We need to show that JφjK ⊆ X for some j ≤ n. By the IH, we get that
X ⊆ ∣δ∣ ∩W ∗,y and by the definition of E∗,y we get X = ⋂i∈I ∣θi∣ ∩W

∗,y for some ⋂i∈I ∣θi∣ ∈ E
∗(x).

Suppose for reductio that JφjK /⊆ ⋂i∈I ∣θi∣ ∩W
∗,y for all j ≤ n. By IH ∣φj ∣ ∩W

∗,y /⊆ ⋂i∈I ∣θi∣ ∩W
∗,y

for all j ≤ n. For each j there is at least one xj ∈ ∣φj ∣ ∩W
∗,y and xj ∉ ⋂i∈I ∣θi∣ ∩W

∗,y. Thus, there is
θij such that xj ∉ ∣θij ∣ ∩W

∗,y which means that for each j, ∣φj ∣ ∩W
∗,y /⊆ ⋂n

k=1 ∣θik ∣ ∩W
∗,y. Hence, for

each j, ∣φj ∣ ∩ ∣¬(⋀
n
k=1 θik)∣ ∩W

∗,y ≠ ∅, which implies that φj ∧ ¬(⋀
n
k=1 θik) ∈ z for some z ∈ W ∗,y for

each j ≤ n. But that means ◊(φj ∧ ¬(⋀
n
k=1 θik)) ∈ x for each j and thus, due to x’s maximal consistency,

⋀n
j=1 ◊(φj ∧ ¬(⋀

n
k=1 θik)) ∈ x.

Since ⋂i∈I ∣θi∣ ∩W
∗,y ⊆ ∣δ∣ ∩W ∗,y ⊆ ∣δ∣, ⋂i∈I ∣θi∣ ∩⋂{ ∣ψ∣ ∶ ◻ψ ∈ y } ⊆ ∣δ∣. By standard facts about proof

sets, then, { θi ∶ i ∈ I } ∪ {ψ ∶ ◻ψ ∈ y } ⊢ δ. So there are finite sets Θ ⊆ { θi ∶ i ∈ I } and Ψ ⊆ {ψ ∶ ◻ψ ∈ y }
such that Θ ∪ Ψ ⊢ δ. Hence, by monotonicity and classical logic ⋀Θ ∧⋀Ψ ∧⋀n

k=1 θik ⊢ δ. Thus,

◻[(⋀Θ ∧⋀Ψ ∧
n

⋀
k=1

θik)→ δ] ∈ x.

Also, ⊢ φj ∧ ¬(⋀
n
k=1 θik) → (φj ∧ ¬(⋀Θ ∧ ⋀Ψ ∧ ⋀n

k=1 θik)), which implies ⊢ ◊(φj ∧ ¬(⋀
n
k=1 θik)) →

◊(φj ∧ ¬(⋀Θ ∧⋀Ψ ∧⋀n
k=1 θik)) since ◻ is normal, so ◊(φj ∧ ¬(⋀Θ ∧⋀Ψ ∧⋀n

k=1 θik)) ∈ x for each j ≤ n
and thus,

n

⋀
j=1

◊(φj ∧ ¬(⋀Θ ∧⋀Ψ ∧
n

⋀
k=1

θik)) ∈ x.

By the contrapositive of UV, then,

⊢ [
n

⋀
j=1

◊(φj ∧¬(⋀Θ∧⋀Ψ ∧
n

⋀
k=1

θik))]→ [E(⋀Θ∧⋀Ψ ∧
n

⋀
k=1

θik)→ ¬U(φ1, . . . , φn; (⋀Θ∧⋀Ψ ∧
n

⋀
k=1

θik))]

is a theorem of U and so in x. But that means, since x is closed under modus ponens, that

E(⋀Θ ∧⋀Ψ ∧
n

⋀
k=1

θik)→ ¬U(φ1, . . . , φn; (⋀Θ ∧⋀Ψ ∧
n

⋀
k=1

θik)) ∈ x.

Notice, however, that since ⋂i∈I ∣θi∣ ⊆ ⋂{ ∣θ∣ ∶ θ ∈ Θ }∩⋂
n
k=1 ∣θik ∣, by standard facts about proof sets we

have ⋂{ ∣θ∣ ∶ θ ∈ Θ } ∩ ⋂n
k=1 ∣θik ∣ = ∣⋀Θ ∧ ⋀n

k=1 θik ∣, so by condition (b) on E∗(x), E(⋀Θ ∧ ⋀n
k=1 θik) ∈ x.

But since Ψ ⊆ ◻(x) = ◻(y), and ◻ is a normal operator, ◻(⋀Ψ) ∈ x. But then, by MergeE, E(⋀Θ ∧⋀Ψ ∧

⋀n
k=1 θik) ∈ x. Thus,

¬U(φ1, . . . , φn; (⋀Θ ∧⋀Ψ ∧
n

⋀
k=1

θik)) ∈ x.

Since we have already established that ◻[(⋀Θ ∧⋀Ψ ∧⋀n
k=1 θik) → δ] ∈ x, it follows from U◻R, that

U(φ1, . . . , φn; (⋀Θ ∧⋀Ψ ∧⋀n
k=1 θik)) ∈ x. That means x is inconsistent. But x is maximally consistent,

so JφjK ⊆X for some j ≤ n. Therefore,M∗,y, x ⊧ U(φ1, . . . , φn; δ).



Evidence Logic and Forcing 17

If we then notice that assuming E⊺ ∈ x for each x ∈W ∗,y, we get that J⊺K ∈ E∗,y(x) by the truth lemma
and the definition of E∗,y, thus, E∗,y(x) ≠ ∅. Also, if we were to assume ∅ ∈ E∗,y(x), then J�K ∈ E∗,y(x).
However, given the definition of E∗,y(x) and the truth lemma, we would have E� ∈ x which is impossible
since x must be consistent. ThereforeM∗,y is a hypergraph model as given in definition 4. The standard
argument shows that the logic U is complete with respect to the arguments validated in all hypergraph
models. In fact, it shows something stronger.

The proof of completeness from the previous section shows that the logic U is actually complete with
respect to the class of all core-complete models. Thus, we may assume that all frames considered are
core-complete: i.e., cor(E(x)) ≠ ∅ and for all X ∈ E(x) there is X ′ ∈ cor(E(x)) such that X ′ ⊆ X. This
observation was made in [6]. Their construction of a canonical model resulted in a core-reduced model
rather than just one that is core-complete because they only kept the cores of each E∗(x) they defined.
The core of E∗(x) consists of all sets ⋂{ ∣θi∣ ∶ i ∈ I } that are maximal subsets of { ∣θ∣ ∶ Eθ ∈ x} which also
satisfy the second condition in the definition of E∗(x). Since E∗,y is defined from E∗(x), E∗,y(x) is also
core-complete.

Thus, we have given a modal evidence logic for general Schotch-Jennings forcing, not simply the fixed-
level versions. Now that we have this logic, in future work we can extend this semantics to a doxastic
logic in the style of the evidence logics of van Benthem et al. and Baltag et al. We will also explore
generalizations of the U operator which we have called ‘pointed operators’.
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