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Abstract. In this paper, the notion of structural completeness is ex-
plored in the context of a generalized class of superintuitionistic logics
involving also systems that are not closed under uniform substitution.
We just require that each logic must be closed under D-substitutions
assigning to atomic formulas only ∨-free formulas. For these systems we
introduce four different notions of structural completeness and study how
they are related. We focus on superintuitionistic inquisitive logics that
validate a schema called Split and have the disjunction property. In these
logics disjunction can be interpreted in the sense of inquisitive semantics
as a question forming operator. It is shown that a logic is structurally
complete with respect to D-substitutions if and only if it includes the
weakest superintuitionistic inquisitive logic. Various consequences of this
result are explored. For example, it is shown that every superintuition-
istic inquisitive logic can be characterized by a Kripke model built up
from D-substitutions. Additionally, we resolve a conjecture concerning
superintuitionistic inquisitive logics due to Miglioli et al..

Keywords: Inquisitive logic · superintuitionistic logics · Structural com-
pleteness · Substitution · Kripke semantics.

1 Introduction

The property of structural completeness of a logic Λ is satisfied when every rule
admissible in Λ is also derivable in Λ. Since its introduction by Pogorzelski [25],
the property has been studied in a number of contexts, e.g. in substructural
logics in [24] or fuzzy logics in [8], but most exhaustively in the context of
superintuitionistic (also known as intermediate) logics (e.g. in [9, 10]).

Research on structural completeness has largely assumed the requirement of
closure under uniform substitutions. A notable exception to this requirement is
found in inquisitive logic [6]. Inquisitive logic makes up a framework in which
declarative propositions (asserting information) are distinguished from inquisi-
tive propositions (in which a question is posed). In order to preserve the distinc-
tion, uniform substitution must be relaxed.

As [28] documents, there is an interesting class of superintuitionistic inquis-
itive logics that inhabit the space of theories extending intuitionistic logic but
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are not closed under all substitutions. Both [22] and [20] touch on properties
concerning structural completeness relevant to inquisitive logics. [22] considers
variants of structural completeness over a wide range of theories in which sub-
stitutivity might fail, emphasizing two particular inquisitive logics, while [20]
considers the inquisitive logic InqB among related systems of logics of depen-
dency. While both studies have lessons for the structure of inquisitive logics,
neither focuses on the whole class of these logics.

In what follows, we investigate structural completeness from the perspec-
tive of intuitionistic inquisitive logic and its extensions. Several interesting facts
become clear from this standpoint, including the fact that all superintuitionis-
tic inquisitive logics enjoy a property of hereditary structural completeness and
that hereditary structural completeness coincides with structural completeness
simpliciter in the space of extensions of intuitionistic inquisitive logic. We ap-
ply these results to expose a relationship with extensions of Gödel-Dummett
logic LC and to explore the features of Kripke models for inquisitive logics built
from substitutions. Along the way, we resolve a two-part conjecture concerning
inquisitive logics due to Miglioli et al. made in [22].

2 Intuitionistic inquisitive logic and its extensions

The standard inquisitive logic [2–4, 6] is based on an “information-based” se-
mantics for classical logic that allows us to add to the language and charac-
terize semantically some question forming operators, like inquisitive disjunction
on the propositional level and an inquisitive existential quantifier on the first-
order level. Since we will focus in this paper on the propositional level, we will
be concerned only with inquisitive disjunction. This operator, when applied to
statements S1, S2, forms the question whether S1 or S2, which can be contrasted
with the statement that S1 or S2. Interestingly, this construction can be embed-
ded under other operators, thus allowing one to form, for example, conjunctive
questions and conditional questions. It is also possible to form disjunctive ques-
tions with more than two alternatives (whether S1, S2, or S3, and so on), and
polar (yes/no) questions as a special kind of disjunctive question (whether S1 or
not S1).

Inquisitive disjunction has some constructive features and resembles intu-
itionistic disjunction, though, as we will see, it is not identical with it. Standard
inquisitive logic can thus be viewed as classical logic extended with this con-
structive operator. It is possible to vary almost arbitrarily the background logic
of declarative sentences, while keeping fixed the most characteristic features of
inquisitive semantics. In this way we obtain non-classical inquisitive logics. A
general semantic and syntactic theory of these logics is developed in [30]. An
important example of such a logic is intuitionistic inquisitive logic [5, 28, 31]. It
can be presented in two different ways. One can take the standard language of
intuitionistic logic and add inquisitive disjunction to this language (as in [29, 5]).
Alternatively, one can work just with the standard language involving only one
disjunction, which is however interpreted in the inquisitive way (as in [2, 6, 31]).
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In this paper we will take the latter approach, which has the advantage that the
axiomatization of the corresponding logic is much simpler and more elegant, and
it can be compared directly with other logical systems in the same language that
have been already studied in the literature on superintuitionistic logics. But the
main reason for the decision to work with only one disjunction is that our main
results concerning structural completeness hold only for this restricted language
and they cease to be valid if the second disjunction is added. So, in this paper
we will work with this basic language:

φ ::= p | ⊥ | φ→ φ | φ ∧ φ | φ ∨ φ

where ∨ will be viewed as inquisitive disjunction. Negation, equivalence and a
constant for validity are defined in the following usual way: ¬φ =def φ → ⊥,
φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ), ⊤ =def ⊥ → ⊥.

Fix any Hilbert style axiomatization of intuitionistic logic in this language,
which has modus ponens as the only rule of inference. Let IL denote the set of
its derivable formulas. We write ⊢IL φ instead of φ ∈ IL, φ ⊢IL ψ instead of
φ → ψ ∈ IL, and φ ≡IL ψ instead of φ ↔ ψ ∈ IL. (The same notation will be
used also for other logics).

An axiomatization of intuitionistic inquisitive logic is obtained by extending
the system for intuitionistic logic with the following schema called Split :

(α→ (ψ ∨ χ)) → ((α→ ψ) ∨ (α→ χ)),

where α ranges over ∨-free formulas.1 The set of derivable formulas will be
denoted as InqIL. The Split schema can be viewed as a piece that is missing in
intuitionistic logic in order to prove inductively the following disjunctive form
theorem, which is a cornerstone of propositional inquisitive logic that has been
proved and used for many of its incarnations.

Theorem 1. For any formula φ there are ∨-free formulas α1, . . . , αn such that

φ ≡InqIL α1 ∨ . . . ∨ αn.

Proof. One can proceed by induction. We show just the inductive step for im-
plication. Assume that ψ ≡InqIL β1 ∨ . . . ∨ βm and χ ≡InqIL γ1 ∨ . . . ∨ γn. Let
I = {1, . . . ,m} and J = {1, . . . , n}. Then (using Split in the equivalence be-
tween the second and the third line):

ψ → χ ≡InqIL

∨
i∈I βi →

∨
j∈J γj

≡InqIL

∧
i∈I(βi →

∨
j∈J γj)

≡InqIL

∧
i∈I

∨
j∈J(βi → γj)

≡InqIL

∨
f∈I→J

∧
i∈I(βi → γf(i)).

⊓⊔
1 For a formulation of intuitionistic inquisitive logic as a system of natural deduction,

see [29].
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The Split schema can be formulated in a stronger form, using the notion of
a Harrop formula. A formula is called a Harrop formula if disjunction occurs
in it only within antecedents of implications. So, the only allowed occurrences
of disjunction are in the following context: (. . . ((. . . ∨ . . .) → . . .) . . .). It can
be observed that for every Harrop formula φ there is a ∨-free formula α such
that φ ≡InqIL α. To see this, assume that φ contains a subformula ψ → χ. The
antecedent ψ may possibly involve a disjunction but all such disjunctions can be
eliminated, since, according to Theorem 1, there are ∨-free formulas β1, . . . , βn
such that ψ ≡InqIL β1∨. . .∨βm, and so ψ → χ ≡InqIL

∨
i βi → χ ≡InqIL

∧
i(βi → χ).

As a consequence of this observation, InqIL can be equivalently axiomatized by
extending intuitionistic logic with the schema that we can call H-Split and which
is like Split except that α ranges over arbitrary Harrop formulas.

Nevertheless, the restriction on the antecedents in Split (or H-Split) is im-
portant and cannot be completely avoided. Not all substitutional instances of
Split hold in InqIL. For example, ((p∨q) → (p∨q)) → (((p∨q) → p)∨ ((p∨q) →
q)) /∈ InqIL. In this respect, InqIL is an unusual logic because it is not closed
under uniform substitution. This fact is however well-motivated, given that the
logic deals with two different categories of propositions, statements and ques-
tions. Questions are generated only by the inquisitive operator, and so every
∨-free formula represents a statement. It is not surprising that questions behave
differently, and in some contexts cannot be substituted for statements.

In this paper, we want to explore InqIL within the context of superintuition-
istic logics. However, since superintuitionistic logics are required to be closed
under uniform substitution, we need to introduce a more general notion, that
will encompass also InqIL (and other inquisitive logics). For this purpose, we use
the following definitions.

Definition 1. A substitution is a function that assigns a formula to each atomic
formula. An H-substitution is a substitution that assigns to each atomic formula
a Harrop formula. A D-substitution is a substitution that assigns to each atomic
formula a ∨-free formula.2 If s is a substitution and φ is a formula then s(φ)
denotes the formula that is obtained from φ by replacing simultaneously every
occurrence of each atomic formula p in φ with the formula s(p).

Definition 2. A gsi-logic (generalized superintuitionistic logic) is any set of
formulas which (a) contains all intuitionistically valid formulas; (b) does not
contain ⊥; (c) is closed under every D-substitution; (d) is closed under modus
ponens.3 A gsi-logic is standard if it is closed under every substitution.

Note that the notion of a standard gsi-logic coincides with the standard notion
of a superintuitionistic logic. Next we define, in accordance with [31], the notion
of an inquisitive gsi-logic.
2 Intuitively, given the inquisitive interpretation of disjunction, D-substitutions assign

only declarative sentences to atomic formulas.
3 In [31] these sets of formulas were called superintuitionistic logics∗, using the star to

indicate that the notion of a logic is used in a non-standard way, since closure under
uniform substitution is not generally required.
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Definition 3. We say that a gsi-logic Λ is inquisitive if it (a) contains all in-
stances of Split, and (b) has the disjunction property, i.e. α∨β ∈ Λ only if α ∈ Λ
or β ∈ Λ. Instead of saying that a gsi-logic Λ contains all instances of Split we
will sometimes say that Split is valid in Λ.

It is clear that InqIL is a gsi-logic, though not standard. Another example
of a non-standard gsi-logic is the classical inquisitive logic, often called basic
inquisitive logic and denoted as InqB (see [3]), which can be obtained by adding
to InqIL the restricted double negation law DN : ¬¬α→ α, where α ranges over
∨-free (or, equivalently, Harrop) formulas. Note that the ∨-free fragment of InqB
is identical with classical logic, while it can be shown that the ∨-free fragment
of InqIL is identical with (the ∨-free fragment of) intuitionistic logic.

It can also be shown that both InqIL and InqB have the disjunction property
and thus are inquisitive also according to our general definition. In fact, InqIL is
the weakest and InqB the strongest inquisitive gsi-logic. No inquisitive gsi-logic
is standard. However, for any standard gsi-logic Λ there is exactly one inquisitive
gsi-logic that conservatively extends the ∨-free fragment of Λ. As a consequence,
there are uncountably many inquisitive gsi-logics. For a justification of these
claims, see [28], where inquisitive gsi-logics are called G-logics.

To the best of our knowledge, InqIL and InqB were both studied for the first
time in [22], under the names Fcl and Fint, where it was proved, for instance,
that the schematic fragment of InqB (called the standardization of Fcl in [22]),
i.e. the set S(InqB) = {φ | s(φ) ∈ InqB, for every substitution s}, is identical
with Medvedev’s logic of finite problems ML. Interestingly, the same was stated
without proof also for InqIL. That this quite non-trivial claim is true follows from
the main result of [17].

The system of InqB was later rediscovered in [2, 6] and proved to be sound and
complete with respect to the modern version of inquisitive semantics. This logic
was applied to linguistic phenomena (see [4] for an overview) but also studied
from algebraic and topological perspectives [1, 13, 34]. There is also an extensive
literature on various modal extensions of InqB [7, 14, 15, 27, 32].

A generalization of inquisitive semantics that corresponds to InqIL was in-
troduced in [28]. Intuitionistic inquisitive logic was further studied in [5, 29, 35],
and from an algebraic perspective in [31, 33]. A slightly different approach to
intuitionistic inquisitive logic was proposed in [18]. This approach is based on a
more general framework that does not validate Split.

A recent interesting result also shows that the system of InqIL provides a
sound and complete axiomatization of proof-theoretic semantics [36]. This con-
nection to proof-theoretic semantics nicely stresses the significance of this logic.

3 Structural completeness

In this section, we show that the Split schema is quite intimately connected to
the notion of structural completeness. Structural completeness is usually studied
in relation to logics that are closed under arbitrary substitutions. For a more gen-
eral notion of a logic we need a more flexible notion of structural completeness.
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In particular, we can consider various kinds of structural completeness defined
in terms of some restricted classes of substitutions. Such notions were studied
in depth in [22] and they were employed also in [20] where it was shown that
InqB and some related propositional dependence logics are structurally com-
plete with respect to a suitably adapted sense of the term. In [22], the authors
considered, besides other options, structural completeness defined in terms of
H-substitutions and they called the corresponding notion H-smoothness. We
will call it SH-completeness. Besides that we introduce three other notions of
structural completeness.

Definition 4. Let Λ be a gsi-logic. By sub(Λ) we denote the set of all substitu-
tions under which Λ is closed, i.e., s ∈ sub(Λ) iff s(φ) ∈ Λ, for every φ ∈ Λ.
We say that Λ is SF -complete (structurally fully complete) if it holds:

φ ⊢Λ ψ iff for any substitution s, if ⊢Λ s(φ) then ⊢Λ s(ψ).

We say that Λ is SG-complete (structurally generally complete) if it holds:

φ ⊢Λ ψ iff for any s ∈ sub(Λ), if ⊢Λ s(φ) then ⊢Λ s(ψ).

We say that Λ is SH-complete (structurally Harrop complete) if it holds:

φ ⊢Λ ψ iff for any H-substitution s, if ⊢Λ s(φ) then ⊢Λ s(ψ).

We say that Λ is SD-complete (structurally declaratively complete) if it holds:

φ ⊢Λ ψ iff for any D-substitution s, if ⊢Λ s(φ) then ⊢Λ s(ψ).

We say that Λ is hereditarily SF -complete (SG-complete, SH-complete, SD-
complete) if every gsi-logic Λ′ ⊇ Λ is SF -complete (SG-complete, SH-complete,
SD-complete).

Note that the notions of SF -completeness and SG-completeness both generalize,
in a clear sense, the standard notion of structural completeness. For standard gsi-
logics both these notions are equivalent and coincide with the usual notion that
is restricted to this field. Even though the notion of SF -completeness preserves
the literal formulation of the usual definition and just applies it to a broader
context, we think that SG-completeness provides a more natural generalization
of structural completeness. This should be clear from the following observation
that indicates that the notion of SF -completeness is reasonably applicable only
to standard gsi-logics. We can also immediately observe that SD-completeness
is also stronger than SG-completeness.

Proposition 1. Let Λ be a gsi-logic. Then (a) if Λ is SD-complete then it is
SG-complete; (b) Λ is SF -complete if and only if it is standard and SG-complete.

Proof. (a) Assume that Λ is SD-complete. Obviously, if φ ⊢Λ ψ then for any
s ∈ sub(Λ), if ⊢Λ s(φ) then ⊢Λ s(ψ). For the opposite direction, assume that for
any s ∈ sub(Λ), if ⊢Λ s(φ) then ⊢Λ s(ψ). Then also for any D-substitution s, if
⊢Λ s(φ) then ⊢Λ s(ψ), and thus φ ⊢Λ ψ.
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(b) Assume that Λ is SF -complete and ⊢Λ φ. Then also ⊢Λ ⊤ → φ. Take
any substitution s. Since ⊢Λ s(⊤), by SF -completeness we obtain ⊢Λ s(φ). We
have shown that SF -complete gsi-logics are standard. The rest follows from the
observation that for standard gsi-logics the notions of SF -completeness and SG-
completeness coincide. ⊓⊔

Our aim in this section is to show that Split is closely related to SH-
completeness and SD-completeness. Through this connection we will also be
able to see that these two notions of structural completeness are in fact equiva-
lent. First we can observe the following.

Proposition 2. Every gsi-logic in which Split is valid is closed under all H-
substitutions.

Proof. Assume that Λ is a gsi-logic in which Split is valid and take any H-
substitution s. We have already observed that Split guarantees that every Harrop
formula is equivalent to a ∨-free formula. In particular, for any p there is a ∨-free
formula αp such that s(p) ≡Λ αp. Now we can define a D-substitution s∗ fixing
s∗(p) = αp, for each atomic p. If ⊢Λ φ then also ⊢Λ s∗(φ), since Λ is closed under
D-substitutions. It follows that also ⊢Λ s(φ). ⊓⊔

Let Λ be a gsi-logic that validates Split. Proposition 2 says that if s is an
H-substitution then s ∈ sub(Λ). One can ask whether also the converse holds. If
we formulate the converse directly, it is false for trivial reasons. If a substitution
s assigns formulas that are not Harrop but are all equivalent to Harrop formulas
then Λ must be closed also under s. A more interesting question is whether
Λ may be closed also under substitutions that are not equivalent to any H-
substitution. Let us formulate it more precisely. We say that two substitutions,
s and t, are Λ-equivalent if s(p) ≡Λ t(p), for every atomic formula p. Then the
converse of Proposition 2 would state that if s ∈ sub(Λ) then s is Λ-equivalent to
an H-substitution. Interestingly, this is a property that distinguishes InqIL and
InqB.

Proposition 3. Every s ∈ sub(InqB) is InqB-equivalent to an H-substitution
(and even D-substitution). In contrast, there is s ∈ sub(InqIL) that is not InqIL-
equivalent to any H-substitution.

Proof. For the first part, let s be a substitution under which InqB is closed and
let p be an arbitrary atomic formula. Then as InqB proves ¬¬p ↔ p, we obtain
¬¬s(p) ≡InqB s(p). Also, by Theorem 1, s(p) ≡InqB α1 ∨ . . . ∨ αn, where each αi
is ∨-free, whence s(p) ≡InqB ¬¬(α1 ∨ . . . ∨ αn). But as (¬φ ∧ ¬ψ) ↔ ¬(φ ∨ ψ)
holds intuitionistically, s(p) ≡InqB ¬(¬α1 ∧ . . .∧¬αn), where ¬(¬α1 ∧ . . .∧¬αn)
is ∨-free and thus Harrop.

For the second part of the proposition, fix an atomic formula p and take the
substitution s that assigns to every atomic formula the formula p∨¬p. Assume,
for the sake of contradiction, that p ∨ ¬p ≡InqIL α, for some Harrop formula
α. Then, by Split and disjunction property, we would obtain ⊢InqIL α → p or
⊢InqIL α → ¬p, and thus ⊢InqIL (p ∨ ¬p) → p or ⊢InqIL (p ∨ ¬p) → ¬p. This leads
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to a contradiction because none of these formulas is valid in classical logic which
extends InqIL. So, s is not InqIL-equivalent to any H-substitution.

It remains to be shown that s ∈ sub(InqIL). In order to show that a logic
generated by modus ponens from a set of axioms is closed under a substitution
s, it is sufficient to show that s(χ) is provable for every axiom χ. So, we have to
show ⊢InqIL s(χ), for our specific s and every instance χ of Split. First, observe
that for every formula χ, s(χ) is intuitionistically equivalent to one of these
formulas: ⊥, p∨¬p,⊤. To see this, note that ⊥ and ⊤ are generated from p∨¬p
by negation and the set {⊥, p∨¬p,⊤} is, up to intuitionistic equivalence, closed
under the operations →,∧,∨. But then, if s(α), s(φ), s(ψ) are intuitionistically
equivalent to any of the formulas ⊥, p ∨ ¬p,⊤, the formula

(s(α) → (s(φ) ∨ s(ψ))) → ((s(α) → s(φ)) ∨ (s(α) → s(φ)))

is intuitionistically valid. Hence, if we apply s to any instance of Split we always
obtain a formula that is valid in InqIL. ⊓⊔

Proposition 3 shows that H-substitutions do not necessarily cover the space
of all substitutions under which a logic validating Split is closed. Nevertheless,
it will be clear from our main result, Theorem 2 below, that these substitutions
play a special role in these logics.

We will rely heavily on a standard technique of proving structural complete-
ness developed by Prucnal [26], or more precisely, on its refinement introduced
later in [23]. Let α be a Harrop formula such that ⊬IL ¬α. Then there is a clas-
sical valuation v such that v(α) = 1. Following [23], we define, relative to α and
v, the following H-substitution:

svα(p) =

{
α→ p if v(p) = 1

¬¬α ∧ (α→ p) otherwise

Note that if α is a ∨-free formula, then svα is a D-substitution.

Lemma 1. Let φ be any formula, α, β Harrop formulas, and v a classical val-
uation such that v(β) = 1. Then (a) svα(φ) ⊢IL α→ φ; (b) svα(β) ≡IL α→ β.

For a proof of this crucial result, see [23]. Note that, as a direct consequence of
Lemma 1-b, it holds that if α is a Harrop formula, and v(α) = 1 then ⊢IL s

v
α(α).

This lemma implies the following one that generalizes the main result of [23],
which was originally formulated for standard gsi-logics.

Lemma 2. Let Λ be a gsi-logic, ψ, χ any formulas, and α a Harrop formula.
Then if α→ (ψ ∨ χ) ∈ Λ then (α→ ψ) ∨ (α→ χ) ∈ Λ.

Proof. Assume α → (ψ ∨ χ) ∈ Λ. We want to prove (α → ψ) ∨ (α → χ) ∈ Λ. If
¬α ∈ Λ then the required conclusion is immediate. Assume ¬α /∈ Λ. Then, due
to Glivenko’s theorem, ¬α is not classically valid and so there is a valuation v
such that v(α) = 1. Then, by Lemma 1-b, svα(α) ∈ Λ. Since Λ is closed under H-
substitutions, svα(α) → (svα(ψ) ∨ svα(χ)) ∈ Λ, and hence also svα(ψ) ∨ svα(χ) ∈ Λ.
Thus, by Lemma 1-a, (α→ ψ) ∨ (α→ χ) ∈ Λ. ⊓⊔
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The previous lemma plays a crucial role in the proof of one part of the
next theorem which is our main result relating Split with the notions of SH-
completeness and SD-completeness.

Theorem 2. For every gsi-logic Λ the following claims are equivalent: (a) Λ is
SH-complete; (b) Λ is SD-complete; (c) Split is valid in Λ.

Proof. First, assume that Λ is SH-complete. Let α be a ∨-free formula and φ,ψ
arbitrary formulas. By Lemma 2, for any H-substitution s, if s(α→ (ψ∨χ)) ∈ Λ
then s((α → ψ) ∨ (α → χ)) ∈ Λ. It follows from SH-completeness that Split is
valid in Λ. In the same way, one can prove that SD-completeness implies the
validity of Split.

Second, assume that Split is valid in Λ. We show that φ ⊢Λ ψ iff for any
H-substitution s, if ⊢Λ s(φ) then ⊢Λ s(ψ). The left-to-right direction follows
immediately from Proposition 2. We prove the right-to-left direction. Assume
that

(i) for any H-substitution s, if ⊢Λ s(φ) then ⊢Λ s(ψ).

We have to show that φ ⊢Λ ψ. If ⊢Λ ¬φ, we are done, so we can assume that
⊬Λ ¬φ. As Split is valid in Λ, we can take, due to the disjunctive form theorem,
Harrop formulas α1, . . . , αn such that

(ii) φ ≡Λ α1 ∨ . . . ∨ αn.

Let us assume that the disjunction is minimal, i.e. φ is not equivalent with the
disjunction of any proper subset of {α1, . . . , αn}. It follows that for every αi
(1 ≤ i ≤ n), ⊬IL ¬αi (otherwise the disjunction in (ii) would not be minimal).
Thus, due to Glivenko’s theorem, for each 1 ≤ i ≤ n, ⊬CL ¬αi, and so there is a
classical valuation vi such that vi(αi) = 1. Then the following holds:

1. ⊢Λ sviαi
(αi) (by Lemma 1-b),

2. ⊢Λ sviαi
(αi) → sviαi

(φ) (since Λ is closed under H-substitutions),

3. ⊢Λ sviαi
(φ) (from 1. and 2.),

4. ⊢Λ sviαi
(ψ) (from 3. and the assumption (i)),

5. sviαi
(ψ) ⊢Λ αi → ψ (by Lemma 1-a),

6. αi ⊢Λ ψ (from 4. and 5.).

Since the last point holds for any 1 ≤ i ≤ n we obtain φ ⊢Λ ψ as required. In
the same way, one can prove that the validity of Split implies that the logic is
SD-complete. ⊓⊔

In the rest of this paper, we will explore some consequences of this result.
The first one is immediate and it shows an interesting difference between SF -
completeness/SG-completeness (on the one hand) and SH-completeness/SD-
completeness (on the other).
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Corollary 1. Every SH-complete (SD-complete) gsi-logic is hereditarily SH-
complete (SD-complete).

In contrast to this corollary, there are examples of gsi-logics that are SF - and SG-
complete but neither hereditarily SF -complete nor hereditarily SG-complete.
For instance, the logic of finite problems ML has this property (see [9, 12]). The
next corollary is based on the observation that SD-completeness is a stronger
property than SG-completeness.

Corollary 2. InqIL is hereditarily SG-complete.

In other words, every gsi-logic that validates Split is SG-complete. The converse
does not hold. ML does not validate Split but it is SG-complete.

The relations between different kinds of structural completeness are summa-
rized in the following picture:

SD SH

SF SG

⇐⇒

=⇒
⇍=

=
⇒ ⇍
=

≠
⇒⇍
=

ML is a counterexample to SF =⇒ SD(H) and SG =⇒ SD(H), and any in-
quisitive gsi-logic is a counterexample to SD(H) =⇒ SF and SG =⇒ SF .

4 Schematic closures of inquisitive gsi-logics

In this section we discuss some issues concerning SF -completeness and for this
purpose we employ the following notation. If Λ is a gsi-logic and ∆ a set of
formulas then Λ ⊕ ∆ will denote the set of formulas derivable from Λ ∪ ∆ by
modus ponens. More precisely,

Λ⊕∆ = {φ | ψ ∧ χ1 ∧ . . . ∧ χn ⊢IL φ for some ψ ∈ Λ and χ1, . . . , χn ∈ ∆}.

Note that if ∆ is closed under D-substitutions then so is Λ ⊕ ∆, and if,
moreover, Λ∪∆ is consistent, i.e. ⊥ /∈ Λ⊕∆, then Λ⊕∆ is the smallest gsi-logic
including Λ ∪∆.

Let us recall that LC is the Gödel-Dummett fuzzy logic [11, 16]. It is often
presented as an extension of intuitionistic logic by the prelinearity schema:

(φ→ ψ) ∨ (ψ → φ).

Let us denote the set of all instances of this schema as PreLin and let FullSplit
denote the set of instances of the schema (where χ is not restricted)

(χ→ (φ ∨ ψ)) → ((χ→ φ) ∨ (χ→ ψ)).

An obvious connection of LC to the logics we are focused on in this paper is
given by the following observation made in [11].
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Proposition 4. LC = IL⊕ PreLin = IL⊕ FullSplit.

So, LC is a standard extension of InqIL (= IL⊕ Split). It is well-known that the
logic LC is hereditarily structurally complete in the class of standard gsi-logics
(shown in [12]). This result can also be obtained as a direct consequence of our
Corollary 2, if we recall that SG-completeness generalizes the usual structural
completeness. A natural question arises whether LC is also hereditarily SF -
complete over the space of gsi-logics in general.

When one considers results over the case of standard gsi-logics, there is rea-
son to be cautious before importing them to our general setting. That a logic
is hereditarily structurally complete over the standard gsi-logics does not a pri-
ori entail hereditary SF -completeness over the broader space of gsi-logics. To
see that LC is indeed hereditarily SF -complete, we need to use the following
observation that is due to Dummett [11].

Lemma 3. φ ∨ ψ ≡LC ((φ→ ψ) → ψ) ∧ ((ψ → φ) → φ).

This result shows that disjunction is definable in LC. In fact, as pointed out in
[23], every (standard) gsi-logic in which disjunction is definable includes LC. The
previous lemma implies the following one.

Lemma 4. Every gsi-logic that includes LC is standard.

Proof. Take any gsi-logic Λ that includes LC, any φ ∈ Λ and any substitution
s. It follows from Lemma 3 that for every formula ψ there is a ∨-free formula
αψ such that ψ ≡Λ αψ. We define a D-substitution s∗ fixing s∗(p) = αs(p), for
every atom p. Note that s∗ is Λ-equivalent to s. Since s∗(φ) ∈ Λ, we also have
s(φ) ∈ Λ. Hence, Λ is standard. ⊓⊔

Using this Lemma we can prove the following result.

Theorem 3. LC is hereditarily SF -complete over all gsi-logics.

We can even strengthen this result in the following way.

Theorem 4. Let Λ be a gsi-logic including InqIL. Then the following claims are
equivalent: (a) Λ is hereditarily SF -complete; (b) Λ is SF -complete; (c) Λ is
standard; (d) Λ includes all instances of FullSplit; (e) if ⊢Λ φ → (ψ ∨ χ) then
⊢Λ (φ→ ψ) ∨ (φ→ χ); (f) LC ⊆ Λ.

Proof. (a) ⇒ (b) is immediate by definition. (b) ⇒ (c) is from Proposition 1.
(c) ⇒ (d): As a standard extension of InqIL, Λ must contain all instances of
FullSplit. (d) ⇒ (e) is immediate. (e) ⇒ (f): As an extension of IL, Λ includes
all instances of (φ∨ψ) → (φ∨ψ). By the assumption (e), we obtain ((φ∨ψ) →
φ)∨ ((φ∨ψ) → ψ) ∈ Λ. Since ψ → (φ∨ψ), φ→ (φ∨ψ) are theorems, we obtain
(φ → ψ) ∨ (ψ → φ) ∈ Λ. By Proposition 4, LC ⊆ Λ. (f) ⇒ (a): By Theorem 3,
LC is hereditarily SF -complete, whence in virtue of the inclusion of LC in Λ, Λ
is hereditarily SF -complete. ⊓⊔
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It is clear that the logic LC is what we obtain if we close InqIL under all
substitutions. Let us consider this operation of schematic closure from a more
general perspective. We have already indicated that any gsi-logic Λ determines
its schematic fragment S(Λ) = {φ | s(φ) ∈ Λ, for every substitution s}, which is
a standard gsi-logic. All inquisitive gsi-logics have the same schematic fragment,
namely ML. The operation of schematic closure that we denote as C can be
generally defined as follows: φ ∈ C(Λ) iff s1(ψ1) ∧ . . . ∧ sn(ψn) ⊢IL φ, for some
substitutions s1, . . . , sn and some ψ1, . . . , ψn ∈ Λ. Note that C(Λ) is indeed
a standard gsi-logic. In general, it holds that S(Λ) ⊆ Λ ⊆ C(Λ). S(Λ) is the
greatest standard gsi-logic below Λ, and C(Λ) is the smallest standard gsi-logic
above Λ. So, if Λ is itself standard, we obtain S(Λ) = Λ = C(Λ). In the rest of
this section we explore the schematic closures of inquisitive gsi-logics.

It is clear that C(InqIL) = LC and C(InqB) = CL. What do the schematic
closures of the other inquisitive gsi-logics look like? The standard gsi-logics that
include LC form a chain consisting of the multivalued logics Gn, n ≥ 3, plus the
classical logic CL on the top. If we denote classical logic as G2 and the logic LC
as Gω then we have (see [16]):

Gω ⊆ . . . ⊆ G5 ⊆ G4 ⊆ G3 ⊆ G2.

The schematic closure of every gsi-logic extending InqIL will be one of the G-
logics. For those gsi-logics which include InqIL and have the disjunction property,
i.e. for the inquisitive gsi-logics, we can characterize the schematic closures in an
elegant and systematic way.

For any set of formulas ∆, let ∆df denote the ∨-free fragment of ∆, i.e.
∆df = {φ ∈ ∆ | φ is ∨-free}. The disjunction property of inquisitive logics is
crucial for the proof of the following lemma.

Lemma 5. Let Λ be any inquisitive gsi-logic and Gn, where n ∈ {2, 3, 4, . . . , ω},
any gsi-logic including LC. Then (a) Λ = InqIL⊕ Λdf ; (b) Gn = LC⊕ Gdfn .

Proof. (a) Let Λ be any inquisitive gsi-logic. Clearly, it holds that InqIL⊕Λdf ⊆
Λ. Assume φ ∈ Λ. Let φ ≡InqIL α1 ∨ . . . ∨ αn, where each αi is ∨-free. By
the disjunction property, for some i, αi ∈ Λ and thus αi ∈ Λdf . Hence, φ ∈
InqIL ⊕ Λdf . (b) Clearly, LC ⊕ Gdfn ⊆ Gn. Assume φ ∈ Gn. Then, by Lemma 3,
there is ∨-free α such that φ ≡LC α. Then α ∈ Gdfn and thus φ ∈ LC⊕ Gdfn .

With the help of this lemma we can characterize the schematic closures of in-
quisitive gsi-logics in the following way.

Theorem 5. Let Λ be an inquisitive gsi-logic. Then

C(Λ) = LC⊕ Λdf = Gn, for n = max{m | Λdf ⊆ Gdfm}.

Proof. Assume that Λ is an inquisitive gsi-logic. Clearly, it holds that LC⊕Λdf ⊆
C(Λ). By Lemma 5-a, Λ = InqIL ⊕ Λdf and thus Λ ⊆ LC ⊕ Λdf . By Lemma 4,
LC⊕Λdf is standard and since C(Λ) is the smallest standard gsi-logic extending
Λ, we obtain C(Λ) ⊆ LC⊕ Λdf . So, we have proved that C(Λ) = LC⊕ Λdf .
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Clearly, C(Λ) = Gn, for some n. Then it must hold Λdf ⊆ Gdfn . Assume, for
the sake of contradiction, that n ̸= ω and Λdf ⊆ Gdfn+1. Then, using Lemma
5-b, we obtain C(Λ) = LC ⊕ Λdf ⊆ LC ⊕ Gdfn+1 = Gn+1. But C(Λ) ⊆ Gn+1 is in
contradiction with the assumption C(Λ) = Gn. Thus n = max{m | Λdf ⊆ Gdfm}.

⊓⊔

So, while Λ = InqIL⊕Λdf , C(Λ) = LC⊕Λdf . This result shows that the schematic
closure operation collapses the uncountable space of inquisitive gsi-logics to a
countable linear order of standard gsi-logics. Moreover, this mapping to Gn-logics
is surjective. In particular, each InqIL⊕Gdfn is inquisitive and C(InqIL⊕Gdfn ) = Gn.

5 Kripke models

Structural completeness is an important property of classical logic that intu-
itionistic logic lacks. On the other hand, the disjunction property is an impor-
tant property of intuitionistic logic that classical logic violates. An interesting
question is whether there are logics that have both these properties.

Definition 5. A gsi-logic is optimal if it is SG-complete and has the disjunction
property.

The only standard gsi-logic that is known to be optimal is ML (see [37]). As
another direct consequence of Theorem 2 we obtain the following result showing
that among non-standard gsi-logics there are uncountably many optimal logics.

Theorem 6. Every inquisitive gsi-logic is optimal.

Let us point out that at the end of [22] a conjecture is formulated which, when
translated in our terminology, says that (a) InqIL is optimal, and (b) InqIL and
InqB are the only optimal gsi-logics. Theorem 6 thus serves to prove the first
half of the conjecture and refutes the latter half.

In this section, we show that Theorem 6 is related to the possibility of an
interesting canonical model construction for inquisitive gsi-logics. For any gsi-
logic one can construct, in the usual way, a canonical Kripke model built out of
prime theories. A peculiar feature of inquisitive gsi-logics is that they can also
be characterized by a Kripke model built directly out of consistent ∨-free for-
mulas.4 We will briefly formulate this construction and compare it with another
unusual canonical model construction that we obtain as an application of our
main results. For the rest of this section, let us fix an inquisitive gsi-logic Λ.
Moreover, let us say that α is consistent if ⊬Λ ¬α.

Now we introduce the Kripke semantics for intuitionistic logic. A Kripke
frame is a pair ⟨S,≤⟩ where ≤ is a preorder, i.e. a reflexive and transitive relation
on S. A Kripke model is a Kripke frame equipped with a valuation V , i.e. a
4 This is related to a fact that was already observed in [28], namely that any inquisitive

gsi-logic Λ can be characterized by a canonical Kripke model built up from the
Lindenbaum-Tarski algebra of the ∨-free fragment of Λ.
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function that assigns to each atomic formula an upward closed subset of S (that
is, if w ∈ V (p) and w ≤ v then v ∈ V (p)). Given any Kripke model the relation
⊩ between states of the model and formulas is defined in the usual recursive
way. For the atomic formulas, we set w ⊩ p iff w ∈ V (p). For the constant ⊥
and complex formulas, the relation is determined as follows:

(a) w ⊮ ⊥,
(b) w ⊩ φ→ ψ iff for any v ≥ w, if v ⊩ φ then v ⊩ ψ,
(c) w ⊩ φ ∧ ψ iff w ⊩ φ and w ⊩ ψ,
(d) w ⊩ φ ∨ ψ iff w ⊩ φ or w ⊩ ψ.

The relation is persistent: if w ⊩ φ and w ≤ v then v ⊩ φ. We say that φ is valid
in a model ⟨S,≤, V ⟩ if w ⊩ φ holds in that model for every w ∈ S. It is well-
known that a formula is intuitionistically valid iff it is valid in all Kripke models
[21]. The recursive clauses for ⊩ actually mirror some characteristic properties
of ⊢ in inquisitive gsi-logics, as is shown in the following proposition.

Proposition 5. Let α be a consistent ∨-free formula and φ,ψ arbitrary formu-
las. Then

(a) α ⊬Λ ⊥,
(b) α ⊢Λ φ → ψ iff for any consistent ∨-free β s.t. β ⊢Λ α if β ⊢Λ φ then

β ⊢Λ ψ,5
(c) α ⊢Λ φ ∧ ψ iff α ⊢Λ φ and α ⊢Λ ψ,
(d) α ⊢Λ φ ∨ ψ iff α ⊢Λ φ or α ⊢Λ ψ.

Proof. (a) and (c) are immediate. Due to Lemma 2, (d) holds for every gsi-logic
which has the disjunction property. Let us prove (b). The left-to-right direction
is immediate. For the right-to-left direction assume that for any consistent ∨-free
β ⊢Λ α, if β ⊢Λ φ then β ⊢Λ ψ. Obviously, β ⊢Λ ψ holds also in the case that β
is not consistent. Assume that φ ≡Λ γ1 ∨ . . . ∨ γn, where γ1, . . . , γn are ∨-free.
Then γi∧α ⊢Λ α and γi∧α ⊢Λ φ. Our assumption implies that γi∧α ⊢Λ ψ. So,
for all i, γi ⊢Λ α→ ψ, and thus φ ⊢Λ α→ ψ. It follows that α ⊢Λ φ→ ψ. ⊓⊔

This observation motivates the construction of a canonical Kripke model MΛ =
⟨SΛ,≤Λ, VΛ⟩, where SΛ = {α | α is ∨-free and consistent}, α ≤Λ β iff β ⊢Λ α,
and α ∈ VΛ(p) iff α ⊢Λ p. Then Proposition 5 directly implies that ⊩ in MΛ

coincides with ⊢Λ.

Theorem 7. For each φ and each consistent ∨-free α, α ⊩ φ in MΛ if and
only if α ⊢Λ φ. As a consequence, φ ∈ Λ if and only if φ is valid in MΛ.

There is also a remarkable correspondence between the semantic clauses of
Kripke semantics and the behaviour of D-substitutions in inquisitive gsi-logics.
This correspondence is based on Theorem 6. To make it more visible, let us write
s ≻ φ instead of ⊢Λ s(φ) and let us define for any D-substitutions s, t that s ≤ t
iff there is a D-substitution u such that t = u ◦ s (where ◦ is the composition of
substitutions).
5 The word “consistent” could be omitted here and the equivalence would hold too but

in a moment we will need this particular form of the statement that quantify over
consistent formulas.



Structural Completeness and Superintuitionistic Inquisitive Logics 15

Proposition 6. Let s be a D-substitution and φ,ψ arbitrary formulas. Then

(a) s ⊁ ⊥,
(b) s ≻ φ→ ψ iff for any D-substitution t ≥ s, if t ≻ φ then t ≻ ψ,
(c) s ≻ φ ∧ ψ iff s ≻ φ and s ≻ ψ,
(d) s ≻ φ ∨ ψ iff s ≻ φ or s ≻ ψ.

Proof. All cases are straightforward. We will just comment on the case (b). This
case can be reformulated in this way: s(φ) ⊢ s(ψ) iff for any D-substitution t, if
⊢ t(s(φ)) then ⊢ t(s(ψ)). But this is exactly structural D-completeness applied
to the implication s(φ) → s(ψ). ⊓⊔

Using this observation we can build from D-substitutions a particular canonical
Kripke model MΛ = ⟨SΛ,≤Λ, V Λ⟩, where SΛ is the set of all D-substitutions,
s ≤Λ t iff there is a D-substitution u such that t = u ◦ s, s ∈ V Λ(p) iff s ≻ p.6

Let id be the identity function on atomic formulas. Then id is aD-substitution
and id ≤Λ s, for every D-substitution s. So, φ is valid in MΛ iff id ⊩ φ in MΛ.
Proposition 6 implies the following result.

Theorem 8. For each φ and each D-substitution s, s ⊩ φ in MΛ if and only
if s ≻ φ. As a consequence, φ ∈ Λ if and only if φ is valid in MΛ.

6 Conclusion

Let us summarize the main results of this paper. We have studied four notions
of structural completeness (SF -, SG-, SH- and SD-completeness) in a class of
generalized superintuitionistic logics that are not required to be closed under
all substitutions but only under substitutions assigning disjunction free formu-
las. We have shown a connection between these notions and the schema Split
that axiomatizes intuitionistic inquisitive logic InqIL. A characteristic feature of
Split is that it allows to transform every formula to a disjunctive normal form
(Theorem 1).

Our main result (Theorem 2) shows that SH-completeness is equivalent to
SD-completeness and these properties hold exactly for those logics that validate
Split. As a consequence, SH(D)-completeness is hereditary (Corollary 1). We
have also shown that InqIL is hereditarily SG-complete (Corollary 2) and its clo-
sure under substitutions, i.e. the Gödel-Dummett logic LC, remains hereditarily
SF -complete (Theorem 3 and its extension Theorem 4).

We have further studied inquisitive logics, i.e. those logics that include InqIL
and have the disjunction property. We have proved that the operation that closes
every such logic under substitutions maps the uncountably large class of inquis-
itive logics onto the countably infinite chain of those logics that include LC
(Theorem 5). It follows directly from our main result that inquisitive logics are

6 An analogous construction was described in [37] for the standard optimal gsi-logic
ML.
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optimal, i.e. they are structurally complete and have disjunction property (The-
orem 6). They can be characterized by a canonical Kripke model built from
consistent disjunction free formulas (Theorem 7). Interestingly, their optimality
means that they can be alternatively characterized by a canonical Kripke model
built from substitutions assigning disjunction free formulas (Theorem 8).

In future work, we would like to study structural completeness in the more
general context of substructural inquisitive logics [30]. We also plan to explore
the notion of structural completeness for these logics in the setting of multi-
conclusion consequence relation [19].
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