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Abstract. Expectation Maximisation (EM) and Latent Dirichlet Allo-
cation (LDA) are two frequently used inference algorithms, for finding
an appropriate mixture of latent variables, and for finding an allocation
of topics for a collection of documents. A recent insight in probabilistic
learning is that Jeffrey’s update rule gives a decrease of Kullback-Leibler
divergence. Its logic is error correction. It is shown that this same rule
and divergence decrease logic is at the heart of EM and LDA, ensuring
that successive iterations are decreasingly wrong.

1 Introduction

Learning can happen via encouragement or via discouragement, that is by rein-
forcing what goes well, or by slowing down what is going the wrong way. Intu-
itively these differences are clear. In probabilistic learning one can distinguish
rules of Pearl and Jeffrey for updating (conditioning, belief revision), see [22,17]
and [3,19,8,12] for comparisons. In [14] the difference between these rules has
been described mathematically: Pearl’s rule gives an increase of validity (ex-
pected value), whereas Jeffrey’s rule gives a decrease of (Kullback-Leibler) di-
vergence. The latter may be understood as error correction (or reduction of free
energy), like in predictive coding theory [23,9,11] — where the human mind is
studied as a Bayesian prediction and correction engine.

This paper demonstrates the relevance of Jeffrey’s update rule — with its
divergence decrease — for two fundamental inference algorithms, namely Expec-
tation Maximisation (EM) [7] and Latent Dirichlet Allocation (LDA) [2]. EM is
used for uncovering mixtures of latent variables. It has many applications, for
instance in natural language processing, computer vision, and genetics. LDA is
used to get a big-picture of (large) collections of documents by discovering the
topics that they cover. Both are unsupervised classification algorithms.

The paper gives an abstract reformulation of these two well-known algo-
rithms in machine learning that brings out the logic of divergence reduction
(or error correction) behind them. This reformulation is inspired by categorical
probability theory (see e.g. [10,4]), in which conditional probabilities p(y | x) are



reinterpreted as probabilistic functions X → Y , also known as Kleisli maps or
channels, with a rich structure, among others for sequential composition, parallel
composition, and reversal. This paper does not assume knowledge of category
theory: the relevant constructions are described concretely, especially for reversal
(Bayesian inversian, dagger) since it plays a crucial role in Jeffrey’s rule.

Making explicit what these algorithms EM and LDA achieve, and how, is
relevant in times with a rising need that algorithms in machine learning and
AI explain their outcomes. A first requirement for such explanations is a clear
semantical understanding, including the underlying logic. Thus, the aim here is
to analyse (two) existing algorithms, in their basic forms. The algorithms are
not extended or improved, but studied as such.

This paper is organised as follows. It first introduces notation and basic
terminology for multisets and (discrete probability) distributions in Section 2,
including channels (probabilistic functions) and their reversals. Section 3 recalls
Jeffrey’s update rule and the associated divergence decrease. It includes a (new)
strengthened version of this rule, with multiple channels, that will be used for
LDA. Subsequently, Section 4 describes the EM algorithm using channels and
shows how its correctness can be proved in just four lines, see the proof of
Theorem 3. Section 5 gives a similar reformulation and proof of correctness for
LDA. Simple illustrations are included for Jeffrey’s rule, EM and for LDA.

2 Multisets and distributions

A multiset (or bag) is a subset in which elements may occur multiple times. We
borrow ‘ket’ notation | · ⟩ from quantum theory and represent an urn with three
red, two blue and one green ball as a multiset 3|R⟩+ 2|B ⟩+ 1|G⟩. In the ‘bag-
of-words’ model a document is understood as a multiset of words. A distribution
is like a multiset but its multiplicities are not natural numbers but probabilities,
from the unit interval [0, 1], that add up to one, as in 1

2 |R⟩+ 1
3 |B ⟩+ 1

6 |G⟩.
More formally, a multiset on a set X is a function φ : X → N with finite sup-

port supp(φ) = {x ∈ X | φ(x) > 0}. Similarly, a distribution on X is a function
ω : X → [0, 1] with finite support, with

∑
x ω(x) = 1. We can equivalently write

them in ket notation as φ =
∑
x φ(x)|x⟩ and ω =

∑
x ω(x)|x⟩. We write M(X)

and D(X) for the sets of multisets and distributions on a set X.
Notice that we do not require that the set X is finite. But when X is finite,

we can say that a multiset φ ∈ M(X), or a distribution ω ∈ D(X), has full
support if supp(φ) = X, or supp(ω) = X. The unit multiset 1X :=

∑
x 1|x⟩

and the uniform distribution unifX :=
∑
x

1
n |x⟩, for the size n = |X | of the

set X, are examples with full support. A fair coin 1
2 |H ⟩+ 1

2 |T ⟩ and a fair dice
1
6 |1⟩+

1
6 |2⟩+

1
6 |3⟩+

1
6 |4⟩+

1
6 |5⟩+

1
6 |6⟩ are examples of uniform distributions,

on the set {H,T} and on {1, 2, 3, 4, 5, 6}.
The size ∥φ∥ ∈ N of a multiset φ ∈ M(X) is the total number of elements,

including multiplicities: ∥φ∥ :=
∑
x φ(x). We use special notation for the set of

multisets of a particular size K.

M[K](X) := {φ ∈ M(X) | ∥φ∥ = K}.
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The only multiset on X with size 0 is the constant-zero function 0 : X → N.
For a non-zero multiset φ ∈ M(X) we write Flrn(φ) ∈ D(X) for the distribu-

tion obtained via ‘frequentist learning’, that is via counting and normalisation:

Flrn(φ)(x) :=
φ(x)

∥φ∥
that is Flrn(φ) =

∑
x∈X

φ(x)

∥φ∥
∣∣x〉.

The multinomial distribution describes draws with replacement from an urn
filled with coloured balls, represented as a distribution ω ∈ D(X), where X is
the set of colours. The number ω(x) ∈ [0, 1] is the probability/fraction of balls
of colour x ∈ X in the urn. For a fixed number K, the multinomial distribution
mn[K](ω) assigns a probability to a draw of K balls, represented as a multiset
φ ∈ M[K](X). It is defined as:

mn[K](ω) :=
∑

φ∈M[K](X)

(φ) ·
∏
x∈X

ω(x)φ(x)
∣∣φ〉 ∈ D

(
M[K](X)

)
, (1)

where (φ) := ∥φ∥!∏
x φ(x)!

is the multinomial coefficient of φ, see e.g. [13,15] for more

details. For instance for a distribution ω = 1
8 |a⟩ +

1
4 |b⟩ +

5
8 |c⟩ over the set of

colours X = {a, b, c} and for draws of size K = 2 we get:

mn[2](ω) = 1
64

∣∣∣2|a⟩〉+ 1
16

∣∣∣1|a⟩+ 1|b⟩
〉
+ 1

16

∣∣∣2|b⟩〉+ 5
32

∣∣∣1|a⟩+ 1|c⟩
〉

+ 5
16

∣∣∣1|b⟩+ 1|c⟩
〉
+ 25

64

∣∣∣2|c⟩〉 .
In Section 5 a distribution on words will be used to assign a multinomial prob-
ability to a document, as a multiset (bag) of words.

What we describe in (1) is the so-called multivariate case, with multiple
colours. When there are just two colours, that is, when the set X has two ele-
ments, say X = {0, 1}, we are in the bivariate case. It will be used in Example 4.
Via the isomorphisms D({0, 1}) ∼= [0, 1] and M[K]({0, 1}) ∼= {0, 1, . . . ,K} one
gets the binomial distribution as special case of (1), for a bias r ∈ [0, 1],

bn[K](r) :=
∑

n∈{0,...,K}

(
K

n

)
· rn · (1−r)K−n ∣∣n〉 ∈ D

(
{0, . . . ,K}

)
. (2)

2.1 Channels and their daggers

An essential element of the principled categorical approach to probability is the
use of channels, also known as Kleisli maps. For two sets X,Y , a channel from
X to Y is a probabilistic function, written as c : X → Y . It is an actual function
of the form c : X → D(Y ) that assigns a distribution c(x) ∈ D(Y ) to each
element x ∈ X. In traditional notation it is written as a conditional probability
distribution p(y | x). These channels (probabilistic functions) can be composed,
both sequentially and in parallel; moreover, they can be reversed, giving what is
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called a dagger channel [5,4,10], also known as the Bayesian inverse p(x | y) of
p(y | x). This gives a useful calculus of channels.

For a distribution ω ∈ D(X) on the domain of a channel c : X → Y we
may ‘push forward’ (or ‘transform’) the distribution along the channel, giving
a distribution c =≪ ω ∈ D(Y ), on the codomain Y of the channel. This new
distribution c =≪ω is also called the ‘prediction’. It is defined as:(

c =≪ω
)
(y) :=

∑
x∈X

ω(x) · c(x)(y). (3)

Using push forward =≪ we can define composition of channels c : X → Y and
d : Y → Z to a new channel d ◦· c : X → Z, namely as (d ◦· c)(x) := d =≪ c(x).
Notice that we use special notation ◦· for composition of channels.

We turn to the reversal of a channel c : X → Y in presence of a ‘prior’
distribution ω ∈ D(X). The result is a channel c†ω : Y → X, defined as:

c†ω(y) :=
∑
x∈X

ω(x) · c(x)(y)
(c =≪ω)(y)

∣∣x〉. (4)

For more details about this reversal we refer to the literature [5,4,10].

3 Jeffrey’s update rule and its decrease of divergence

In probabilistic learning one can distinguish two different approaches to up-
dating, namely following Pearl [22] (and Bayes) or following Jeffrey [17], see for
comparisons e.g. [3,19,8,12,16]. The two approaches may produce completely dif-
ferent outcomes, but it is poorly understood when to use which approach. The
distinction between the rules is characterised mathematically in [14]: Pearl’s rule
increases validity (expected value) and Jeffrey’s rule decreases divergence.

In the present context we need only Jeffrey’s rule and refer to [8,12] for
Pearl’s counterpart. In the theorem below we first repeat (from [14]) the formu-
lation of Jeffrey’s rule in terms of the dagger of a channel (4), together with the
associated decrease of the divergence. The second item is new and contains a
generalisation of Jeffrey’s rule to multiple channels and data distributions. The
latter are typically obtained via frequentist learning Flrn, see Sections 4 and 5.
The appendix contains a proof.

Kullback-Leibler divergence DKL is a standard comparison of distributions
on the same set. It is defined, for ω, ρ ∈ D(X), via the natural logarithm ln:

DKL(ω, ρ) :=
∑
x∈X

ω(x) · ln
(
ω(x)

ρ(x)

)
. (5)

Jeffrey’s rule reduces the divergence between data and prediction. In the cogni-
tive context of predictive coding [23,9,11] this is called ‘error correction’.

Theorem 1. Let ω ∈ D(X) be a distribution, used as prior.
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1. (“Jeffrey’s divergence decrease”) For a channel c : X → Y and a ‘data’
distribution τ ∈ D(Y ),

DKL

(
τ, c =≪ω

)
≥ DKL

(
τ, c =≪ω′) where ω′ := c†ω =≪τ. (6)

This mapping ω 7→ ω′ := c†ω =≪τ is Jeffrey’s update rule, giving ω′ as updated,
posterior distribution.

2. (“Mixture divergence decrease”) Let ci : X → Yi be a finite collection of
channels with distributions τi ∈ D(Yi) and probabilities ri ∈ [0, 1] satisfying∑
i ri = 1. Then:∑

i
ri ·DKL

(
τi, ci =≪ω

)
≥
∑

i
ri ·DKL

(
τi, ci =≪ω′)

where ω′ :=
∑

i
ri ·
((
ci
)†
ω

=≪τi
)
.

(7)

Proof. We refer to [14] for the details of the (non-trivial) proof of the diver-
gence decrease for Jeffrey’s update rule (6). It crucially depends on (8) below.
Let ω ∈ D(X) be a distribution with predicates p1, . . . , pn ∈ [0, 1]X satisfy-
ing

∑
i pi = 1, pointwise, and with probabilities r1, . . . , rn ∈ [0, 1] satisfying∑

i ri = 1. Assuming non-zero validities ω |= pi, for each i, one has:∑
i

ri · (ω |= pi)∑
j rj · (ω|pj |= pi)

≤ 1. (8)

See [14] for details about the validity (expected value) ω |= p of a predicate p
w.r.t. a distribution ω, and about the updated distribution ω|p.

We will use the inequality (8) to prove the second point of the theorem.
We use the disjoint union K :=

∐
i Yi as index set and with predicates and

probabilities, for (i, y) ∈ K,

p(i,y) := ci ≫= 1y = ci(−)(y) ∈ [0, 1]X s(i,y) := ri · τi(y) ∈ [0, 1].

The proof of (7) works as follows, basically as in [14], but with an extra
level of indexing, via the index set K. Recall in the mixture case the updated
distribution ω′ :=

∑
i ri ·

(
(ci)

†
ω =≪τi

)
.∑

i
ri ·DKL

(
τi, ci =≪ω′) −

∑
i
ri ·DKL

(
τi, ci =≪ω

)
(5)
=
∑

i
ri ·

∑
y∈Yi

τi(y) ·
[
ln

(
τi(y)

(ci =≪ω′)(y)

)
− ln

(
τi(y)

(ci =≪ω)(y)

)]
=

∑
(i,y)∈K

s(i,y) · ln
(
(ci =≪ω)(y)
(ci =≪ω′)(y)

)
=

∑
(i,y)∈K

s(i,y) · ln
(
ω |= ci ≫= 1y
ω′ |= ci ≫= 1y

)

≤ ln

 ∑
(i,y)∈K

s(i,y) ·
ω |= p(i,y)

ω′ |= p(i,y)

 by Jensen’s inequality

(∗)
≤ ln

(
1) = 0.
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The marked inequality
(∗)
≤ uses (8). It applies since for (i, y) ∈ K,

ω′ |= p(i,y) =
∑

j
rj ·

(
(cj)

†
ω =≪τj

)
|= p(i,y)

=
∑

j
rj ·

∑
x∈X

(
(cj)

†
ω =≪ τj

)
(x) · p(i,y)(x)

=
∑

j
rj ·

∑
x∈X

∑
z∈Yj

(cj)
†
ω(z)(x) · τj(z) · p(i,y)(x)

(∗∗)
=

∑
(j,z)∈K

s(j,k) ·
∑
x∈X

ω|cj ≫= 1z
(x) · p(i,y)(x)

=
∑

(j,z)∈K

s(j,k) ·
(
ω|p(j,z) |= p(i,y)

)
.

The equation
(∗∗)
= uses that the dagger definition (4) can equivalently be de-

scribed as an update: (cj)
†
ω(z) = ω|cj ≫= 1z

, see [14] for details. □

We include an illustration of Jeffrey’s rule, as in the above first item.

Example 2. The following update question is attributed to Jeffrey, and repro-
duced for instance in [3,6]. It involves three colors of clothes: green (g), blue (b)
and violet (v), in a space C = {g, b, v}. Clothes can be sold or not, as represented
by S = {s, s⊥}. The prior sales distribution ω ∈ D(S) is ω = 14

25 |s⟩+
11
25 |s

⊥ ⟩; it
tells that a bit more than half of the clothes are sold. The colour distributions
for sales and non-sales are provided via a channel c : S → D(C), of the form:

c(s) = 3
14 |g ⟩+

3
14 |b⟩+

4
7 |v ⟩ c(s⊥) = 9

22 |g ⟩+
9
22 |b⟩+

2
11 |v ⟩.

A cloth is inspected by candlelight and the following likelihoods are reported per
color: 70% certainty that it is green, 25% that it is blue, and 5% that it is violet.
This gives a data/evidence distribution τ = 7

10 |g ⟩ +
1
4 |b⟩ +

1
20 |v ⟩ ∈ D(C). We

ask: what is the likelihood that the observed cloth will be sold?
The push-forward colour distribution c =≪ ω with its prior divergence from

the data are:

c =≪ω (3)
= 3

10 |g ⟩+
3
10 |b⟩+

2
5 |v ⟩ DKL

(
τ, c =≪ω

) (5)
= 0.444.

The formula (4) determines the dagger channel d := c†ω : C → D(S) as:

d(g) = 2
5 |s⟩+

3
5 |s

⊥ ⟩ d(b) = 2
5 |s⟩+

3
5 |s

⊥ ⟩ d(v) = 4
5 |s⟩+

1
5 |s

⊥ ⟩.

We then get as updated (posterior) sales distribution ω′ := d =≪ τ ∈ D(S) with
decreased divergence:

ω′ := d =≪τ = 21
50 |s⟩+

29
50 |s

⊥ ⟩ now with DKL

(
τ, c =≪ω′) = 0.368.

The posterior sale probability 21
50 for the inspected cloth is lower than the

prior probability 14
25 = 28

50 . This outcome also occurs in [3, Ex. 1], [6, p.41] (as
marginal), but without the above dagger-channel and the divergence decrease.
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4 Expectation Maximisation (EM)

Expectation Maximisation (EM) is an algorithm where two steps, called E-step
and M-step are alternated and iterated, as in E-M-E-M-E-M- · · · , until some
fixed point is reached. Its first general formulation occurs in [7], but it was used
in more specialised forms before, see [18, 1.8] for historical details. In general,
EM seeks an appropriate mixture of hidden/latent variables together with ap-
propriate parameter values in a statistical model, see [20].

Here we describe the model and algorithm in channel-based form, where the
divergence between data and predictions decreases with every iteration. The
setting involves a channel, with a ‘mixture’ distribution on its domain and a
‘data’ multiset on its codomain. The channel will have type Z → Y , where Z
is the space of classifications, and Y is the data space. Typically, the channel is
determined by a parameter θ, which we write as c[θ] : Z → Y . This θ may be a
single number, a list of numbers, or even a matrix, of some dimension.

Theorem 3. Let a ‘data’ multiset ψ ∈ M(Y ) be given. We consider an initial
‘mixture’ distribution ω(0) ∈ D(Z) and a family of channels c[θ] : Z → Y , with
parameter θ, having an initial value θ(0).

Consider the following two steps at stage n ∈ N, to produce new distributions
and channels, assuming that we already have a distribution ω(n) ∈ D(Z) and
channel c(n) := c[θ(n)] : Z → Y , for parameter value θ(n).

E-step Using Jeffrey’s update rule, from Theorem 1 (1), we obtain a next mix-
ture distribution as:

ω(n+1) := c[θ(n)]†
ω(n) =≪Flrn(ψ) ∈ D(Z). (9)

M-step We pick as next channel-parameter value the one with minimal Kullback-
Leibler divergence in:

θ(n+1) ∈ argmin
θ

DKL

(
Flrn(ψ), c[θ] =≪ω(n)

)
. (10)

Take c(n+1) := c[θ(n+1)] as next channel.

These two steps result in decreasing divergences.

1. Each iteration yields a decrease of Kullback-Leibler divergence:

DKL

(
Flrn(ψ), c(n+1) =≪ω(n+1)

)
≤ DKL

(
Flrn(ψ), c(n) =≪ω(n)

)
. (11)

This means that the predicted data distribution is decreasingly wrong.
2. A next parameter θ(n+1) can (often) be found as solution to the equation:∑

z∈Z, y∈Y
ψ(y) ·

(
c(n)

)†
ω(n)(y)(z) ·

d

dθ
ln
(
c[θ](z)(y)

)
= 0. (12)

This solution is not the minimal one in (10), but it still yields the relevant
decrease of divergence in (11).
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The word ‘often’ is inserted because finding a minimal parameter value via a
solution of (12) only works when the channel has suitable (partial) derivatives,
see Example 4 below.

Proof. 1. The claimed decrease of divergence arises as follows.

DKL

(
Flrn(ψ), c[θ(n+1)] =≪ω(n+1)

)
≤ DKL

(
Flrn(ψ), c[θ(n)] =≪ω(n+1)

)
since θ(n+1) is argmin

≤ DKL

(
Flrn(ψ), c[θ(n)] =≪

(
c[θ(n)]†

ω(n) =≪Flrn(ψ)
))

by definition of ω(n+1)

≤ DKL

(
Flrn(ψ), c[θ(n)] =≪ω(n)

)
by Theorem 1 (1).

2. The minimum parameter value θ in the expression DKL

(
Flrn(ψ), c[θ] =≪

ω(n)
)
in (10) is located where the derivative d

dθ is zero. We thus calculate:

d

dθ
DKL

(
Flrn(ψ), c[θ] =≪ω(n)

)
(5)
=

d

dθ

∑
y∈Y

Flrn(ψ)(y) · ln
(

Flrn(ψ)(y)

(c[θ] =≪ω(n))(y)

)
=

d

dθ

∑
y∈Y

Flrn(ψ)(y) · ln
(
Flrn(ψ)(y)

)
−
∑
y∈Y

Flrn(ψ)(y) · ln
(
(c[θ] =≪ω(n))(y)

)
=

−1

∥ψ∥
·
∑
y∈Y

ψ(y) · d

dθ
ln
(
(c[θ] =≪ω(n))(y)

)
=

−1

∥ψ∥
·
∑
y∈Y

ψ(y)

(c[θ] =≪ω(n))(y)
· d

dθ
(c[θ] =≪ω(n))(y)

=
−1

∥ψ∥
·
∑
y∈Y

ψ(y)

(c[θ] =≪ω(n))(y)
· d

dθ

∑
z∈Z

c[θ](z)(y) · ω(n)(z)

=
−1

∥ψ∥
·
∑

z∈Z, y∈Y

ψ(y) · ω(n)(z)

(c[θ] =≪ω(n))(y)
· d

dθ
c[θ](z)(y)

=
−1

∥ψ∥
·
∑

z∈Z, y∈Y

ψ(y) · ω(n)(z) · c[θ](z)(y)
(c[θ] =≪ω(n))(y)

· d

dθ
ln
(
c[θ](z)(y)

)
(4)
=

−1

∥ψ∥
·
∑

z∈Z, y∈Y
ψ(y) · c[θ]†

ω(n)(y)(z) ·
d

dθ
ln
(
c[θ](z)(y)

)
. (∗)

At this stage we need two more observations to see why it suffices to solve
the equation (12).
(a) The leading factor −1

∥ψ∥ can be dropped from the above last line (∗) when
we seek a solution via setting it to zero; because of the minus sign −1,
we are not looking for a minimum, but for a maximum.

(b) The first θ in the dagger expression c[θ]†
ω(n) in (∗) can be replaced by

θ(n), which turns c[θ]†
ω(n) into

(
c(n)

)†
ω(n) , as in (12). This is a subtle point.
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As we can see in the four line proof of Theorem 3 (1), we only need that
the solution θ(n+1) yields a divergence that is less than the divergence
for θ(n). Hence if one of the θ’s in (∗) equals θ(n), we do not get the real
minimum divergence for θ(n+1), but we still get a divergence that is less
than the one for θ(n). □

Example 4.

Consider the histogram of 1000 data elements on
the right, on the space {0, 1, . . . , N} for N = 25.
The shape of the data suggests that we have a
mixture of three binomials at hand. Indeed, we
have obtained these data by sampling 1000 times
from the mixture of binomials:

1
2 · bn[N ]

(
1
2

)
+ 1

3 · bn[N ]
(
1
8

)
+ 1

6 · bn[N ]
(

9
10

)
. (13)

Our aim in this example is to see if we can recover the mixture weights ( 12 ,
1
3 ,

1
6 )

and the biases ( 12 ,
1
8 ,

9
10 ) in (13) from these sampled data, via EM as described

in Theorem 3. Formally, the above plot is used as a multiset ψ = 14|0⟩+29|1⟩+
· · ·+ 9|25⟩ ∈ M[1000]

(
{0, . . . , 25}

)
.

We take a three element latent space, say Z = {1, 2, 3}, together with a
parameterised channel c[θ] : Z → {0, 1, . . . , N}, in this situation with N = 25.
The channel c[θ] consists of three binomial distributions, with a 3-tuple θ =
(θ1, θ2, θ3) ∈ [0, 1]3 as parameter, via c[θ](i) := bn[N ](θi).

In this situation we illustrate how to solve Equation (12), where, for convience

we abbreviate the dagger channel as dn :=
(
c(n)

)†
ω(n) : {0, . . . , N} → Z. We look

at the solution for partial derivatives, for each i ∈ Z, using the familiar equation
∂
∂x ln(x) =

1
x , plus the fact that the logarithm turns products into sums:

0
(12)
=

∑
z∈{1,2,3}

∑
k∈{0,...,N}

ψ(k) · dn(k)(z) ·
∂

∂θi
ln
(
c[θ](z)(k)

)
(2)
=

∑
z∈{1,2,3}

∑
k∈{0,...,N}

ψ(k) · dn(k)(z) ·
∂

∂θi
ln
((
N
k

)
· θkz · (1−θz)N−k

)
=

∑
k∈{0,...,N}

ψ(k) · dn(k)(i) ·
[
k

θi
− N−k

1− θi

]
.

Via some elementary arithmethic we now get as solution:

θi =

∑
k ψ(k) · k · dn(k)(i)

N ·
∑
k ψ(k) · dn(k)(i)

. (∗)

At this stage we can put things together and give a concrete description of the
EM-algorithm (for the current example).

1. Pick arbitrary ω(0) ∈ D(Z) = D({1, 2, 3}) and θ(0) ∈ [0, 1]3;

9



2. Assume ω(n) ∈ D(Z) and θ(n) ∈ [0, 1]3 are already computed and use them

first to form the dagger channel dn := c
[
θ(n)

]†
ω(n) : {0, . . . , N} → Z as in (4).

(E) Take the next mixture distribution ω(n+1) ∈ D(Z) via Jeffrey’s rule:

ω(n+1)(i)
(9)
=
(
dn =≪Flrn(ψ)

)
(i) =

1

∥ψ∥
·

∑
k∈{0,...,N}

dn(k)(i) · ψ(k).

(M) Take the next parameters θ(n+1) ∈ [0, 1]3 as:

θ
(n+1)
i

(∗)
=

∑
k ψ(k) · k · dn(k)(i)

N ·
∑
k ψ(k) · dn(k)(i)

=

∑
k Flrn(ψ)(k) · k · dn(k)(i)

N · ω(n+1)(i)
.

The table below gives an overview of five runs of this algorithm, starting from
arbitrary values. Clearly, the divergences are decreasing, as prescribed in (11).

round KL-div mixtures ω(n) biases θ(n)

0 0.853 0.477|1⟩+0.354|2⟩+0.169|3⟩ 0.235, 0.389, 0.691

1 0.326 0.353|1⟩+0.35|2⟩+0.297|3⟩ 0.159, 0.46, 0.754

2 0.132 0.321|1⟩+0.454|2⟩+0.225|3⟩ 0.128, 0.478, 0.812

3 0.029 0.311|1⟩+0.515|2⟩+0.174|3⟩ 0.122, 0.488, 0.872

4 0.011 0.309|1⟩+0.535|2⟩+0.156|3⟩ 0.121, 0.493, 0.898

We see that in five rounds we already get quite close to the original mixture and
biases in (13). The order is different, but this is because the classification labels
in Z = {1, 2, 3} are meaningless and cannot be distinguished by the algorithm.

5 Latent Dirichlet Allocation (LDA)

The second model and inference algorithm in this paper was introduced in [2]
under the name Latent Dirichlet Allocation, commonly abbreviated as LDA.
It is used for what is called topic modeling: classifying documents according
to their topics. The set-up of the algorithm is more complicated then EM and
involves continuous Dirichlet distributions. In our analysis we show that LDA
is essentially about divergence reduction via Jeffrey’s rule — in multi-channel
form, as in Theorem 1 (2). The Dirichlet distributions introduce a certain level of
complexity, but turn out to play a limited role in the algorithm itself. We cover
the essentials and refer to the literature for further information (see e.g. [21,20]).

Dirichlet is a continuous distribution on discrete distributions. Writing G for
the Giry monad of continous distributions, we have Dir(α) ∈ G

(
D(X)

)
, where

X is a finite set and α ∈ M(X) is a multiset with full support1. This Dir(α) is

1 In the current paper we use multisets with natural numbers as multiplicities; this
can be generalised to non-negative real numbers as multiplicities. The Dirichlet dis-
tribution Dir(α) can be defined for such more general multisets. But we shall not do
so here since it does not affect the LDA algorithm.

10



defined via a probability density function (pdf) dir(α) : D(X) → R≥0, namely:

dir(α)(ω) :=
(∥α∥ − 1)!∏
x(α(x)− 1)!

·
∏
x∈X

ω(x)α(x)−1.

The continuous Dirichlet distribution Dir(α) ∈ G
(
D(X)

)
is the function that

assigns to a measurable subset M ⊆ D(X) the probability
∫
ω∈M dir(α)(ω) dω.

We assume a finite set W of words and use the bag-of-words model for doc-
uments, so that a document is a multiset ψ ∈ M(W ) over words. As data we
use a collection of such documents/multisets, written as ψ =

(
ψi
)
i∈I , for some

finite index set I. We shall write it as ψ ∈ M(W )I and call it a corpus.
We also assume a finite set T of topics. This may simply be a set n :=

{0, 1, . . . , n− 1}, since topics do not have an interpretation.
We shall use multisets α ∈ M(T ) and β ∈ M(W ) as parameters for Dirichlet

distributions Dir(α) ∈ G
(
D(T )

)
and Dir(β) ∈ G

(
D(W )

)
, where α ∈ M(T ) and

β ∈ M(W ) are multisets with full support. We put them in parallel, using the
tensor ⊗ for continuous distributions, and thus get:

Dir(α)I := Dir(α)⊗ · · · ⊗Dir(α)︸ ︷︷ ︸
|I | times

∈ G
(
D(T )× · · · × D(T )︸ ︷︷ ︸

|I | times

)
= G

(
D(T )I

)
.

Similarly, we use Dir(β)T ∈ G
(
D(W )T

)
. These parallel products ⊗ of continuous

distributions work via the multiplication of the pdf’s involved, see e.g. [21].
These parallel Dirichlet’s are used as (continuous) distributions on θ ∈ D(T )I

and ζ ∈ D(W )T , that is on a document-topic channel θ : I → D(T ) and a topic-
word channel ζ : T → D(W ). This θ sends a document (index) i ∈ I to the topic
distribution θ(i) ∈ D(T ) for document ψi ∈ M(W ). Similarly, ζ sends a topic
t ∈ T to the distribution ζ(t) ∈ D(W ) of words, for the topic t.

The LDAmodel consists of the following composite, wheremn is multinomial.

D(T )I ×D(W )T
comp

// D(W )I
mnI
// D
(
M(W )I

)
The function comp performs channel composition: comp

(
θ, ζ

)
= ζ ◦· θ : I →

D(W ). The likelihood for document data ψ ∈ M(W )I , given hyperparameters
α, β is expressed by the (continuous) push forward:(

(mnI ◦ comp) =≪
(
Dir(α)I ⊗Dir(β)T

))
(ψ) ∈ [0, 1]. (14)

We can write the expression (14) in terms of integrals:∫
θ∈D(T )I

∫
ζ∈D(W )T

∏
i∈I

dir(α)
(
θ(i)

)
·
∏
t∈T

dir(β)
(
ζ(t)

)
·
∏
i∈I

mn
(
ζ =≪θ(i)

)
(ψi) dζ dθ.

We are interested in the likelihood expression with θ and ζ as free variables:

Lα,β,ψ
(
θ, ζ

)
:=
∏
i∈I

dir(α)
(
θ(i)

)
·
∏
t∈T

dir(β)
(
ζ(t)

)
·
∏
i∈I

mn
(
ζ =≪θ(i)

)
(ψi). (15)
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The LDA aim is to find the document-topic channel θ : I → D(T ) and the
topic-word ζ : T → D(W ) that maximise this likelihood expression (15).

We shall use the (natural) logarithm ln of this expression, commonly called
the log-likelihood; it turns the above products

∏
into sums

∑
. Since ln is mono-

tone, we might as well maximise the log-likelihood. A crucial observation is that
this log-likelihood can be formulated in terms of Kullback-Leibler divergence.
This opens the door to applying Jeffrey’s update rule.

Lemma 5. Let α ∈ M(T ) and β ∈ M(W ) be multisets with full support and
let ψ ∈ M(W )I be corpus of documents. The log-likelihood lnLα,β,ψ

(
θ, ζ

)
of the

expression (15) can be written as:

lnLα,β,ψ
(
θ, ζ

)
= C −

∑
i∈I

(
∥α−1∥+ ∥ψi∥

)
·
(

∥α−1∥
∥α−1∥+ ∥ψi∥

·DKL

(
Flrn(α−1), θ(i)

)
+

∥ψi∥
∥α−1∥+ ∥ψi∥

·DKL

(
Flrn(ψi), ζ =≪θ(i)

))
−
∑
t∈T

∥β−1∥ ·DKL

(
Flrn(β−1), ζ(t)

)
,

(16)

where C is a constant depending on the parameters α, β,ψ but not on the vari-
ables θ, ζ. Recall that 1 is the multiset of singletons, so that (α−1)(x) = α(x)−1.
This subtraction is allowed since α has full support. The same holds for β.

Proof. (of Lemma 5). We apply the logarithm ln to (15), expand the Dirichlet
and multinomial expressions, and write C for some constant, not depending on

12



θ, ζ.

lnLα,β,ψ
(
θ, ζ

)
=
∑
i∈I

ln

(
(∥α∥ − 1)!∏
t(α(t)− 1)!

)
+
∑
t∈T

(α(t)− 1) · ln
(
θ(i)(t)

)
+
∑
t∈T

ln

(
(∥β∥ − 1)!∏
w(β(w)− 1)!

)
+
∑
w∈W

(β(w)− 1) · ln
(
ζ(t)(w)

)
+
∑
i∈I

ln
(
(ψi )

)
+
∑
w∈W

ψi(w) · ln
((
ζ =≪θ(i)

)
(w)
)
.

= C +
∑
i∈I

∥α−1∥ ·
∑
t∈T

Flrn(α−1)(t) · ln
(
θ(i)(t)

)
− ∥α−1∥ ·

∑
t∈T

Flrn(α−1)(t) · ln
(
Flrn(α−1)(t)

)
+
∑
t∈T

∥β−1∥ ·
∑
w∈W

Flrn(β−1)(w) · ln
(
ζ(t)(w)

)
− ∥β−1∥ ·

∑
w∈W

Flrn(β−1)(w) · ln
(
Flrn(β−1)(w)

)
+
∑
i∈I

∥ψi∥ ·
∑
w∈W

Flrn(ψi)(w) · ln
((
ζ =≪θ(i)

)
(w)
)

− ∥ψi∥ ·
∑
w∈W

Flrn(ψi)(w) · ln
(
Flrn(ψi)(w)

)
= C −

∑
i∈I

∥α−1∥ ·DKL

(
Flrn(α−1), θ(i)

)
+ ∥ψi∥ ·DKL

(
Flrn(ψi), ζ =≪θ(i)

)
−
∑
t∈T

∥β−1∥ ·DKL

(
Flrn(β−1), ζ(t)

)
= C −

∑
i∈I

ri ·
(
ri,1 ·DKL

(
Flrn(α−1), θ(i)

)
+ ri,2 ·DKL

(
Flrn(ψi), ζ =≪θ(i)

))
−
∑
t∈T

∥β−1∥ ·DKL

(
Flrn(β−1), ζ(t)

)
.

In the last line we use the abbreviations (21). □

This lemma tells us that in order to maximise the log-likelihood we have to
minimise the three Kullback-Leibler divergences in (16), because of the minus
sign − before the DKL expressions.

Theorem 6. Consider the LDA situation as described above, with multiset pa-
rameters α ∈ M(T ) and β ∈ M(W ) and a corpus of documents ψ =

(
ψi
)
i∈I .

An infinite series of channels θ(n) ∈ D(T )I and ζ(n) ∈ D(W )T with increas-
ing likelihoods:

Lα,β,ψ
(
θ(n+1), ζ(n+1)

)
≥ Lα,β,ψ

(
θ(n), ζ(n)

)
(17)
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is obtained in the following manner.
At stage 0, arbitrary channels θ(0) ∈ D(T )I and ζ(0) ∈ D(W )T are chosen.

Subsequent stages are handled as follows.

1. The next document-topic channel θ(n+1) ∈ D(T )I is defined via the mixture
version of Jeffrey’s rule in Theorem 1 (2), as convex combination, at i ∈ I:

θ(n+1)(i) :=
∥α−1∥

∥α−1∥+ ∥ψi∥
· Flrn(α−1)

+
∥ψi∥

∥α−1∥+ ∥ψi∥
·
((
ζ(n)

)†
θ(n)(i)

=≪Flrn(ψi)
)
.

(18)

This rule is used with the identity channel together with the channel ζ(n).
2. The next topic-word channel ζ(n+1) ∈ D(W )T at t ∈ T and w ∈W is:

ζ(n+1)(t)(w) := argmin
ζ∈D(W )T

∑
i∈I

DKL

(
Flrn(ψi), ζ =≪θ(n+1)(i)

)
+ DKL

(
Flrn(β−1), ζ(t)

)
.

(19)

Concretely, it can be chosen as:

ζ(n+1)(t)(w) =
β(w)− 1 +

∑
i∈I ψi(w) ·

(
ζ(n)

)†
θ(n)(i)

(w)(t)

∥β−1∥+
∑
i∈I ∥ψi∥ ·

((
ζ(n)

)†
θ(n)(i)

=≪Flrn(ψi)
)
(t)
. (20)

Proof. For the first point it sufficies to prove this for the log-likelihood lnL. We
drop the subscripts α, β,ψ for convenience. Also, we abbreviate:

ri := ∥α−1∥+ ∥ψi∥ ri,1 :=
∥α−1∥

r
ri,2 :=

∥ψi∥
r

(21)

Thus ri,1 + ri,2 = 1. Using the reformulation in Lemma 5 we get:

lnL
(
θ(n+1), ζ(n+1)

)
= C −

∑
i∈I

ri ·
(
ri,1 ·DKL

(
Flrn(α−1), θ(n+1)(i)

)
+ ri,2 ·DKL

(
Flrn(ψi), ζ

(n+1) =≪θ(n+1)(i)
))

−
∑
t∈T

∥β−1∥ ·DKL

(
Flrn(β−1), ζ(n+1)(t)

)
≥ C −

∑
i∈I

ri ·
(
ri,1 ·DKL

(
Flrn(α−1), θ(n+1)(i)

)
+ ri,2 ·DKL

(
Flrn(ψi), ζ

(n) =≪θ(n+1)(i)
))

−
∑
t∈T

∥β−1∥ ·DKL

(
Flrn(β−1), ζ(n)(t)

)
≥ C −

∑
i∈I

ri ·
(
ri,1 ·DKL

(
Flrn(α−1), θ(n)(i)

)
+ ri,2 ·DKL

(
Flrn(ψi), ζ

(n) =≪θ(n)(i)
))

−
∑
t∈T

∥β−1∥ ·DKL

(
Flrn(β−1), ζ(n)(t)

)
= lnL

(
θ(n), ζ(n)

)
.
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The first inequality ≥ holds because ζ(n+1) is defined as argmin in (19). The
second inequality ≥ follows from Jeffrey’s divergence reduction, in mixture form,
see Theorem 1 (2). We apply it with prior distribution ω := θ(n)(i), with two

channels, namely the identity c1 := id : T → T and c2 := ζ(n) : T → W , with
two distributions τ1 := Flrn(α−1) ∈ D(T ) and τ2 := Flrn(ψi) ∈ D(W ), and with

two probabilities r1,1 := ∥α−1∥
∥α−1∥+∥ψi∥ and ri,2 := ∥ψi∥

∥α−1∥+∥ψi∥ . The dagger of the

identity channel is the identity, so that (c1)
†
ω =≪ τ1 = Flrn(α−1). The updated

state ω′ in Theorem 1 (2) is then θ(n+1)(i) as defined above.
We turn to formula (20). In order to find the argmin in (19) we use Lagrange’s

multiplier method, see e.g. [1, §2.2]. This method ensures that in the solution
gives convex combinations

Thus, we first extend the relevant equation with additional parameters κt,
for t ∈ T , in the function H defined as the log-likelihood plus an extra expression
— typical for Lagrange:

H
(
ζ,κ

)
= lnLα,β,ψ

(
θ, ζ

)
+
∑
t∈T

κ(t) ·

(
1−

∑
w∈W

ζ(t)(w)

)
.

Thus we keep the hyperparameters α, β,ψ and also the channel θ fixed. We then
consider the partial derivatives, for s ∈ T and v ∈W .

∂H

∂ζ(s)(v)

(
ζ,κ

)
=

(β(v)− 1)

ζ(s)(v)
+
∑
i∈I

ψi(v) · θ(i)(s)(
ζ =≪θ(i)

)
(v)

− κ(s)

=
1

ζ(s)(v)
·

(
β(v)− 1 +

∑
i∈I

ψi(v) · θ(i)(s) · ζ(s)(v)(
ζ =≪θ(i)

)
(v)

)
− κ(s)

=
β(v)− 1 +

∑
i∈I ψi(v) · ζ

†
θ(i)(v)(s)

ζ(s)(v)
− κ(s)

∂H

∂κ(s)

(
ζ,κ

)
= 1−

∑
w∈W

ζ(s)(w).

Setting all of these to zero yields:

ζ(s)(v) =
β(v)− 1 +

∑
i∈I ψi(v) · ζ

†
θ(i)(v)(s)

κ(s)
.

Thus:

1 =
∑
v∈W

ζ(s)(v) =
∑
v∈W

β(v)− 1 +
∑
i∈I ψi(v) · ζ

†
θ(i)(v)(s)

κ(s)

=
∥β−1∥+

∑
i∈I

∑
v∈W ψi(v) · ζ†θ(i)(v)(s)
κ(s)

=
∥β−1∥+

∑
i∈I ∥ψi∥ ·

(
ζ†θ(i) =≪Flrn(ψi)

)
(s)

κ(s)
.
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But then:

ζ(s)(v) =
β(v)− 1 +

∑
i∈I ψi(v) · ζ

†
θ(i)(v)(s)

∥β−1∥+
∑
i∈I ∥ψi∥ ·

(
ζ†θ(i) =≪Flrn(ψi)

)
(s)

.

We may now use θ(n) and ζ(n) in the expression on the right-hand-side for the
next-stage choice of ζ(n+1), as in (20). □

We include a very simple example to illustrate LDA.

Example 7. We take a set W = {a, b, c, d, e, f} with the first six letters of the
alphabet as the set of words, and two topics: T = {1, 2}. We consider a corpus
with 3 multisets of words, in the middle column in the table below. We see
that the words b, d, f occur frequently in the first document, whereas the other
words a, c, e occur often in the second one. The frequencies of letters in the third
document is roughly equal. Hence we expect document 1 to be mostly on one
topic, and document 2 on the other topic, and document 3 on both.

data document multiset topic distribution

1 1|a⟩+6|b⟩+1|c⟩+7|d⟩+2|e⟩+8|f ⟩ 0.831|1⟩+0.169|2⟩
2 10|a⟩+1|b⟩+8|c⟩+2|d⟩+9|e⟩+1|f ⟩ 0.132|1⟩+0.868|2⟩
3 4|a⟩+3|b⟩+4|c⟩+5|d⟩+2|e⟩+3|f ⟩ 0.512|1⟩ + 0.488|2⟩

The hyperparameter α ∈ M(T ) and β ∈ M(W ) are chosen as constants, with
multiplicity 2 for alpha and 1 for β. Running the LDA algorithm, as described in
Theorem 6, 25 times yields a document-topic channel θ with topic distributions
for each document, in the column on the right in the above table. As expected,
documents 1 and 2 are about different (opposite) topics.

The LDA-algorithm also produces a topic-word channel ζ : T →W . It assigns
in this simple example the following word probabilities to topics:

1 7→ 0.0000665|a⟩+ 0.278|b⟩+ 0.000707|c⟩+ 0.362|d⟩+ 0.0223|e⟩+ 0.337|f ⟩
2 7→ 0.362|a⟩+ 0.00277|b⟩+ 0.313|c⟩+ 0.0274|d⟩+ 0.295|e⟩+ 0.000435|f ⟩.

This is consistent with what we saw above: topic 1 makes makes words b, d, f
most likely, and topic 2 makes the other words a, c, e most likely.

6 Conclusions

EM and LDA are based on Jeffrey’s update rule. Even if in actual implementa-
tions the formulations in terms of channels and their daggers may not be directly
useful — for instance when results are approximated, typically via Gibbs sam-
pling — having a crisp description of the mathematical essentials may be useful
for understanding and reasoning about these fundamental EM and LDA algo-
rithms in machine learning.
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