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Abstract. Qualitative Choice Logic (QCL) is a framework for jointly
dealing with truth and preferences. We develop the concept of degree-
based validity by lifting a Hintikka-style semantic game [10] to a prov-
ability game. Strategies in the provability game are translated into proofs
in a novel labeled sequent calculus where proofs come in degrees. Fur-
thermore, we show that preferred models can be extracted from proofs.
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1 Introduction

Preferences are important in many research areas, including computer science
and artificial intelligence [14]. A formalism for preference representation that has
gained considerable attention is Qualitative Choice Logic (QCL) [6], which ex-
tends classical propositional logic with a connective

#»× called ordered disjunction.
F

#»×G expresses that F or G should be satisfied, but satisfying F is preferable to
satisfying only G. QCL and its variations [2,4,5] have been studied with regards
to applications [1,7,12,15,16], computational properties [4], and proof systems [3].

Recently, QCL has been reexamined through the lens of game theoretic se-
mantics (GTS). Specifically, Game-induced Choice Logic (GCL) [10] was intro-
duced as an extension of Hintikka’s semantic game for classical logic [11]. In this
semantic game, two players – Me and You– play over a fixed formula F and
an interpretation I. Hintikka’s modeling of truth as a win for Me and falsity
as a loss is refined by more fine-grained outcomes. The more preferences I am
able to satisfy during the game, the higher the payoff for Me. Besides providing
a new understanding of ordered disjunction, GCL addresses some contentious
behavior of negation in QCL, where a formula F is not necessarily semantically
equivalent to the double negation ¬¬F . GCL redefines negation using game-
theoretic methods and thus provides semantics where F is equivalent to ¬¬F
and negation behaves more similarly to classical negation in general.

A natural question not yet addressed in existing work on GCL is whether
there is an algorithm that finds strategies for Me which guarantee a fixed payoff
for the game over a fixed formula F and all interpretations. Reduced to winning
strategies, this corresponds to the question of the validity of F . We answer this

⋆ Research supported by FWF project P32684



2 R. Freiman, M. Bernreiter

question by lifting the GTS to a dialogue game (we prefer the term provability
game). Intuitively, in this game, the players play the semantic game over all
interpretations simultaneously but I am allowed to create backup copies of game
states. This technique has been demonstrated to lead to adequate proof systems
for a variety of logics [8,13,9]. Our approach is the first to interpret non-classical
truth values with non-binary outcomes in both the semantic and the disjunctive
game. Our main result states that from a strategy σ for Me in the disjunctive
game one can extract strategies for the semantic game over every interpretation
yielding a payoff at least as good as σ’s. Furthermore, from Your strategy one can
extract an interpretation I and a strategy for the semantic game over I yielding
at least the same payoff for You. In logical terminology, this corresponds to
counter-model extraction; in the realm of preference handling, this corresponds
to the construction of a preferred model.

While the exposition in this paper is mostly game-theoretic, we demonstrate
that strategies for Me in the disjunctive game can be formulated as proofs in a
labeled sequent calculus. Unlike the system for QCL [3], in our proof system GS∗,
proofs have degrees where positive degrees represent proofs of validity, while
negative degrees represent refutations of a formula.

This paper is structured as follows: In Section 2, we recall game-theoretic
notions and GCL. In Section 3, we lift the semantic game for GCL to a provability
game.

In Section 4, we reformulate My strategies as a proof system.

2 Preliminaries

In this section, we recall the game-induced choice logic GCL and its two seman-
tics – game-theoretic and degree-based. The language of GCL is the same as
QCL’s, i.e., it extends the usual propositional language by the choice connec-
tive

#»×. We assume an infinite countable set of propositional variables a, b, . . . .
Compound formulas are built according to the following grammar:

F ::= a | ¬F | F ∧ F | F ∨ F | F #»×F.

An interpretation I is a set of propositional variables, with I |= a iff a ∈ I.

2.1 Game-theoretic semantics

We start by recalling Hintikka’s game [11] over a formula F in the language
restricted to the connectives ∨,∧,¬ and over a classical interpretation I. The
game is played between two players, Me and You, both of which can act either
in the role of Proponent (P) or Opponent (O). At formulas of the form G1∨G2,
P chooses a formula Gi that the game continues with. At formulas of the form
G1 ∧ G2 it is O’s choice. At negations ¬G, the game continues with G and
a role switch. Every outcome (final state of the game) is an occurrence of a
propositional variable a. The player currently in the role of P wins the game
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(and O loses) iff a ∈ I. The central result is that I have a winning strategy for
the game starting in P : F iff I |= F .

To deal with ordered disjunction (
#»×), Hintikka’s game is extended as fol-

lows [10]: at G1
#»×G2 it is P’s choice whether to continue with G1 or with G2,

but this player prefers G1. The preferences of O are the exact opposite of P. For
both players, the aim in the game is now not only to win the game but to do so
with as little compromise to their preferences as possible. Thus, it is natural to
express P’s preference of G1-outcomes O1 over G2-outcomes O2 via the relation
O1 ≫ O2. We leave the formal treatment of this game for the next section and
proceed with some standard game-theoretic definitions.

Definition 1 A game is a pair G = (T, d), where

1. T = (V,E, l) is a tree with set of nodes V (called (game) states) and edges
E. The leaves of T are called outcomes and are denoted O(G). The labeling
function l maps nodes of T to the set {I, Y }.

2. d is a payoff-function mapping outcomes to elements of a linear order (Λ,⪯).

We write x ≈ y if x ⪯ y and y ⪯ x. Λ is partitioned into two sets, W and L,
where W is upward-closed and L = Λ \W . Outcomes O are called winning if
d(O) ∈ W and losing if d(O) ∈ L. A run of the game is a maximal path in T
starting at the root.

Hintikka’s game can be seen as a game in the sense of this definition: the
game tree is the formula tree of F where each occurrence of a subformula G of
F is decorated with either P or O, we write P : G and O : G, respectively. Let
F be decorated with Q0 ∈ {P,O}. If G = G1 ∨ G2, or G = G1 ∧ G2 then the
children of Q : G are decorated the same. If G = ¬G′, then the child of Q : G is
Q̄ : G′, where Q̄ is O if Q = P, and P otherwise. As for the labeling function,
game states of the form P : G1∨G2, O : G1∧G2 are I-states and all other states
are Y-states.

As for payoffs, we write I |= P : a iff I |= a and I |= O : a iff I ̸|= a. The
payoff functions maps outcomes to P = {0, 1}, where d(o) = 1 iff I |= o. P
carries the usual ordering 0 < 1 and W = {1}.

A strategy σ for Me in a game can be understood as My complete game plan.
For every node of the underlying game tree labeled “I”, σ tells Me to which node
I have to move. Here is a formal definition:

Definition 2 A strategy σ for Me for the game G is a subtree of the underlying
tree such that (1) the root of T is in σ and for all v in σ, (2) if l(v) = I, then
at least one successor of v is in σ and (3) if l(v) = Y , then all successors of v
are in σ. A strategy for You is defined symmetrically. We denote by ΣI and ΣY

the set of all strategies for Me and You, respectively.

Conditions (1) and (3) make sure that all possible moves by the other player
are taken care of by the game plan. Each pair of strategies σI ∈ ΣI , σY ∈ ΣY de-
fines a unique outcome of G, denoted by O(σI , σY ). We abbreviate d(O(σI , σY ))
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by d(σI , σY ). A strategy σ∗
I for Me is called winning if, playing according to

this strategy, I win the game, no matter how You move, i.e. for all σY ∈ ΣY ,
d(σ∗

I , σY ) ∈ W . Let k ∈ Λ. A strategy σk
I for Me guaranteeing a payoff of at

least k, i.e. min⪯
σY

(σk
I , σY ) ⪰ k is called a k-strategy for Me. A strategy for You

guaranteeing a payoff of at most k is called a k-strategy for You. An outcome
O that maximizes My pay-off in light of Your best strategy is called maxmin-
outcome. Formally, O is a maxmin-outcome iff d(O) = max⪯

σI
min⪯

σY
d(σI , σY )

and d(O) is called the maxmin-value of the game. A strategy σ∗
I for Me is a

maxmin-strategy for G if σ∗
I ∈ arg max⪯

σI
min⪯

σY
d(σI , σY ), i.e, the maximum is

reached at σ∗
I . Minmax values and strategies for You are defined symmetrically.

The class of games that we have defined falls into the category of zero-sum
games of perfect information in game theory. They are characterized by the fact
that the players have strictly opposing interests. In these games, the minimax
and maximin values always coincide and are referred to as the value of the game.

2.2 Game Choice Logics GCL

We now define the game semantics for GCL [10]. Let Q ∈ {P,O}. The game
over the interpretation I starting with Me in the role Q of formula F is denoted
by NG(Q : F, I). The game tree for the semantic game NG(Q : F, I) is the
same as in Hintikka’s game, where

#»× is treated like ∨.
The main difference is that we now wish to deal with preferences induced by

#»×. My preferences are expressed via the strict partial order ≪ on outcomes of
the game tree: If P : G1

#»×G2 appears in the tree, then outcomes reachable from
P : G1 are in ≫-relation with outcomes reachable from P : G2. Similarly, for
O : G1

#»×G2, outcomes reachable from O : G1 are in ≪-relation with outcomes
reachable from O : G2.

A sensible payoff function must respect both truth (winning conditions) and
preferences (the relation ≪). Our payoff function δI takes values in the domain
Z := (Z \ {0},⊴). The ordering ⊴ is the inverse ordering on Z+ and on Z−,
for a ∈ Z+, b ∈ Z− we set b ◁ a, i.e. −1 ◁ −2 ◁ . . . 2 ◁ 1. For each outcome o,
let π≪(o) be the longest ≪-chain starting in o, i.e. pairwise different outcomes
o1, . . . , on such that o = o1 ≪ · · · ≪ on. Let |π≪(o)| = n denote its length. For
an interpretation I, and an outcome Q : a, we define1

δI(Q : a) =

{
|π≪(Q : a)|, if I |= Q : a,

−|π≫(Q : a)|, if I ̸|= Q : a.

By design, δI maps true outcomes to Z+ and false outcomes to Z−. We, therefore,
declare all outcomes with a payoff in Z+ as winning, and all other outcomes as
losing for Me. The game can be thus seen as a refined extension of Hintikka’s
game. Indeed, let F ∗ be F with all

#»×s replaced by ∨s. Then I have a winning
strategy for NG(P : F, I) iff I have a winning strategy for F ∗ in Hintikka’s
game over I. Furthermore, δI respects the relation ≪: if o1 ≪ o2 and both are
winning (or both are losing) for Me, then δI(o1) ◁ δI(o2).

1 Notice the flipped ≪-sign in the second case.
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[
P : ((a

#»×b)
#»×c) ∧ ¬(a

#»×d)
]Y

[
P : (a

#»×b)
#»×c

]I
[
P : a

#»×b
]I

[P : a] [P : b]

[P : c]

[
P : ¬(a

#»×d)
]Y

[
O : a

#»×d
]Y

[O : a] [O : d]

Fig. 1: The game tree for NG(P : ((a
#»×b)

#»×c) ∧ ¬(a
#»×d)).

Example 1. Consider the formula ((a
#»×b)

#»×c) ∧ ¬(a
#»×d). The game tree, where I

am initially the Proponent can be found in Figure 1. The order on outcomes is
P : c ≪ P : b ≪ P : a and O : a ≪ O : d.

Let I = {b}. If You go to the left at the root node, I will move to reach the
outcome P : b, winning the game with payoff 2. Therefore, You might choose to
go right at the root to reach O : a or O : d with payoff 2 and 1 respectively. It
is better for You to reach O : a with payoff 2. Thus, the value of the game is 2.

Now consider the game starting in O : ((a
#»×b)

#»×c) ∧ ¬(a
#»×d), again with

I = {b}. The game tree is the same, except that P and O are flipped everywhere,
as are the labels I, Y and the order over outcomes. You can now win the game:
if I go left at the root, You will move to O : b with payoff −2. The alternative
is not better for Me: if I go right, I can choose between P : a and P : d with
payoffs −1 and −2 respectively. Thus, the value of this game is −2.

2.3 Degree-based semantics for GCL

Although the motivation for GCL is game-theoretic, it also admits a degree
semantics that is more common in choice logics. We first need the following
notion of optionality:

Definition 3 The optionality of GCL-formulas is defined inductively as fol-
lows: (i) opt(a) = 1 for variables a, (ii) opt(¬F ) = opt(F ), (iii) opt(F ◦G) =
max(opt(F ), opt(G)) for ◦ ∈ {∨,∧}, and (iv) opt(F

#»×G) = opt(F ) + opt(G).

In [10], we show that opt(F ) computes the length of the longest ≪-chain in
the outcomes reachable from P : F in the semantic game. The degree function
of GCL is denoted by degG

I .2 It assigns to each formula a degree relative to an
interpretation I and is defined inductively as follows:

degG
I (a) = 1 if a ∈ I,−1 otherwise

degG
I (¬F ) = −degG

I (F )

2 The superscript G is used to differentiate from the standard degree function degI of
QCL used in the literature.
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degG
I (F ∧G) = min(degG

I (F ),degG
I (G))

degG
I (F ∨G) = max(degG

I (F ),degG
I (G))

degG
I (F

#»×G) =


degG

I (F ) if degG
I (F ) ∈ Z+

opt(F ) + degG
I (G) if degG

I (F ) ∈ Z−,

degG
I (G) ∈ Z+

degG
I (F ) − opt(G) otherwise

Here min and max are relative to ⊴. If degG
I (F ) ∈ Z+ then we say that I

classically satisfies F , or that I is a model of F . A model I of F is preferred, if
for every other model I ′ of F we have degG

I (F ) ⊵ degG
I′(F ).

Theorem 4 (Theorem 4.7 in [10]) The value of NG(P : F, I) is degG
I (F ).

The value of NG(O : F, I) is −degG
I (F ).

3 A Provability Game

Usually, in a semantic view of a logic, validity of a formula F is defined as truth
of F in all interpretations. In our context of graded truth, however, we can refine
this notion to graded validity. Thus, we define the degree (of validity) of F to be
the least possible degree of F in an interpretation:

degG(F ) := min
I

degG
I (F )

In this section, we give a game-theoretic characterization of this degree. To
this end, we lift the semantic game NG to a provability game that adequately
characterizes validity in GCL. Our framework will be able to deal with the
following central notion in preference handling:

Definition 5 An interpretation I is a preferred model of F iff degG
I (F ) ∈ Z+

and for all other interpretations J , degG
J (F ) ⊴ degG

I (F ).

We now describe the lifting of NG to the provability game DG (we call our
game disjunctive game). We want a winning strategy for Me for the provability
game starting at g to imply the existence of winning strategies in all semantic
games starting at g. Note that the game trees of g over different interpretations
I are identical, except for the payoff at outcomes. Therefore, a simultaneous play
can be modeled by changing the pay-off at outcomes o to be the worst possible
pay-off of o under all interpretations: δ(o) = minI(o).

However, this variant does not capture validity yet, as I do not have winning
strategies for this game even for simple cases, like P : a∨¬a. This variant of the
game is too restrictive, as it would require the existence of a uniform strategy –
a single strategy that works in all semantic games. To remedy this shortcoming,
we allow Me to create “backup copies” of game states during the provability
game. If the game is unfavorable for Me in one copy, I can always come back
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to have another shot at the other copy. My goal is to win at least one of these
copies. The game states of this game can be thus read as disjunctions, and are
therefore called disjunctive game states3, (hence the name of the game).

Formally, game states of the disjunctive game are finite multisets of game
states of the game NG. We prefer to write g1

∨
...
∨

gn for the disjunctive game
state D = {g1, ..., gn}, but keep the convenient notation g ∈ D if g belongs to
the multiset D. A disjunctive state is called elementary if all its game states
are leaf-states of NG. Following the intuition of backup states, the payoff at an
elementary disjunctive state D is the maximum of the payoffs of its game states:

δ(D) = min
I

max
1≤i≤n

δI(gi).

Additionally, I take the rule of a scheduler who decides which of the copies is
played upon next.

At the disjunctive state D
∨
g, I can point at a non-leaf state g, codified by

underlining: D
∨
g. After the corresponding player takes their turn in NG(gi, I)

and moves to a state, say g′, the game continues with D
∨
g′.

As mentioned, instead of pointing to a game state of the disjunctive state, I
can duplicate any of its states, i.e. create a backup copy. If I decide to duplicate
g, the game continues with D

∨
g
∨

g. Due to this rule, it is now possible to
have infinite runs of the game. In these runs, I repeatedly create backup copies.
To prevent such behavior, we punish the “delaying” of the game by declaring
infinite runs losing for Me with the worst possible pay-off −1.

Formally, we define the game tree of the disjunctive game DG(D, I) recur-
sively as follows. We say that D′ ∨ g is obtained from D = D′ ∨ g by underlining
a game state and D

∨
g
∨
g is obtained by duplicating a game state. If no states

in D are underlined, it is an “I”-disjunctive state and its successor nodes are all
disjunctive states obtainable by underlining, or duplicating a game state. If a
game state is underlined, say we are in D = D′ ∨ g, then this disjunctive state
is labeled the same as g in the semantic game. The children of D are all D′ ∨ g′,
where g′ ranges over the children of g in the semantic game. For example, if
D = D′ ∨P : G1 ∨G2, then it is an “I”-disjunctive state and its children are
D′ ∨P : G1 and D′ ∨P : G2.

Example 2. Let F be ((a
#»×b)

#»×c) ∧¬(a
#»×b). Figure 2 shows a compact represen-

tation of a strategy for Me for the game DG(O : F ). Underlining moves are
clear from context and are therefore hidden. First, I duplicate O : F and move
to P : ((a

#»×b)
#»×c) in one copy and to O : ¬(a

#»×d) in the other. The latter is im-
mediately converted to P : a

#»×d, for which I repeat the strategy of duplicating
and moving into both options. Finally, I point to O : (a

#»×b)
#»×c, where it is Your

turn. All Your possible choices are shown in the strategy. The payoffs are

δ(O : a
∨

P : a
∨

P : d) = min
I

max{δI(O : a), δI(P : a), δI(P : d)}

3 To avoid confusion, we always refer to game states of the disjunctive game DG as
“disjunctive (game) states”. “(Game) states” is reserved for the semantic game NG.
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[
O : ((a

#»×b)
#»×c) ∧ ¬(a

#»×d)
]I

[
O : ((a

#»×b)
#»×c) ∧ ¬(a

#»×d)
∨

O : ((a
#»×b)

#»×c) ∧ ¬(a
#»×d)

]I
[
O : ((a

#»×b)
#»×c)

∨
O : ((a

#»×b)
#»×c) ∧ ¬(a

#»×d)
]I

[
O : ((a

#»×b)
#»×c)

∨
O : ¬(a

#»×d)
]Y

[
O : ((a

#»×b)
#»×c)

∨
P : (a

#»×d)
]I

[
O : ((a

#»×b)
#»×c)

∨
P : (a

#»×d)
∨

P : (a
#»×d)

]I
[
O : ((a

#»×b)
#»×c)

∨
P : a

∨
P : (a

#»×d)
]I

[
O : ((a

#»×b)
#»×c)

∨
P : a

∨
P : d

]Y
[
O : a

#»×b
∨

P : a
∨

P : d
]Y

[O : a
∨

P : a
∨

P : d] [O : b
∨

P : a
∨

P : d]

[O : c
∨

P : a
∨

P : d]

Fig. 2: A compact representation of the strategy for Me for an instance of DG

= max{δ∅(O : a), δ∅(P : a), δ∅(P : d)} = max{3,−2,−1} = 3,

δ(O : b
∨

P : a
∨

P : d) = min
I

max{δI(O : b), δI(P : a), δI(P : d)}

= max{δ{b}(O : b), δ{b}(P : a), δ{b}(P : d)} = max{−2,−2,−1} = −2,

δ(O : c
∨

P : a
∨

P : d) = min
I

max{δI(O : c), δI(P : a), δI(P : d)}

= max{δ{c}(O : c), δ{c}(P : a), δ{c}(P : d)} = max{−3,−2,−1} = −3.

Given these payoffs, You prefer the second outcome, giving Me a payoff of −2.
We note two things. First, I cannot do better by playing another strategy. If
the outcomes do not contain game states resulting from O : (a

#»×b)
#»×c, then

their pay-offs are the same, or even less. The strategy of first duplicating, then
exploiting all possible moves is therefore – in a way – optimal for Me. Hence, we
can conclude that the value of the game is −2.

The remainder of this section is devoted to proving the adequacy of DG.

Theorem 6 I have a k-strategy in DG(D) iff for every interpretation I, there
is some g ∈ D such that I have a k-strategy in NG(g, I). You have a k-strategy
in DG(D) iff there is an interpretation I such that You have k-strategies in
NG(g, I), for all g ∈ D.



Validity in Choice Logics 9

We prove the above theorem with the help of two lemmas.

Lemma 7 Let π be a finite run of the game DG(D) such that for every I-state
g in π, all of its children appear in π, too. Let k be the payoff of π. Then there
is a model I0 such that You have a k-strategy for NG(g, I0), for each g ∈ D.

Proof (of Lemma 7). Let Dfin be the outcome of π and let I0 be such that
δI0

(Dfin) ⊴ k. For g0 ∈ D, let σg0 be the set of successors of g appearing in
π. Note that σg0 carries the structure of a subtree of NG(g0, I). Indeed, it is a
strategy for You: by assumption, for every I-state in σg0 , all successors appear in
π, and thus in σg0 . Every Y-state g in σg0 comes from a disjunctive state D′ ∨ g
appearing in π. At some point, D′ ∨ g is in π. The next disjunctive state in π is
D′ ∨ g′, so g′ is the unique successor of the Y-state g in σg0 .

To verify that σg0 is a k-strategy, it is enough to notice that all outcomes o
in σg0 appear in Dfin. Thus, δI′(o) ⊴ maxh∈D δI0

(h) ⊴ δI0
(Dfin) ⊴ k. ⊓⊔

Lemma 8 Let σ be a strategy for Me for DG(D0) and let S be a set containing
exactly one game state of each outcome of σ. Then for every interpretation I,
there is a strategy for Me for NG(g0, I) with g0 ∈ D0 and outcomes in S.

Proof (of Lemma 8). We define recursively for each D ∈ σ a strategy σD for
NG(g, I), where g ∈ D and outcomes are in S. In the base case, D is an outcome
of σ, so we set σD to be the singleton S ∩D.

If D is an I-state, and its unique child H ∈ σ is obtained by duplicating or
underlining a game state, we use the inductive hypothesis and set σD = σH .
If D = D′ ∨ g, where g is an I-state, then H = D′ ∨ g′, where g′ is a child of

g. If σH is a strategy for NG(h, I) with h ∈ D′, we can simply set σD = σH .
Otherwise, σH is a strategy for NG(g′, I). We can thus set σD = {g} ∪ σH .

If D is a Y-state, then it is of the form D = D′ ∨ g, where g is a Y-state.
The children of D are of the form D′ ∨ g′, where g′ ranges over the children of g.
Since σ is a strategy for Me, all these children appear in σ. If for some g′, σD′ ∨ g′

is a strategy for NG(h, I) and h ∈ D′, we can set σD = σD′ ∨ g′
. Otherwise, all

σD′ ∨ g′
are strategies for DG(g′, I), and we can set σD = {g} ∪

⋃
σD′ ∨ g′

.
In all the inductive steps it is clear that σD contains only outcomes from S.

The claim follows for D = D0. ⊓⊔

Proof (of Theorem 6). We prove the left-to-right directions (ltr) of both state-
ments. The right-to-left directions (rtl) then follow easily: for example, suppose,
for every I, there is a g ∈ D, such that I have a k-strategy in NG(g, I). Let
l ◁ k be maximal. We infer that for every I, there is some g ∈ D such that You
do not have a k-strategy in NG(g, I). By ltr of Statement 2, You do not have
an l-strategy for DG(g, I). Since You cannot enforce the payoff to be below k,
I have a k-strategy. The rtl of the other statement is similar.

Let us prove the ltr of Statement 1. Fix a k-strategy σ for Me in DG(D)
and an interpretation I. By assumption, for every outcome of the disjunctive
game O in σ, there is a game state o ∈ O such that δI(o) ⊵ k. Collect for each
outcome such an o into a set S. We apply Lemma 8 to obtain a strategy µ for
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Me for NG(g, I), for some g ∈ D with outcomes in S. These outcomes have a
payoff of at least k, i.e., µ is a k-strategy.

Ltr of Statement 2: suppose You have a k-strategy for DG(D). Let π be the
run of the game where I play according to the following strategy: if the current
disjunctive state is H, I underline an arbitrary h ∈ H. If h is an I-state and
has only one child h′, I go to that child in the corresponding copy. If h has two
children h1 and h2, I first duplicate h, then go to h1 in the first and to h2 in the
second copy. Let L be the outcome of π. By assumption, δ(L) ⊴ k. By Lemma 7,
there is I such that You have k-strategies for NG(g, I), for each g ∈ D. ⊓⊔

Corollary 9 The values of the games DG(P : F ) and DG(O : F ) are given by
degG

I (F ) = minI degG
I (F ) and −maxI degG

I (F ), respectively.

Proof. For each interpretation I, let vI be the value of DG(D, I). It follows
from the theorem that the value of DG(D) is minI vI . Thus, by Theorem 4, the
values of DG(P : F ) and DG(O : F ) are minI degG

I (F ) and minI −degG
I (F )) =

−maxI degG
I (F ), respectively. ⊓⊔

Corollary 10 Let I be a preferred model of F and let k be the value of DG(O :
F ). Then k = − degG

I (F ) and a preferred model of F can be extracted from Your
k-strategy for DG(O : F ).

Proof. The first statement immediately follows from Corollary 9. Let σ be Your
k-strategy for DG(O : F ). Since there is an interpretation making F true, k
must be negative and thus winning for You. By the proof of Theorem 6, all the
information for a preferred model is contained in the outcome of the run of the
game, where I play according to the strategy sketched in that proof and You
play according to σ. Let L be the outcome of that run. L must be winning for
You. We, therefore, set Iπ = {a | O : a ∈ L} and obtain a k-strategy for You
for DG(O : F, Iπ). Let v be the value of that game. We have that v ⊴ k, by the
existence of Your k-strategy and v ⊵ k, since by Theorem 4 and Corollary 9,
v = −degG

Iπ (F ) ⊵ −maxI degG
I (F ) = k.

This shows degG
Iπ (F ) = maxI degG

I (F ), i.e., Iπ is a preferred model of F . ⊓⊔

4 Proof systems

In this section, we study the proof-theoretic content of the provability game by
reinterpreting strategies as proofs in three different labeled sequent calculi. Es-
sentially, proofs in these systems are nothing but representations of My strategies
for the disjunctive game. Sequents in these calculi consist of labeled formulas:
each formula is decorated with two numbers k, l ≥ 1 and we write k

lF . The in-
tuitive reading is that all winning outcomes of Q : F have a longest ≪-chain
of at least l, and thus their payoff is at most l. Losing outcomes have a longest
≫-chain of at least k and thus their payoff is at least −k.

Sequents are of the form Γ ⇒ ∆, where Γ and ∆ are multisets of labeled for-
mulas. There is a direct translation from disjunctive states of the game DG(D0)
into sequents: Each disjunctive state D is translated into the sequent
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{klF | O : F ∈ D} ⇒ {klF | P : F ∈ D},

where k = min{|π≫(o)| : o ∈ O(Q : F )} and l = min{|π≪(o)| : o ∈ O(Q : F )}.
In particular, we have k = l = 1 if the game starts at Q : F . We assign degrees
to sequents Γ ⇒ ∆ as follows: for each interpretation I,

if k
lF ∈ ∆, we set degG

I (klF ) =

{
l + degG

I (F ) − 1, if degG
I (F ) ∈ Z+,

−k + degG
I (F ) + 1, if degG

I (F ) ∈ Z−,

if k
lF ∈ Γ , we set degG

I (klF ) =

{
l − degG

I (F ) − 1 if degG
I (F ) ∈ Z−,

−k − degG
I (F ) + 1 if degG

I (F ) ∈ Z+.

We then set
degG(Γ ⇒ ∆) = min

I
max

k
lF∈Γ∪∆

degG
I (klF ).

In the simplest case, degG(⇒ 1
1F ) coincides with degG(F ). We now have all

ingredients to present our proof systems.
The first proof system, GS in Figure 1, is closer to the game-theoretic view.

Proofs are (bottom-up) representations of My strategies for the disjunctive game.
What is unusual is that all sequents consisting of labeled propositional variables
are allowed as initial sequents. A proof with all initial sequents of degree ⊵ k,
therefore, represents a k-strategy for Me. Hence, in this case, we speak of a k-
proof. Note that in accordance with a k-strategy, k-proofs are not per se optimal:
they merely witness that the degree of the proved sequent is at least k. In
particular, every k proof is also an l-proof, if k ⊵ l.

Table 1: Proof systems GS and Sk.

Initial Sequents for GS

Γ ⇒ ∆, where Γ and ∆ consist of labeled variables

Axioms for Sk

Γ ⇒ ∆, where degG(Γ ⇒ ∆) ⊵ k, and Γ and ∆ consist of labeled variables

Structural Rules

Γ, klF,
k
lF ⇒ ∆

(Lc)
Γ, klF ⇒ ∆

Γ ⇒ k
lF,

k
lF,∆

(Rc)
Γ ⇒ k

lF,∆

Propositional rules

Γ, klF ⇒ ∆ Γ, klG ⇒ ∆
(L∨)

Γ,
k
l(F ∨G) ⇒ ∆

Γ ⇒ k
lF,∆

(R1
∨)

Γ ⇒ k
l(F ∨G), ∆



12 R. Freiman, M. Bernreiter

Γ, klF ⇒ ∆
(L1

∧)
Γ,

k
l(F ∧G) ⇒ ∆

Γ ⇒ k
lG,∆

(R2
∨)

Γ ⇒ k
l(F ∨G), ∆

Γ, klG ⇒ ∆
(L2

∧)
Γ,

k
l(F ∧G) ⇒ ∆

Γ ⇒ k
lF,∆ Γ ⇒ k

lG,∆
(R∧)

Γ ⇒ k
l(F ∧G), ∆

Γ ⇒ k
lF,∆

(L¬)
Γ, kl¬F ⇒ ∆

Γ, klF ⇒ ∆
(R¬)

Γ ⇒ k
l¬F,∆

Choice rules

Γ, k
l+opt(G)F ⇒ ∆ Γ,

k+opt(F )
lG ⇒ ∆

(L #»×)
Γ,

k
l(F

#»×G) ⇒ ∆

Γ ⇒ k+opt(G)
lF,∆

(R1
#»×)

Γ ⇒ k
l(F

#»×G), ∆

Γ ⇒ k
l+opt(G)G,∆

(R2
#»×)

Γ ⇒ k
l(F

#»×G), ∆

The second proof system is a proof-theoretically more orthodox system. In
fact, it is actually a family of proof systems: for each k ∈ Z, the system Sk is
defined in Figure 1. These proof systems share all the rules with GS, but initial
sequents are valid iff their degree is at least k. Such initial sequents are axioms
in the usual sense.

The conceptual difference between the two approaches is as follows: in GS,
the value k can be computed from the initial sequents. In the second approach,
k is guessed (implicitly, by picking the proof system Sk, for a concrete k).

Example 3. Figure 3 shows a derivation of ((a
#»×b)

#»×c)∧¬(a
#»×d) ⇒ in GS. Essen-

tially, it is My strategy from Example 2 bottom-up. Degrees of initial sequents:

degG(31a ⇒ 1
2a,

2
1d) = degG

{a}(31a ⇒ 1
2a,

2
1d) = 2,

degG(22b ⇒ 1
2a,

2
1d) = degG

{b}(22b ⇒ 1
2a,

2
1d) = −2,

degG(13c ⇒ 1
2a,

2
1d) = degG

{c}(13c ⇒ 1
2a,

2
1d) = −3.

Therefore, the derivation is a −2-proof and thus a proof in S−2.

It follows directly from the translation of My strategies into proofs:

Theorem 11 The following are equivalent:

1. I have a k-strategy for DG(O : F1

∨
...
∨

O : Fn

∨
P : G1

∨
...
∨

P : Gm).
2. degG(11F 1, ...,

1
1Fn ⇒ 1

1G1, ...,
1
1Gm) ⊵ k.

3. There is a k-proof of 1
1F 1, ...,

1
1Fn ⇒ 1

1G1, ...,
1
1Gm in GS.

4. There is a proof of 1
1F 1, ...,

1
1Fn ⇒ 1

1G1, ...,
1
1Gm in Sk.
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1
3a ⇒ 2

1a,
1
2d

2
2b ⇒ 2

1a,
1
2d

(L #»× )
2

1(a
#»×b) ⇒ 2

1a,
1
2d

3
1c ⇒ 2

1a,
1
2d

(L #»× )
1

1((a
#»×b)

#»×c) ⇒ 2
1a,

1
2d

(R2
#»× )

1

1((a
#»×b)

#»×c) ⇒ 2
1a,

1

1(a
#»×d)

(R1
#»× )

1

1((a
#»×b)

#»×c) ⇒ 1

1(a
#»×d),

1

1(a
#»×d)

(RC )
1

1((a
#»×b)

#»×c) ⇒ 1

1(a
#»×d)

(L¬)
1

1((a
#»×b)

#»×c),
1

1(¬(a
#»×d)) ⇒

(L∧)
1

1((a
#»×b)

#»×c),
1

1(((a
#»×b)

#»×c) ∧ ¬(a
#»×d)) ⇒

(L∧)
1

1(((a
#»×b)

#»×c) ∧ ¬(a
#»×d)),

1

1(((a
#»×b)

#»×c) ∧ ¬(a
#»×d)) ⇒

(LC )
1

1(((a
#»×b)

#»×c) ∧ ¬(a
#»×d)) ⇒

Fig. 3: A −2-proof in GS.

Corollary 12 Let k ∈ Z−. Then there is a k-proof of 1
1F ⇒ in GS iff there is

a proof of 1
1F ⇒ in Sk iff the degree of F in a preferred model is at most −k.

My strategy in Example 2, is not only a −2-strategy but also a minmax-strategy
for Me. This implies that I cannot do better than −2, i.e. the value of the game is
−2. How does this translate into the proof-theoretic interpretation of Example 3?
There, the minmax-strategy takes the form of invertibility of rule applications:
rule applications S′/S and (S1, S2)/S are called invertible iff degG(S′) = degG(S)
and min{degG(S1),degG(S2)} = degG(S). In Example 3 only invertible rule ap-
plications are used.

In Table 2 we give a calculus GS∗ which is equivalent to GS but has only
invertible rules, i.e. all rule applications are invertible. The contraction rules are
admissible in this system. The motivation behind this calculus is the same as in
My maxmin-strategy: in every I-state, I first duplicate and then exhaustively
take all the available options. Every proof produced in this system corresponds
to an optimal strategy and has, therefore, an optimal degree. The below results
follow directly from the invertibility of the rules:

Table 2: The proof system GS∗ for GCL with invertible rules.

Initial Sequents

Γ ⇒ ∆, where Γ and ∆ consist of labeled variables

Propositional rules

Γ, klF ⇒ ∆ Γ, klG ⇒ ∆
(L∨)

Γ,
k
l(F ∨G) ⇒ ∆

Γ ⇒ k
lF,

k
lG,∆

(R∨)
Γ ⇒ k

l(F ∨G), ∆
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1
3a ⇒ 2

1a,
1
2d

2
2b ⇒ 2

1a,
1
2d

(L #»× )
2

1(a
#»×b) ⇒ 2

1a,
1
2d

3
1c ⇒ 2

1a,
1
2d

(L #»× )
1

1((a
#»×b)

#»×c) ⇒ 2
1a,

1
2d

(R #»× )
1

1((a
#»×b)

#»×c) ⇒ 1

1(a
#»×d)

(L¬)
1

1((a
#»×b)

#»×c),
1

1¬(a
#»×d) ⇒

(L∧)
1

1(((a
#»×b)

#»×c) ∧ ¬(a
#»×d)) ⇒

Fig. 4: A proof in GS∗.

Γ, klF,
k
lG,⇒ ∆

(L∧)
Γ,

k
l(F ∧G) ⇒ ∆

Γ ⇒ k
lF,∆ Γ ⇒ k

lG,∆
(R∧)

Γ ⇒ k
l(F ∧G), ∆

Γ ⇒ k
lF,∆

(L¬)
Γ, kl¬F ⇒ ∆

Γ, klF ⇒ ∆
(R¬)

Γ ⇒ k
l¬F,∆

Choice rules

Γ, k
l+opt(G)F ⇒ ∆ Γ,

k+opt(F )
lG ⇒ ∆

(L #»×)
Γ,

k
l(F

#»×G) ⇒ ∆

Γ ⇒ k+opt(G)
lF,

k
l+opt(F )G,∆

(R #»×)
Γ ⇒ k

l(F
#»×G), ∆

Proposition 13 Every GS∗-proof of a sequent S has degree degG(S).

Corollary 14 Let k = degG(11F ⇒) ∈ Z−. Then the degree of F in a preferred
model is equal to −k. Furthermore, a preferred model of F can be extracted from
every GS∗-proof of 1

1F ⇒.

Example 4. Figure 4 shows a GS∗-proof of
1
1((a

#»×b)
#»×c)∧¬(a

#»×d) ⇒. The proof
is essentially a compact representation of the proof in Figure 3, and has there-
fore degree −2. We conclude that in a preferred model, ((a

#»×b)
#»×c)∧¬(a

#»×d) has
degree 2. Furthermore, we can extract the preferred model {b} from the posi-
tion where the degG-function is minimal on the initial sequents, as computed in
Example 3.

Note that the following degree-version of cut does not hold. The existence
of k-strategies for D

∨
P : F and D

∨
O : F does not imply that a k-strategy

for D exists. For example, note that the values of O : ⊤
∨
O : ⊥ #»×⊤ and O :
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⊤
∨
P : ⊥ #»×⊤ are −2 and 2, respectively. But the value of the “conclusion” of

the cut, O : ⊤, has value −1.

What is more, there is no function computing the value of the conclusion
of cut from the values of the premises. To see this, note that the values of
O : ⊥ #»×⊤

∨
O : ⊥ #»×⊤ and O : ⊥ #»×⊤

∨
P : ⊥ #»×⊤ are −2 and 2 respectively, as in

the above example. However, in contrast to the above example, the conclusion
of this cut, O : ⊥ #»×⊤, has value −2.

Lastly, we demonstrate that GS and Sk are useful systems, i.e. that comput-
ing the degree of initial sequents is easier than the degree of general sequents.

Proposition 15 Deciding whether degG(Γ ⇒ ∆) ⊵ k is coNP-hard in general.
If Γ ⇒ ∆ is initial, then degG(Γ ⇒ ∆) can be computed in polynomial time.

Proof. coNP-hardness of deciding degG(Γ ⇒ ∆) ⊵ k follows by coNP-hardness
of the validity problem in classical logic: if F is a classical formula, then it holds
that degG(⇒ 1

1F ) ∈ Z+ if and only if F is valid (true under all interpretations).

We now show that degG(Γ ⇒ ∆) can be computed in polynomial time if
Γ ⇒ ∆ is initial. We start with the empty interpretation I = ∅. Now, go
through every variable x occurring in Γ ⇒ ∆. Consider Γx ⇒ ∆x where l

kx ∈ Γx

iff l
kx ∈ Γ and l

kx ∈ ∆x iff l
kx ∈ ∆. If we have degG

{x}(Γx ⇒ ∆x)◁degG
∅ (Γx ⇒ ∆x)

then let I = I∪{x}, otherwise leave I unchanged. In other words, since Γ ⇒ ∆ is
initial, we can simply choose the ‘better’ option for any given variable x without
side effects. Thus, this procedure gives us the minimal I for Γ ⇒ ∆. ⊓⊔

5 Conclusion and Future Work

In this paper, we investigate the notion of validity in choice logics. Specifically,
we lift a previously established [10] semantic game NG for the language of QCL
to a provability game DG. This allows us to examine formulas with respect to
all interpretations. Similar to truth, validity in choice logic comes in degrees. We
show that the value of DG adequately models these validity degrees. Strategies
for Me in DG correspond to proofs in an analytic labeled sequent calculi GS.
The unique feature of this system is that its proofs have degrees that represent
the degree of validity. We give two variants of GS – GS∗ with invertible rules
corresponding to My optimal strategy, and the more orthodox system Sk where
proofs do not have degrees, but a “degree-profile” is guessed similar to [3].

For future work, it will be interesting to adapt NG to capture related logics
such as Conjunctive Choice Logic [5] or Lexicographic Choice Logic [4], both
of which introduce another choice connective in place of ordered disjunction.
Using the methods established in this paper, provability games for these semantic
games can then be derived. Indeed, our systems are quite modular in this sense,
since most aspects of our provability game and our calculi require no adaptation
if ordered disjunction were to be exchanged with another choice connective.
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