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Abstract. Study of parallel operations such as Plotkin’s parallel-or has
promoted the development of the theory of programming languages. In
this paper, we consider parallel operations in the framework of categor-
ical realizability. Given a partial combinatory algebra A equipped with
an “abstract truth value” Σ (called predominance), we introduce the no-
tions of Σ-or and Σ-and combinators in A. By choosing a suitable A
and Σ, a form of parallel-or may be expressed as a Σ-or combinator.
We then investigate the relationship between these combinators and the
realizability model Ass(A) (the category of assemblies over A) and show
the following: under a natural assumption on Σ, (i) A admits Σ-and
combinator iff for any assembly X ∈ Ass(A) the Σ-subsets (canonical
subassemblies) of X form a poset with respect to inclusion. (ii) A admits
both Σ-and and Σ-or combinators iff for any X ∈ Ass(A) the Σ-subsets
of X form a lattice with respect to intersection and union.

Keywords: Realizability · Partial combinatory algebra · Parallel-or func-
tion.

1 Introduction

Traditionally, the realizability interpretation has been introduced as semantics of
intuitionistic arithmetic. It rigorously defines “what it means to justify a propo-
sition by an algorithm.” While it is originally formulated in terms of recursive
functions [8], it is later generalized to a framework based on Partial Combinatory
Algebras (PCAs), which include various computational models. The interpreta-
tion itself has been given a categorical generalization, such as the realizability
topos and the category of assemblies. In particular, in the category Ass(A) of as-
semblies over PCA A, we can discuss implementation of mathematical structures
and functions by algorithms [19]. Moreover, Ass(A) provide effective models to
higher-order programming languages such as PCF [1,9,14].

In this paper, we will consider how the structure of the realizability model
Ass(A) is affected by the choice of a computational model A. More specifically,
we focus on the following two concepts.

I. Parallel operations in PCA:
Comparing Kleene’s first algebra K1 and term models of lambda calculus
as PCA, there is a difference in the degree of parallelism. For example,
term models exclude Plotkin’s parallel-or function [16], whereas K1 does
not. While such a parallel operation has received a lot of attention in the



theory of programming languages, it also plays an implicit role in elemen-
tary recursion theory. For example, the union of two semi-decidable sets
U, V ⊆ N is again semi-decidable precisely because a Turing machine can
check whether input n ∈ N belongs to U or to V in parallel. In this paper,
we first consider a pair of nonempty subsets Σ = (T, F ) of PCA A as an
“abstract truth value” and define combinators Σ-or and Σ-and in A. In a
suitable A, these notions may express a form of parallel operations.

II. Σ-subsets in Ass(A):
It is known that such a pair Σ = (T, F ) may be identified with a predom-
inance t : 1 → Σ in Ass(A), which is a morphism obtained by weakening
the condition for being a subobject classifier [9]. An important feature is
that, for every assembly X over A, Σ induces a certain class of “canonical”
subassemblies of X. It is called the class of Σ-subsets of X and is written
SubΣ(X). Unlike the subobject lattice Sub(X), SubΣ(X) does not form a
poset in general. When it does, Σ is called dominance and used to construct a
subcategory of (internal) domains in the context of Synthetic domain theory
[7,9,13,14,18].
Interestingly, considering a suitable Σ in Ass(K1), the Σ-subsets of a natural
number object exactly correspond to the semi-decidable subsets of N [11].
That is, the notion of Σ-subset can be regarded as a generalization of semi-
decidable set. From the discussion in I., we can expect that if A admits Σ-or,
then SubΣ(X) is closed under union.

The purpose of this paper is to give a precise correspondence between these
two concepts. In particular, we prove the following results. Under a natural
assumption on a predominance Σ, A admits Σ-and combinator if and only if,
for every assembly X, the Σ-subsets of X form a poset with respect to inclusion
(Theorem 24). Furthermore, A admits both Σ-and and Σ-or combinators if and
only if, for every assembly X, the Σ-subsets of X form a lattice with respect to
intersection and union (Theorem 28).

Outline

The structure of this paper is as follows. In Section 2, we give some basic defini-
tions and properties about PCAs. In Section 3, we introduce the notions of Σ-or
and Σ-and combinators in a PCA relative to an “abstract truth value” (predom-
inance) Σ. In Section 4, we proceed to the category Ass(A) of assemblies over
A and the notion of Σ-subset. Lastly, in Section 5, we discuss the relationship
between Σ-or and Σ-and combinators in A and the structure of the Σ-subsets
in Ass(A).

2 Preliminary

We review some basic concepts and notations in realizability theory.



Definition 1 ([9]). A partial combinatory algebra (PCA) is a set A equipped
with a partial binary operation · : A × A ⇀ A such that there exist elements k,
s ∈ A satisfying the conditions

k · x ↓, (k · x) · y = x, (s · x) · y ↓, ((s · x) · y) · z ∼= (x · z) · (y · z)

for any x, y, z ∈ A. Here ↓ is to be read as “defined” (and ↑ as “undefined”) and
∼= means that if one side is defined, then so is the other and they are equal. We
often write xy instead of x · y, and axy instead of (ax)y. A PCA is called total
if its operation is total. Obviously, a singleton forms a total PCA, that is called
a trivial PCA.

PCA is often regarded as an “abstract machine” and there are many inter-
esting examples: Turing machines, λ-calculus, the continuous functions of type
ωω → ω, a reflexive object in any cartesian-closed category [19]. A common
feature of PCAs is that they can imitate untyped λ-calculus as follows.

Notation 2 Let T (A) denote the set of terms generated by constants a, b, · · · ∈
A, variables x, y, · · · and binary function symbol ·. We write FV (t) for the set
of free variables occurring in t ∈ T (A).

Given a term t ∈ T (A) and a variable x, we define a new term λ∗x. t by induction
on the structure of t. For instance, λ∗x. x is defined by skk, λ∗x. t by kt if t is
either a variable y ̸= x or a constant a, and λ∗x. tt′ by s(λ∗x. t)(λ∗x. t′). By
repetition, we obtain an element λ∗x. t(x) in A for any x = x1, · · · , xn.

Theorem 3 ([9,19]). Let A be a PCA and t(x) ∈ T (A). Then, for any a1, · · · ,
an ∈ A, (λ∗x. t(x))a1 · · · an−1 is defined and (λ∗x. t(x))a1 · · · an ∼= t(a1, · · · , an)
holds.

Remark 4. In particular, λ∗x. (ab) := s(ka)(kb) ∈ A is always defined even if
a · b ↑. This dummy λ-abstraction is useful to lock the evaluation. It may be
later unlocked by applying it to an arbitrary element c in A:

(λ∗x. ab) · c ∼= a · b.

This technique is used in Sections 3 and 5.

Notation 5 We use the following notations: i := λ∗x. x, true := λ∗xy. x, false :=
λ∗xy. y, (if b then x else y) := bxy, ⟨x, y⟩ := λ∗z. zxy, fst := λ∗p. p(true),
snd := λ∗p. p(false).

In this paper, we are mainly interested in the following examples.

Example 6. (i) Kleene’s first algebra K1: Consider the set of natural numbers
N with a partial operation · : N×N ⇀ N defined by n ·m := [[n]](m), where [[n]] is
the n-th partial computable function (with respect to a fixed effective numbering
of Turing machines). This PCA is called Kleene’s first algebra and is denoted by
K1. The undefinedness ↑ of a · b can be regarded as divergence of computation.



(ii) λ-term models: Let Λ0 be the set of closed λ-terms and T a λ-theory,
that is, a congruence relation on λ-terms which contains β-equivalence. Consid-
ering the quotient modulo T , we obtain a total PCA Λ0/T equipped with the
application operation.

Another variation of λ-term model is given based on the call-by-value reduc-
tion strategy on Λ0. A value is either an abstraction λx.M or a variable x. Values
are denoted by V,W and the set of closed values by Λ0

v. According to [5, Defini-
tion 7], we define →cbv by the following binary relation (where N ≡ N1, · · · , Nn

with n ≥ 0):

(λx.M)V N →cbv M [V/x]N

M →cbv M ′

VMN →cbv VM ′N

That is, one reduces a term from left to right with the constraint that the β-
reduction can be applied only when the argument is a value. The transitive
reflexive closure of →cbv is denoted by ↠cbv. Note that the above reduction is
called the left reduction in Plotkin’s seminal work [15].

Define a partial operation · : Λ0
v × Λ0

v ⇀ Λ0
v by:

V1 · V2 := W if V1V2 ↠cbv W and W ∈ Λ0
v.

Otherwise, V1 · V2 is undefined. Together with combinators S := λxyz. xz(yz)
and K := λxy. x, we obtain a non-total PCA (Λ0

v, ·).

3 Parallel combinators in PCA

Recall that Plotkin’s parallel-or function porp, originally introduced in the con-
text of PCF [16], behaves as follows:

porpMN ⇓ true if M ⇓ true or N ⇓ true,

porpMN ⇓ false if M ⇓ false and N ⇓ false,

porpMN ⇑ otherwise

(where M , N are terms and M ⇓ V means that M evaluates to a value V ). The
point is that evaluation of a term may diverge. Hence one has to evaluate the
arguments M , N in parallel to check if porpMN ⇓ true. Given porp, we may
define a term por such that

(1) porMN ⇓ iff M ⇓ or N ⇓,

that may be seen as a weaker form of parallel-or. We now consider such opera-
tions in a PCA A. To make things as general as possible, we define them relative
to two nonempty subsets (T, F ) of A, which stand for “true/termination” and
“false/failure”, respectively.

The idea of dealing with two nonempty subsets of A is due to Longley. Ac-
tually he considered a more general notion of divergence in [9,10]. As he pointed
out, these data correspond to a predominance in the category Ass(A) of assem-
blies.



Definition 7. Given S0, S1 ⊆ A, we define S0 × S1 := { ⟨a0, a1⟩ ∈ A | a0 ∈
S0 and a1 ∈ S1 }.

We call a pair Σ = (T, F ) of nonempty subsets of A, which need not be
disjoint, a predominance on A. An element orΣ ∈ A is called a Σ-or combinator
if it satisfies

orΣ(T × T ) ⊆ T, orΣ(T × F ) ⊆ T,

orΣ(F × T ) ⊆ T, orΣ(F × F ) ⊆ F.

To be precise, orΣ(T ×T ) ⊆ T means that for every f, g ∈ T , orΣ⟨f, g⟩ is defined
and belongs to T . Dually, an element andΣ ∈ A is called a Σ-and combinator if
it satisfies

andΣ(T × T ) ⊆ T, andΣ(T × F ) ⊆ F,

andΣ(F × T ) ⊆ F, andΣ(F × F ) ⊆ F.

We say that A admits Σ-or if there exists orΣ in A, and similarly for Σ-and.

Example 8. Let Σd := ({ true }, { false }). Then, every PCA admits Σd-or and
Σd-and because orΣd

can be defined as

λ∗p. (if fst · p then true else (if snd · p then true else false)),

and similarly for andΣd
.

Example 9. Berry showed the following sequentiality theorem. Consider a λ-
theory TBT that identifies λ-terms which have the same Böhm tree. In the PCA
Λ0/TBT , there is no term M such that

M⟨i, Ω⟩ = M⟨Ω, i⟩ = i, M⟨Ω,Ω⟩ = Ω,

where Ω := (λx. xx)(λx. xx) (See [2]). Hence Λ0/TBT does not admit Σ-or with
respect to Σ = ({ i }, {Ω }).

We next introduce an important predominance, which works uniformly for
all non-total PCAs. This example is essentially due to Mulry.

Definition 10 ([11]). For a non-total A, define a predominance Σsd := (Tsd, Fsd)
by

Tsd := { a ∈ A | a · i ↓ }, Fsd := { a ∈ A | a · i ↑ }.
By definition, every Σsd-or combinator satisfies orΣsd

⟨f, g⟩ ↓ and

orΣsd
⟨f, g⟩ · i ↓ iff f · i ↓ or g · i ↓

for every f, g ∈ A. In analogy with (1), we simply call orΣsd
a parallel-or com-

binator and dually call andΣsd
a parallel-and. We have chosen i as the “key” to

“unlock” the evaluation, but actually it can be anything.

Proposition 11. For every non-total PCA A, A admits parallel-or orΣsd
if and

only if A has a combinator poru that satisfies poru⟨f, g⟩ ↓ and

poru⟨f, g⟩ · a ↓ iff f · a ↓ or g · a ↓

for any f, g, a ∈ A.



Let dom(f) denote the set { a ∈ A | f · a ↓ }. Then we have dom(poru⟨f, g⟩) =
dom(f) ∪ dom(g). Since subsets of the form dom(f) are precisely the semi-
decidable sets (computably enumerable sets) in K1, we may claim that our
parallel-or combinator has a generalized ability to take the union of two semi-
decidable sets.

Let us now examine which PCA admits parallel-and (resp. parallel-or). We
may expect that any PCA has a combinator which behaves as follows: “evaluate
f · i first; if it terminates, evaluate g · i next.” If we try to express this by a λ-term,
we get a Σsd-and combinator (parallel-and).

Theorem 12. Every non-total PCA admits parallel-and.

On the other hand, parallel-or is more subtle. It is certainly true that Turing
machines can perform a computation like: “evaluate f · i and g · i in parallel until
one of them terminates.” However, such a computation cannot be performed in
λ-calculus due to its sequential nature. Consequently,

Proposition 13. K1 admits both parallel-and and parallel-or, while Λ0
v admits

parallel-and but not parallel-or.

4 Predominances in the category of assemblies

In the modern theory of realizability, one builds a category over a given PCA A,
in such a way that elements of A are used to implement a function or to justify
a proposition in the constructive sense. There are several examples such as the
realizability topos RT(A), the category Ass(A) of assemblies and the category
Mod(A) of modest sets [19]. In particular, considering RT(K1), we can obtain
the effective topos of Hyland [6] and the standard interpretation of first-order
number theory in RT(K1) precisely corresponds to Kleene’s traditional realiz-
ability interpretation [8]. In this sense, such categories are called “realizability
models” in the literature.

We here focus on Ass(A), a full subcategory of RT(A). Notably, the lat-
ter can be obtained from the former by the exact completion [3,9]. Ass(A) is
more primitive than RT(A) and is sufficiently rich as semantics of programming
languages [1,9,14].

Definition 14. An assembly over A is a pair X = (|X|, || · ||X), where |X| is a
set and || · ||X : |X| → P(A) is a function such that ||x||X is nonempty for any
x ∈ |X|. An element a ∈ A is called a realizer of x if a ∈ ||x||X . A morphism of
assemblies f : (|X|, || · ||X) → (|Y |, || · ||Y ) is a function f : |X| → |Y | which has
a realizer rf ∈ A, that is, for any x ∈ |X| and a ∈ ||x||X , rfa is defined and in
||f(x)||Y . We say that rf realizes f .

One can verify that the assemblies and morphisms over A form a category
Ass(A) (whose composition and identity are inherited from the category of sets).
It has a terminal object given by 1 := ({ ∗ }, || · ||1) with ||∗||1 := A. Furthermore,
Ass(A) always has a natural number object (NNO) N . For example, a canonical



NNO in Ass(K1) is given by N := (N, || · ||N ) with ||n||N := {n }. The hom-set
on N exactly corresponds the set of total computable functions on N.

Ass(A) is a finitely complete locally cartesian-closed category [9,19]. This is a
common feature of toposes such as the category of sets and realizability toposes.
Every topos, in addition, has a subobject classifier, while Ass(A) does not unless
A is trivial. Nevertheless, as one can see in [9,14], there is a useful concept of a
“restricted classifier”. Recall that a morphism t : 1 ↣ Σ in a finitely complete
category is a subobject classifier if for every monomorphism m : U ↣ X there
is exactly one morphism χm : X → Σ which gives a pullback diagram

U 1

X Σ.

!

m t

χm

χm is called the characteristic map of m. By slightly weakening the condition,
we obtain the concept of predominance.

Definition 15 ([17]). Let C be a finitely complete category and Σ an object
of C. A monomorphism t : 1 ↣ Σ is a predominance if every monomorphism
m : U ↣ X has at most one characteristic map χm in the above sense.

A subobject [m] of X (that is the equivalence class of a monomorphism m :
U ↣ X) is called Σ-subset of X and written U ⊆Σ X if m arises as a pullback
of 1 ↣ Σ. Let SubΣ(X) denote the set of Σ-subsets of X.

By definition, SubΣ(X) is a subclass of Sub(X), the class of subobjects of X. If
t : 1 ↣ Σ is a subobject classifier, we have SubΣ(X) = Sub(X) for every X. One
can easily show that a predominance t : 1 ↣ Σ is an isomorphism iff SubΣ(X)
consists of the equivalence class of isomorphisms. Such a predominance is called
trivial.

Longley discussed the above notions in Ass(A) [9]. Suppose that a monomor-
phism t : 1 ↣ Σ in Ass(A) is a predominance. Then we can observe that the
cardinality of the underlying set |Σ| is no more than two. Further if card|Σ| = 1,
Σ is a terminal object in Ass(A), hence t is trivial. Thus the non-triviality of t im-
plies that Σ has a doubleton |Σ| = { t, f } as the underlying set, so it determines
a predominance (||t||Σ , ||f ||Σ) on A. Conversely, each predominance (T, F ) on
A induces a non-trivial predominance t : 1 ↣ Σ with |Σ| := { t, f }, ||t||Σ := T
and ||f ||Σ := F . To sum up:

Theorem 16 ([9, Subsection 4.2]). The non-trivial predominances in Ass(A)
are in bijective correspondence with the predominances on A.

Moreover, every monomorphism m : U ↣ X that arises as a pullback of t :
1 ↣ Σ is isomorphic to the inclusion U ′ ↣ X whose domain is a canonical
subassembly defined below.

Definition 17. Let X be an assembly in Ass(A). An assembly U = (|U |, || · ||U )
is a canonical subassembly of X if |U | ⊆ |X| and ||x||U = ||x||X for any x ∈ |U |.



As a convention, we identify each element of SubΣ(X) with the associated
canonical subassembly of X and Σ-subset relation U ⊆Σ X with the inclusion
|U | ⊆ |X|.

Here we give two examples.

Example 18. 1. Σd = ({ true }, { false }): In this case, for a Σd-subset U of X
and its characteristic map χ : X → Σd, we have

x ∈ |U | ⇐⇒ χ(x) = t ⇐⇒ ∀a ∈ ||x||X rχ · a = true,

where rχ is a realizer of χ. When A = K1 and X is the canonical NNO N
given above, |U | is nothing but a decidable subset of N. That is, SubΣd

(N)
is equal to the set of decidable subsets of N.

2. Σsd = (Tsd, Fsd): Similarly to (1), we obtain

x ∈ |U | ⇐⇒ ∀a ∈ ||x||X rχa · i ↓ .

Thus when A = K1 and X is the canonical NNO, |U | is the domain of a
partial computable function eU := λ∗n. (rχn) · i. Hence SubΣsd

(N) coincides
with the set of semi-decidable subsets of N.

It is obvious that ⊆Σ is a reflexive, antisymmetric relation on SubΣ(X) with
the greatest element X and the least element ∅ (the empty assembly). But ⊆Σ

is not an order in general.

Definition 19 ([7,17]). A dominance on A is a predominance Σ such that ⊆Σ

is transitive.

Longley gave the following characterization of being a dominance in Ass(A).

Theorem 20 ([9, Proposition 4.2.7]). Let Σ = (T, F ) be a predominance on
A. The following are equivalent.

1. Σ is a dominance.
2. There exists a combinator rµ ∈ A such that

rµ(T × (A ⇒ T )) ⊆ T, rµ(T × (A ⇒ F )) ⊆ F, rµ(F ×A) ⊆ F,

where S0 ⇒ S1 denotes { e ∈ A | whenever a ∈ S0, ea ∈ S1 }.

Remark 21. The notion of predominance has been studied in the context of
Synthetic domain theory (SDT). It is one of the necessary pieces to construct
a subcategory of “abstract domains” in a suitable category C (such as Ass(A),
Mod(A)). Various axioms for predominance have been investigated by Hyland,
Phoa, Taylor and others, and being dominance is the first step towards SDT
[7,13,14,18]. In fact, when a predominance t is a dominance, it induces a lifting
monad ⊥ on Ass(A). By using this monad, Longley concretely demonstrated how
to construct a model of an extension of PCF. In this process, he showed that
the predominance Σsd on an arbitrary non-total A is a dominance [9, Example
4.2.9 (ii)].



5 Parallel combinators with respect to Σ and Σ-subsets

In this section, we will make clear the correspondence between the parallel com-
binators on A considered in Section 3 and the structure of Σ-subsets in Section 4.
Interestingly, under a natural assumption on a predominance, our notion of Σ-
and and the condition (2) of Theorem 20 correspond perfectly, thus we obtain
that if A admits Σ-and then the Σ-subsets form a poset with respect to inclu-
sion. In addition, we show that A admits Σ-or iff the Σ-subsets are closed under
union. This is a generalization of the correspondence between parallel-or and
union of semi-decidable sets discussed in Section 1.

Lemma 22. Let Σ = (T, F ) be a predominance on A. If Σ is a dominance,
then A admits Σ-and.

Proof. By Theorem 20, A has a combinator rµ that satisfies

rµ(T × (A ⇒ T )) ⊆ T, rµ(T × (A ⇒ F )) ⊆ F, rµ(F ×A) ⊆ F.

Defining andΣ := λ∗p. rµ⟨fst p, k(snd p)⟩, we obtain a Σ-and in A.

The converse holds under an additional assumption and we obtain the first char-
acterization theorem:

Definition 23. Given a, b ∈ A, we write a ∼= b if a · x ∼= b · x for every x ∈ A.
A predominance Σ = (T, F ) is a called Rice partition of A if T is closed under
∼= and F = A \ T .

Theorem 24. Let Σ = (T, F ) be a Rice partition of A. Then A admits Σ-and
iff Σ is a dominance iff (SubΣ(X),⊆Σ) is a poset for every X ∈ Ass(A).

Proof. We only need to show the forward direction of the first equivalence. Sup-
pose that A admits Σ-and. Letting l := λ∗xy.(x · i · y), lb is always defined and
(bi) · y ∼= (lb) · y for any b, y ∈ A. Since (T, F ) is a Rice partition, we have

b ∈ (A ⇒ T ) =⇒ bi ∈ T =⇒ lb ∈ T

b ∈ (A ⇒ F ) =⇒ bi ∈ F =⇒ lb ∈ F

b ∈ A =⇒ lb ∈ T ∪ F

for any b ∈ A. We thus have the following implications:

a ∈ T and b ∈ (A ⇒ T ) =⇒ a ∈ T and lb ∈ T

=⇒ andΣ⟨a, lb⟩ ∈ T,

a ∈ T and b ∈ (A ⇒ F ) =⇒ a ∈ T and lb ∈ F

=⇒ andΣ⟨a, lb⟩ ∈ F,

a ∈ F and b ∈ A =⇒ a ∈ F and (lb ∈ T or lb ∈ F )

=⇒ andΣ⟨a, lb⟩ ∈ F.

Therefore rµ := λ∗p. andΣ⟨fst p, l (snd p)⟩ satisfies condition (2) of Theorem 20.



Notice that if A is non-total, A naturally has a Rice partition, that is, Σsd =
(Tsd, Fsd). In conjunction with Theorem 12, we obtain Longley’s result that Σsd

is a dominance (See Remark 21).
Now suppose that Σ is a dominance. Then for every object X, (SubΣ(X),⊆Σ

) is a poset with the least and greatest elements. Moreover, it is automatically
equipped with binary meets (intersections).

Definition 25. Let U and V be canonical subassemblies of X. U∩V denotes the
canonical subassembly of X such that |U ∩V | := |U | ∩ |V | and ||x||U∩V := ||x||X
for any x ∈ |U | ∩ |V |. Similarly for U ∪ V .

It is well-known that the set Sub(X) of subobjects of X forms a lattice in Ass(A).
On the other hand:

Lemma 26. If Σ is a dominance, then, for every assembly X, SubΣ(X) is
closed under intersection ∩ and (SubΣ(X),⊆Σ ,∩) forms a meet-semilattice.

Proof. Let U , V be canonical subassemblies of X and m : U ↣ X, n : V ↣ X
the inclusions, respectively. Then U ∩ V can be obtained as in the following
pullback diagram:

U ∩ V U

V X.

n−1(m) m

n

If both U and V are Σ-subsets of X, then U∩V is a Σ-subset of V since SubΣ(X)
is closed under pullback. Hence U ∩V is a Σ-subset of X. Recalling the structure
of the subobject lattice Sub(X), the binary meet appears as a pullback. Thus ∩
behaves as a meet with respect to ⊆Σ .

This means that (SubΣ(X),⊆Σ) is a sub-meet-semilattice of Sub(X) when Σ is
a dominance.

Let us finally discuss the effect of having a Σ-or combinator in A. As we have
already seen in Section 3, a parallel-or in K1 has the ability to take the join of
two semi-decidable subsets. This fact can be generalized and refined as follows.
Notice that the assumption of Rice partition implies that U is a Σ-subset of X
iff there exists a characteristic map χU : X → Σ with a realizer rχU

satisfying

x ∈ |U | ⇐⇒ χU (x) = t ⇐⇒ rχU
(||x||X) ⊆ T.

The second equivalence is ensured by T ∩F = ∅. We are now ready to prove the
second characterization theorem.

Theorem 27. Let Σ = (T, F ) be a predominance with T ∩ F = ∅. Then A
admits Σ-or if and only if SubΣ(X) is closed under union ∪ for every assembly
X.

Proof. We first show the forward direction. Let U, V be Σ-subsets of X, χU , χV

their characteristic maps and rχU
, rχV

their realizers, respectively. Then the



canonical subassembly U ∪ V naturally induces a function χU∪V : |X| → |Σ|
such that

x ∈ |U | ∪ |V | ⇐⇒ χU∪V (x) = t.

Since A admits Σ-or, we can define rχU∪V
as λ∗x. orΣ⟨rχU

x, rχV
x⟩ in A. Then

rχU∪V
behaves as follows:

rχU∪V
(||x||X) ⊆ T ⇐⇒ rχU

(||x||X) ⊆ T or rχV
(||x||X) ⊆ T

⇐⇒ x ∈ |U | or x ∈ |V |
⇐⇒ x ∈ |U | ∪ |V |.

Thus rχU∪V
is a realizer of χU∪V and U ∪ V is a Σ-subset of X.

To show the backward direction, let us note the following two facts:

– Given two assemblies X and Y , the product X × Y in Ass(A) can be con-
cretely described as

|X × Y | := |X| × |Y |, ||(x, y)||X×Y := ||x||X × ||y||Y .

– Every subset S of A induces an assembly S such that

|S| := S, ||a||S := { a }.

For example, there is an assembly T ∪ F × T ∪ F that corresponds to the
set { ⟨a, b⟩ ∈ A | a, b ∈ T ∪ F }.

Let H := T ∪ F . Then we have T ⊆Σ H because there is a characteristic map
χT : H → Σ such that χT (a) = t iff a ∈ T , and it is realized by i. Similarly, one
can easily verify the following relations:

T ×H ⊆Σ H ×H, H × T ⊆Σ H ×H.

Lastly, since SubΣ(H ×H) is closed under union, we obtain

T ×H ∪H × T ⊆Σ H ×H.

This induces a characteristic map χ : H ×H → Σ and a realizer rχ such that
for any a, b ∈ T ∪ F ,

a ∈ T or b ∈ T ⇐⇒ χ((a, b)) = t ⇐⇒ rχ(||(a, b)||H×H) ⊆ T.

Note that ||(a, b)||H×H = { ⟨a, b⟩ }. Hence rχ satisfies the following property: for
any a, b ∈ T ∪ F ,

– rχ · ⟨a, b⟩ belongs to T if a ∈ T or b ∈ T .
– Otherwise, rχ · ⟨a, b⟩ belongs to F .

Thus rχ is nothing but a Σ-or combinator.

By restricting to the case of Rice partition, we can summarize the role of Σ-and
and Σ-or as follows.



Theorem 28. Suppose that Σ = (T, F ) is a Rice partition of A. Then A admits
both Σ-and and Σ-or if and only if (SubΣ(X),⊆Σ ,∩,∪) forms a lattice for every
assembly X.

Proof. The backward direction is obvious by Theorem 24 and Theorem 27.
For the forward direction, it remains to check that ∪ behaves as a join with

respect to ⊆Σ . It is sufficient to verify the following claims: if U, V ⊆Σ X then

U ⊆Σ U ∪ V, U ∪ V ⊆Σ X.

The latter is just closure under union, that is already established by Theorem 27.
For the former, let χU : X → Σ be the characteristic map of U ↣ X, which
exists by U ⊆Σ X. Then χU ||U∪V | : U ∪ V → Σ is the characteristic map of
U ↣ U ∪ V , which is realized by any realizer of χU .

By recalling that a non-total PCA always has Rice partition Σsd that is a dom-
inance, we finally conclude:

Corollary 29. Let A be a non-total PCA. Then A admits parallel-or in A if and
only if (SubΣsd

(X),⊆Σsd
,∩,∪) forms a lattice for every object X in Ass(A).

As we have stated in Proposition 13, Λ0
v is an example of a non-total PCA

that does not admit parallel-or. Therefore, one cannot always take a union of
Σsd-subsets in Ass(Λ0

v) unlike in Ass(K1).

6 Future work

In this paper we have focused on Ass(A) among other realizability models. In
Ass(A), (non-trivial) predominances Σ are exactly those that arise from pairs
(T, F ) of nonempty subsets of A. This simplicity has led to a handy description of
Σ-subsets as canonical subassemblies, and consequently a clear correspondence
between Σ-and/or combinators and the structure of SubΣ(X). All the results in
this paper hold for the category Mod(A) of modest sets over A too, that is a
full subcategory of Ass(A).

On the other hand, the situation is entirely different if we consider the realiz-
ability topos RT(A), that is the exact completion of Ass(A). The predominances
in RT(A) include the subobject clasifier as well as those associated with a local
operator j (a.k.a. Lawvere-Tierney topology) such as the predominance classi-
fying j-dense subobjects and the one classifying j-closed subobjects. Studying
parallel operations in relation to these predominances could be interesting, since
local operators in RT(A) correspond to subtoposes of RT(A) on one hand, and
can be seen as "generalized Turing degrees" on the other [4,6,12]. It is left to
future work.
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