
Towards an induction principle for
nested data types

Peng Fu and Peter Selinger

Dalhousie University

Abstract. A well-known problem in the theory of dependent types is
how to handle so-called nested data types. These data types are difficult
to program and to reason about in total dependently typed languages
such as Agda and Coq. In particular, it is not easy to derive a canonical
induction principle for such types. Working towards a solution to this
problem, we introduce dependently typed folds for nested data types.
Using the nested data type Bush as a guiding example, we show how
to derive its dependently typed fold and induction principle. We also
discuss the relationship between dependently typed folds and the more
traditional higher-order folds.

Keywords: dependent types · nested data types · induction principles
· folds

1 Introduction

Consider the following list data type and its fold function in Agda [1].

data List (a : Set) : Set where
nil : List a
cons : a -> List a -> List a

foldList : ∀ {a p : Set} -> p -> (a -> p -> p) -> List a -> p
foldList base step nil = base
foldList base step (cons x xs) = step x (foldList base step xs)

The keyword Set is a kind that classifies types. The function foldList has two
implicitly quantified type variables a and p. In Agda, implicit arguments are
indicated by braces (e.g., {a}), and can be omitted.

The function foldList is defined by structural recursion and is therefore ter-
minating. Agda’s termination checker automatically checks this. Once foldList
is defined, we can use it to define other terminating functions such as the fol-
lowing mapList and sumList. This is similar to using the iterator to define
terminating arithmetic functions in System T [6, §7].

mapList : ∀ {a b : Set} -> (a -> b) -> List a -> List b
mapList f ℓ = foldList nil (λ a r -> cons (f a) r) ℓ

sumList : List Nat -> Nat
sumList ℓ = foldList zero (λ x r -> add x r) ℓ

2 P. Fu and P. Selinger

When defining the mapList function, if the input list is empty, then we
just return nil, so the first argument for foldList is nil. If the input list is
of the form cons a as, then we want to return cons (f a) (mapList f as),
so the second argument for foldList is (λ a r -> cons (f a) r), where r
represents the result of the recursive call mapList f as. The function sumList
is defined similarly, assuming a natural numbers type Nat with zero and addition.

We can generalize the type of foldList to obtain the following induction
principle for lists.

indList : ∀ {a : Set} {p : List a -> Set} ->
(base : p nil) ->
(step : (x : a) -> (xs : List a) -> p xs -> p (cons x xs)) ->
(ℓ : List a) -> p ℓ

indList base step nil = base
indList base step (cons x xs) = step x xs (indList base step xs)

We can see that the definition of indList is almost the same as that of
foldList. Compared to the type of foldList, the type of indList is more
general as the kind of p is generalized from Set to List a -> Set. We call
p a property of lists. The induction principle indList states that to prove a
property p for all lists, one must first prove that nil has the property p, and
then assuming that p holds for any list xs as the induction hypothesis, prove
that p holds for cons x xs for any x.

We can now use the induction principle indList to prove that mapList has
the same behavior as the usual recursively defined mapList’ function.

mapList’ : ∀ {a b : Set} -> (a -> b) -> List a -> List b
mapList’ f nil = nil
mapList’ f (cons x xs) = cons (f x) (mapList’ f xs)

lemma-mapList : ∀ {a b : Set} -> (f : a -> b) -> (ℓ : List a) ->
mapList f ℓ == mapList’ f ℓ

lemma-mapList f ℓ =
indList {p = λ y -> mapList f y == mapList’ f y} refl

(λ x xs ih -> cong (cons (f x)) ih) ℓ

In the proof of lemma-mapList, we use refl to construct a proof by reflexivity
and cong to construct a proof by congruence. The latter is defined such that
cong f is a proof of x == y -> f x == f y. The key to using the induction
principle indList is to specify which property of lists we want to prove. In this
case the property is (λ y -> mapList f y == mapList’ f y).

To summarize, the fold functions for ordinary data types (i.e., non-nested
inductive data types such as List and Nat) are well-behaved in the following
sense. (1) The fold functions are defined by well-founded recursion. (2) The
fold functions can be used to define a range of terminating functions (including
maps). (3) The types of the fold functions can be generalized to the corresponding
induction principles.

Nested data types [2] are a class of data types that one can define in most
functional programming languages (OCaml, Haskell, Agda). They were initially

Towards an induction principle for nested data types 3

studied by Bird and Meertens [2]. They have since been used to represent de
Bruijn notation for lambda terms [3], and to give an efficient implementation of
persistent sequences [7]. In this paper, we will consider the following nested data
type.

data Bush (a : Set) : Set where
leaf : Bush a
cons : a -> Bush (Bush a) -> Bush a

According to Bird and Meertens [2], the type Bush a is similar to a list where at
each step down the list, entries are bushed. For example, a value of type Bush Nat
can be visualized as follows.

bush1 = [4, -- Nat
[8, [5], [[3]]], -- Bush Nat
[[7], [], [[[7]]]], -- Bush (Bush Nat)
[[[], [[0]]]] -- Bush (Bush (Bush Nat))

]

Here, for readability, we have written [x1,...,xn] instead of cons x1 (cons
x2 (...(cons xn leaf))).

Unlike ordinary data types such as lists, nested data types are difficult to
program with in total functional programming languages. For example, in the
dependently typed proof assistant Coq, the Bush data type is not definable at
all, since it does not pass Coq’s strict positivity test. In Agda, Bush can be
defined as a data type, but writing functions that use this type is not trivial.
For example, we must use general recursion (rather than structural recursion)
to define the following hmap function.

hmap : ∀ {b c : Set} -> (b -> c) -> Bush b -> Bush c
hmap f leaf = leaf
hmap f (cons x xs) = cons (f x) (hmap (hmap f) xs)

Note that, in contrast to the mapList’ function for lists, this definition is not
structurally recursive because the inner hmap is not applied to a subterm of
cons x xs. Therefore, Agda’s termination checker will reject this definition as
potentially non-terminating, unless we specify the unsafe –no-termination flag.

The following function hfold for Bush is called a higher-order fold in the
literature (e.g., [4], [8]). Its definition uses hmap.

hfold : (b : Set -> Set) ->
(ℓ : (a : Set) -> b a) ->
(c : (a : Set) -> a -> b (b a) -> b a) ->
(a : Set) -> Bush a -> b a

hfold b ℓ c a leaf = ℓ a
hfold b ℓ c a (cons x xs) =

c a x (hfold b ℓ c (b a) (hmap (hfold b ℓ c a) xs))

Observe that the type variable b in hfold has kind Set -> Set, unlike the type
variable p in foldList, which has type Set. The higher-order fold hfold presents

4 P. Fu and P. Selinger

the following challenges. (1) The definition of hfold requires the auxiliary func-
tion hmap, and hmap cannot easily be defined from hfold. (2) The definition of
hfold, like that of hmap, is not structurally recursive and Agda’s termination
checker cannot prove it to be total. (3) Although it is possible (see below), it
is fairly difficult to define functions such as summation on Bush. (4) Unlike the
induction principle for lists, it is not clear how to obtain an induction principle
for Bush from the higher-order fold hfold.

Here is the definition of a function sum that sums up all natural numbers in
a data structure of type Bush Nat. Although sum is not a polymorphic function,
it requires an auxiliary function that is polymorphic and utilizes an argument k
that is reminiscent of continuation passing style [9].

sumAux : (a : Set) -> Bush a -> (k : a -> Nat) -> Nat
sumAux =

hfold (λ a -> (a -> Nat) -> Nat)
(λ a k -> zero) (λ a x xs k -> add (k x) (xs (λ r -> r k)))

sum : Bush Nat -> Nat
sum ℓ = sumAux Nat ℓ (λ n -> n)

1.1 Contributions

We present a new approach to defining fold functions for nested data types,
which we call dependently typed folds. For concreteness, we work within the
dependently typed language Agda. Dependently typed folds are defined by well-
founded recursion, hence their termination is easily confirmed by Agda. Map
functions and many other terminating functions can be defined directly from
the dependently typed folds. Moreover, the higher-order folds (such as hfold)
are definable from the dependently typed folds. In addition, the definitions of
dependently typed folds can easily be generalized to corresponding induction
principles. Thus we can formally reason about programs involving nested data
types in a total dependently typed language. While we illustrate these ideas by
focusing on the Bush example, our approach also works for other kinds of nested
data types; see Section 5 for an example.

2 Dependently typed fold for Bush

Let us continue the consideration of the Bush data type. The following is the
result of evaluating hmap f bush1, where bush1 is the data structure defined in
the introduction, and f : Nat -> b for some type b.

Towards an induction principle for nested data types 5

[f 4, -- b
[f 8, [f 5], [[f 3]]], -- Bush b
[[f 7], [], [[[f 7]]]], -- Bush (Bush b)
[[[], [[f 0]]]] -- Bush (Bush (Bush b))

]

To motivate the definition of the dependently typed fold below, we first consider
the simpler question of how to define a map function for Bush by structural re-
cursion. The reason our definition of hmap in the introduction was not structural
is that in order to define the map function for Bush Nat, we need to already
have the map functions defined for Bushn Nat = Bush (Bush (. . . (Bush Nat)))
for all n ≥ 0, which seems paradoxical. Our solution is to define a general map
function for Bushn, for all n ≥ 0. First we define a type-level function NTimes
such that NTimes n b = bn:

NTimes : (n : Nat) -> (b : Set -> Set) -> Set -> Set
NTimes zero b a = a
NTimes (succ n) b a = b (NTimes n b a)

We can now define the following map function for Bushn:

nmap : ∀ {a b : Set} -> (n : Nat) -> (a -> b) ->
NTimes n Bush a -> NTimes n Bush b

nmap zero f x = f x
nmap (succ n) f leaf = leaf
nmap (succ n) f (cons x xs) =

cons (nmap n f x) (nmap (succ (succ n)) f xs)

Note that nmap 1 corresponds to the map function for Bush a. The recursive
definition of nmap is well-founded because all the recursive calls are on the com-
ponents of the constructor cons. The Agda termination checker accepts this
definition of nmap.

We are now ready to introduce the dependently typed fold. The idea is to
define the fold over the type NTimes n Bush simultaneously for all n.

nfold : (p : Nat -> Set) ->
(ℓ : (n : Nat) -> p (succ n)) ->
(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->
(a : Set) -> (z : a -> p zero) ->
(n : Nat) -> NTimes n Bush a -> p n

nfold p ℓ c a z zero x = z x
nfold p ℓ c a z (succ n) leaf = ℓ n
nfold p ℓ c a z (succ n) (cons x xs) =

c n (nfold p ℓ c a z n x) (nfold p ℓ c a z (succ (succ n)) xs)

The dependently typed fold nfold captures the most general form of com-
puting/traversal on the type NTimes n Bush a. Similarly to nmap, the definition
of nfold is well-founded. Note that unlike the hfold in the introduction, this
definition of fold does not require a map function to be defined first. In fact,
nmap is definable from nfold:

6 P. Fu and P. Selinger

nmap : ∀ {a b : Set} -> (n : Nat) -> (a -> b) ->
NTimes n Bush a -> NTimes n Bush b

nmap {a} {b} n f ℓ =
nfold (λ n -> NTimes n Bush b) (λ n -> leaf) (λ n -> cons) a f n ℓ

We can also prove that nmap 1 satisfies the defining properties of hmap from
the introduction. Let hmap’ = nmap 1.

lemma-nmap : ∀ {a b : Set} -> (f : a -> b) -> (m n : Nat) ->
(x : NTimes (add m n) Bush a) ->
nmap (add m n) f x == nmap m (nmap n f) x

lemma-nmap f zero n x = refl
lemma-nmap f (succ m) n leaf = refl
lemma-nmap f (succ m) n (cons x xs) =

cong2 cons (lemma-nmap f m n x) (lemma-nmap f (succ (succ m)) n xs)

hmap-leaf : ∀ {a b : Set} -> (f : a -> b) -> hmap’ f leaf == leaf
hmap-leaf f = refl

hmap-cons : ∀ {a b : Set} -> (f : a -> b) -> (x : a) ->
(xs : Bush (Bush a)) ->
hmap’ f (cons x xs) == cons (f x) (hmap’ (hmap’ f) xs)

hmap-cons f x xs = cong (cons (f x)) (lemma-nmap f 1 1 xs)

Many other terminating functions can also be conveniently defined in term
of nfold. For example, the summation of all the entries in Bush Nat and the
length function for Bush can be defined as follows:

sum : Bush Nat -> Nat
sum =

nfold (λ n -> Nat) (λ n -> zero) (λ n -> add) Nat (λ x -> x) 1

length : (a : Set) -> Bush a -> Nat
length a =

nfold (λ n -> Nat) (λ n -> zero) (λ n r1 r2 -> succ r2)
a (λ x -> zero) 1

Note that this definition of sum is much more natural and straightforward
than the one we gave in the introduction.

3 Induction principle for Bush

While there is no obvious induction principle corresponding to the higher-order
fold hfold, we can easily generalize the dependently typed fold nfold to obtain
an induction principle for Bush. The following function ind is related to nfold in
the same way that the induction principle for List is related to its fold function.

Towards an induction principle for nested data types 7

ind : ∀ {a : Set} -> {p : (n : Nat) -> NTimes n Bush a -> Set} ->
(base : (x : a) -> p zero x) ->
(ℓ : (n : Nat) -> p (succ n) leaf) ->
(c : (n : Nat) -> (x : NTimes n Bush a) ->

(xs : NTimes (succ (succ n)) Bush a) ->
p n x -> p (succ (succ n)) xs -> p (succ n) (cons x xs)) ->

(n : Nat) -> (xs : NTimes n Bush a) -> p n xs
ind base ℓ c zero xs = base xs
ind base ℓ c (succ n) leaf = ℓ n
ind base ℓ c (succ n) (cons x xs) =

c n x xs (ind base ℓ c n x) (ind base ℓ c (succ (succ n)) xs)

Observe that ind follows the same structure as nfold. The type variable p
is generalized to a predicate of kind (n : Nat) -> NTimes n Bush a -> Set.
The type of ind specifies how to prove by induction that a property p holds for
all members of the type NTimes n Bush a. More specifically, for the base case,
we must show that p holds for any x of type NTimes zero Bush a (which equals
a), hence p zero x. For the leaf case, we must show that p holds for leaf of
type NTimes (succ n) Bush a. For the cons case, we assume as the induction
hypotheses that p holds for some x of type NTimes n Bush a and some xs of
type NTimes (succ (succ n)) Bush a, and then we must show that p holds
for cons x xs.

With ind, we can now prove properties of nmap. For example, the following
is a proof that nmap has the usual identity property of functors.

nmap-id : ∀ {a : Set} -> (n : Nat) -> (y : NTimes n Bush a) ->
nmap n (id a) y == y

nmap-id {a} n y =
ind {a} {λ n xs -> nmap n (id a) xs == xs} (λ x -> refl) (λ n -> refl)

(λ n x xs ih1 ih2 -> cong2 cons ih1 ih2) n y

We note that the usual way of proving things in Agda is by recursion, relying
on the Agda termination checker to prove termination. Our purpose here, of
course, is to illustrate that our induction principle is strong enough to prove
many properties without needing Agda’s recursion. Nevertheless, the above proof
is equivalent to the following proof by well-founded recursion.

nmap-id’ : ∀ {a : Set} -> (n : Nat) -> (y : NTimes n Bush a) ->
nmap n (id a) y == y

nmap-id’ zero y = refl
nmap-id’ (succ n) leaf = refl
nmap-id’ (succ n) (cons x y) =

cong2 cons (nmap-id’ n x) (nmap-id’ (succ (succ n)) y)

The first two clauses of nmap-id’ correspond to the two arguments (λ n ->
refl) for nmap-id. The recursive calls nmap-id’ n x and nmap-id’ (succ
(succ n)) y in the definition of nmap-id’ correspond to the inductive hypothe-
ses ih1 and ih2 in nmap-id.

8 P. Fu and P. Selinger

4 Higher-order folds and dependently typed folds

Comparing nfold, the dependently typed fold that was defined in Section 2,
to hfold, the higher-order fold defined in the introduction, we saw that nfold
does not depend on nmap, and nmap can be defined from nfold. We also saw
that the termination of nfold is obvious and that it can be used to define other
terminating functions.

In this section, we will show the hfold is actually equivalent to nfold in the
sense that they are definable from each other.

4.1 Defining hfold from nfold

Using nfold, it is straightforward to define hfold, because the latter is essentially
the former instantiated to the case n = 1.

hfold : (b : Set -> Set) ->
(ℓ : (a : Set) -> b a) ->
(c : (a : Set) -> a -> b (b a) -> b a) ->
(a : Set) -> Bush a -> b a

hfold b ℓ c a x =
nfold (λ n -> NTimes n b a) (λ n -> ℓ (NTimes n b a))

(λ n -> c (NTimes n b a)) a (λ x -> x) 1 x

We can prove that this version of hfold satisfies the defining properties of
the version of hfold that was defined in the introduction (and therefore the two
definitions agree). Since the proof of hfold-cons is rather long, we have omitted
it, but the full machine-checkable proof can be found at [5].

hfold-leaf : (a : Set) -> (p : Set -> Set) ->
(ℓ : (b : Set) -> p b) ->
(c : (b : Set) -> b -> p (p b) -> p b) ->
hfold p ℓ c a leaf == ℓ a

hfold-leaf a p ℓ c = refl

hfold-cons : (a : Set) -> (p : Set -> Set) ->
(ℓ : (b : Set) -> p b) ->
(c : (b : Set) -> b -> p (p b) -> p b) ->
(x : a) -> (xs : Bush (Bush a)) ->
hfold p ℓ c a (cons x xs)
== c a x (hfold p ℓ c (p a) (hmap (hfold p ℓ c a) xs))

hfold-cons a p ℓ c x xs = ...

4.2 Defining nfold from hfold

The other direction is much trickier. In attempting to define nfold from hfold,
the main difficulty is that we must supply a type function b : Set -> Set
to hfold, and this b should somehow capture the quantification over natural
numbers. Ideally, we would like to define b such that bn a = pn for all n and

Towards an induction principle for nested data types 9

some suitable a. However, this is clearly impossible, because p is an arbitrary
type family, which can be defined so that p 0 = p 1 but p 1 ̸= p 2. This would
imply a = b a but b a ̸= b2 a, a contradiction.

Surprisingly, it is possible to work around this by arranging things so that
there is a canonical function bn a → pn, rather than an equality. This is done
by defining the following rather unintuitive type-level function PS.

PS : (p : Nat -> Set) -> Set -> Set
PS p A = (n : Nat) -> (A -> p n) -> p (succ n)

The type PS p is special because there is a map NTimes n (PS p) a → p n.

PS-to-P : (p : Nat -> Set) -> (a : Set) -> (z : a -> p zero) ->
(n : Nat) -> NTimes n (PS p) a -> p n

PS-to-P p a z zero x = z x
PS-to-P p a z (succ n) hyp = hyp n ih

where
ih : NTimes n (PS p) a -> p n
ih = PS-to-P p a z n

So if we set b = PS p, we have the promised canonical map bn a → pn. We can
pass this b to hfold to go from Bush a to PS p a.

fold-PS : (p : Nat -> Set) ->
(ℓ : (n : Nat) -> p (succ n)) ->
(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->
(a : Set) -> Bush a -> PS p a

fold-PS p ℓ c =
hfold (PS p) (λ a n tr -> ℓ n)

(λ a x xs n tr -> c n (tr x) (xs (succ n) (λ f -> f n tr)))

Now, provided that we are able to lift the function Bush a -> PS p a to its nth
iteration, i.e., NTimes n Bush a -> NTimes n (PS p) a, then we will be able
to define the dependently typed fold via the following.

nfold’ : (p : Nat -> Set) ->
(ℓ : (n : Nat) -> p (succ n)) ->
(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->
(a : Set) -> (z : a -> p zero) ->
(n : Nat) -> NTimes n Bush a -> p n

nfold’ p ℓ c a z n x = PS-to-P p a z n (lift n x)
where

lift : (n : Nat) -> NTimes n Bush a -> NTimes n (PS p) a
lift n x =

liftNTimes Bush (PS p) (λ a b -> hmap) n (fold-PS p ℓ c) a x

The liftNTimes function can indeed be defined by induction on natural num-
bers.

10 P. Fu and P. Selinger

liftNTimes : (b c : Set -> Set) ->
(∀ x y -> (x -> y) -> (b x -> b y)) ->
(n : Nat) -> (∀ a -> b a -> c a) ->
(a : Set) -> NTimes n b a -> NTimes n c a

liftNTimes b c m zero f a x = x
liftNTimes b c m (succ n) f a x =

f (NTimes n c a)
(m (NTimes n b a) (NTimes n c a) (liftNTimes b c m n f a) x)

Finally, we can prove that the function nfold’ that we just defined behaves
identically to the nfold that was defined in Section 2. Again, since the proof is
rather long and uses several lemmas, we do not reproduce it here. The machine-
checkable proof can be found at [5].

theorem : ∀ p ℓ c a z n x ->
nfold p ℓ c a z n x == nfold’ p ℓ c a z n x

theorem p ℓ c a z n x = ...

5 Nested data types beyond Bush

So far, we have focused on the Bush type, but our approach works for arbi-
trary nested data types, including ones that are defined by mutual recursion. To
illustrate this, consider the following pair of mutually recursive data types:

data Bob (a : Set) : Set
data Dylan (a b : Set) : Set

data Bob a where
robert : a -> Bob a
zimmerman : Dylan (Bob (Dylan a (Bob a))) (Bob a) -> Bob (Dylan a a) -> Bob a

data Dylan a b where
duluth : Bob a -> Bob b -> Dylan a b
minnesota : Dylan (Bob a) (Bob b) -> Dylan a b

As usual, the higher-order fold is easy to define. There are two separate such
folds, one for Bob and one for Dylan:

hfold-bob : (bob : Set -> Set) ->
(dylan : Set -> Set -> Set) ->
(rob : ∀ a -> a -> bob a) ->
(zim : ∀ a -> dylan (bob (dylan a (bob a))) (bob a) -> bob (dylan a a) -> bob a) ->
(dul : ∀ a b -> bob a -> bob b -> dylan a b) ->
(min : ∀ a b -> dylan (bob a) (bob b) -> dylan a b) ->
∀ a -> Bob a -> bob a

hfold-dylan : (bob : Set -> Set) ->
(dylan : Set -> Set -> Set) ->
(rob : ∀ a -> a -> bob a) ->
(zim : ∀ a -> dylan (bob (dylan a (bob a))) (bob a) -> bob (dylan a a) -> bob a) ->
(dul : ∀ a b -> bob a -> bob b -> dylan a b) ->
(min : ∀ a b -> dylan (bob a) (bob b) -> dylan a b) ->
∀ a b -> Dylan a b -> dylan a b

The dependent fold requires some explanation. Recall that for Bush, the only
type expressions of interest were of the form Bushn a, so we used the natural

Towards an induction principle for nested data types 11

number n to index these types. In the more general case, we must consider
more complicated type expressions such as Dylan (Bob a) (Dylan a b). Therefore,
we need to replace the natural numbers with a custom type. We define a type
BobDylanIndex, which represents expressions built up from type variables and
the type constructors Bob and Dylan.

data BobDylanIndex : Set where
varA : BobDylanIndex
varB : BobDylanIndex
BobC : BobDylanIndex -> BobDylanIndex
DylanC : BobDylanIndex -> BobDylanIndex -> BobDylanIndex

We can then give an interpretation function for these type expressions. This
plays the role that NTimes played in the Bush case:

I : (Set -> Set) -> (Set -> Set -> Set) -> Set -> Set -> BobDylanIndex -> Set
I bob dylan a b varA = a
I bob dylan a b varB = b
I bob dylan a b (BobC expr) = bob (I bob dylan a b expr)
I bob dylan a b (DylanC expr1 expr2) = dylan (I bob dylan a b expr1) (I bob dylan a b expr2)

For example, if
i = DylanC (BobC varA) (DylanC varA varB),

then
I bob dylan a b i = dylan (bob a) (dylan a b).

The dependent fold is defined simultaneously for Bob and Dylan, and in fact for
all type expressions that are built from Bob and Dylan. Its type is the following:

nfold : (p : BobDylanIndex -> Set) ->
(rob : ∀ a -> p a -> p (BobC a)) ->
(zim : ∀ a -> p (DylanC (BobC (DylanC a (BobC a))) (BobC a))

-> p (BobC (DylanC a a)) -> p (BobC a)) ->
(dul : ∀ a b -> p (BobC a) -> p (BobC b) -> p (DylanC a b)) ->
(min : ∀ a b -> p (DylanC (BobC a) (BobC b)) -> p (DylanC a b)) ->
(a b : Set) ->
(baseA : a -> p varA) ->
(baseB : b -> p varB) ->
(∀ i -> I Bob Dylan a b i -> p i)

Note that although the types Bob and Dylan are complicated, the correspond-
ing nfold can be systematically derived from their definition. Moreover, as in
the case of Bush, the higher-order folds and the dependent fold are definable
in terms of each other. In addition, the induction principle, which generalizes
nfold, can be easily defined. Full details can be found in the accompanying
code [5].

6 Discussion

We think that the equivalence of hfold and nfold is both surprising and use-
ful. The reason it is surprising is because it was informally believed among re-
searchers that hfold is too abstract for most useful programming tasks. The
reason it is potentially useful is that in the context of some dependently typed

12 P. Fu and P. Selinger

programming languages or proof assistants (such as Coq), when the user writes
a data type declaration, the system should automatically derive the appropriate
folds and induction principles for the data type. In the case of nested data types,
there is currently no universally good way to do this (which is presumably one
of the reasons Coq does not support the Bush type). Now on the one hand, we
have nfold, which is a practical programming primitive, but its type is not easy
to generate from a user-defined data type declaration. For example, even stating
the type of nfold requires a reference to an ancillary data type, which is Nat in
the case of Bush but can be more complicated for a general nested type. On the
other hand, we have hfold, which is not very practical, but its type can be easily
read off from a data type declaration. The fact that we have shown nfold to
be definable in terms of hfold suggests a solution to this problem: given a data
type declaration, the system can generate its corresponding hfold, and then the
user can follow a generic recipe to derive the more useful nfold.

7 Conclusion and future work

Using Bush as an example, we showed how to define dependently typed folds
for nested data types. Unlike higher-order folds, dependently typed folds can be
used to define maps and other terminating functions, and they have analogous
induction principles, similar to the folds for ordinary data types. We showed
how to reason about programs involving nested data types in Agda. Last but
not least, we also showed that dependently typed folds and higher-order folds
are mutually definable. This has some potential applications in implementations
of dependent type theories, because given a user-defined nested data type, the
corresponding higher-order fold can be automatically generated, and then the
user can derive the more useful dependent fold by following a generic recipe. All
of our proofs are done in Agda, without using any unsafe flag.

Our long term goal is to derive induction principles for any algebraic data
type (nested or non-nested). There is still a lot of work to be done. In this paper,
we only showed how to get the dependently typed fold and induction principle for
the single example of Bush. Although our approach also works for other nested
data types, we have not yet given a formal characterization of dependently typed
folds and their induction principles in the general case. Another research direc-
tion is to study the direct relationship between the induction principles (derived
from dependently typed folds) and higher-order folds. In the Bush example, it
corresponds to asking if we can define ind from hfold, possibly with some extra
properties that can also be read off from the data type definition.

Acknowledgements

We thank the referees for their thoughtful comments. This work was supported
by the Natural Sciences and Engineering Research Council of Canada (NSERC)
and by the Air Force Office of Scientific Research under Award No. FA9550-21-
1-0041.

Towards an induction principle for nested data types 13

References

1. Agda documentation. https://agda.readthedocs.io/, accessed: 2022-02-15
2. Bird, R., Meertens, L.: Nested datatypes. In: Mathematics of program construction.

pp. 52–67. Springer (1998)
3. Bird, R., Paterson, R.: De Bruijn notation as a nested datatype. Journal of func-

tional programming 9(1), 77–91 (1999)
4. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of

Computing 11(2), 200–222 (1999)
5. Fu, P., Selinger, P.: Agda code accompanying this paper (2023), available from

https://www.mathstat.dal.ca/~selinger/papers/downloads/Wollic.agda
6. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and types, vol. 7. Cambridge University

Press Cambridge (1989)
7. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data structure. Jour-

nal of functional programming 16(2), 197–217 (2006)
8. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: International Con-

ference on Typed Lambda Calculi and Applications. pp. 207–222. Springer (2007)
9. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci.

1, 125–159 (1975)

https://agda.readthedocs.io/
https://www.mathstat.dal.ca/~selinger/papers/downloads/Wollic.agda

	Towards an induction principle for nested data types

