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Abstract. The Shapes Constraint Language (SHACL) was recom-
mended by the W3C in 2017 for describing constraints on web data
(specifically, on the so-called RDF graphs) and validating them. At first
glance, it may not seem to be a topic for logicians, but as it turns out,
SHACL can be approached as a formal logic, and actually quite an inter-
esting one. In this paper, we give a brief introduction to SHACL tailored
towards logicians and frame key uses of SHACL as familiar logic reason-
ing tasks. We discuss how SHACL relates to description logics, which are
the basis of the OWL Web Ontology Languages, a related yet orthogonal
standard for web data. Finally, we summarize some of our recent work in
the SHACL world, hoping that this may shed light on how ideas, results,
and techniques from well-established areas of logic can advance the state
of the art in this emerging field.
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1 What is SHACL and why do we need it?

One of the most fundamental changes the world has seen in the last decades is the
emergence and ultrafast growth of the Web, where almost inconceivable amounts
of data of all shapes and forms is shared and interconnected. The World Wide
Web Consortium (W3C) has been a key player in this growth: an international
community that develops open standards that are used for building the web
from documents and data. A particularly influential set of standards are those
developed within the semantic web initiative, which aims to build a useful web
of data that is interoperable and understandable to both humans and machines.

The big bulk of shared data on the web uses the RDF standard [28]. In a
nutshell, labelled graphs where nodes represent web resources and data values,
connected by arrows labelled with different kinds of properties with a standard-
ized meaning. RDF datasets are often described as sets of triples (s, p, o) where
the subject s and the object o are data items of resources with a unique identifier,
and they are connected by property p. For our purposes, it is enough to think
of graphs whose edges are labeled with properties from a dedicated alphabet.1
There are enormous repositories of such data on the web containing millions
1 In RDF, properties are not necessarily disjoint from the nodes, which can be either

web identifiers called IRIs, data values given as literals, and the so-called blank nodes;
we omit RDF details from here and refer to [28].
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of nodes and edges; famous examples include knowledge graphs like DBPedia2

which contains several hundred million of facts extracted from Wikipedia, and
Yago, a high-quality knowledge base about people, cities, countries, and orga-
nizations, containing more than 2 billion facts about 50 million entities.3 Once
RDF became widespread for sharing data on the web, accompanying standards
were proposed, like the OWL Web Ontology Languages for describing knowl-
edge domains and for inferring implicit relationships and facts from data on the
web [26], and a dedicated query language for RDF data called SPARQL [27].
Web interfaces called SPARQL end-points allow any person to ask questions and
obtain interesting facts from these knowledge graphs.

A crucial feature of the RDF data format is its flexibility : if something can
be represented as a labelled graph, then it can be published on the web using
RDF. But so much flexibility is a two-edged sword. Users that want to query a
source like DBpedia easily find themselves lost and do not know where to start:
how do I formulate my query? Which properties may connect a country to its
capital city? Is there information about the family relationships of celebrities?
Which facts about rivers could I query for?

As the web of linked data kept growing, the pressing need for a normative
standard emerged: a language that can be used for describing and validating
the structure and content of RDF graphs. This language is SHACL, the Shapes
Constraint Language, recommended in 2017 by the W3C [29]. It allows users to
define "shapes" which may, for example, say that a person has a name and ex-
actly one date of birth, and may be married to another person. Like other W3C
standards, SHACL is defined in a long ‘specification’ document that is very hard
to read for anybody that is not familiar with the semantic web jargon. While
OWL was standardized on the basis of over two decades of research in description
logics, a well-understood family of decidable logics [6, 26], the younger SHACL
did not come to the world equipped with such a robust logic foundation. How-
ever, a handful of logic-minded people from the knowledge representation and
database theory community have been developing a solid logic-based foundation
for SHACL. As it turns out, SHACL can be seen as a simple and elegant logic,
and its fundamental validation problem is a model checking task very familiar
in logic and computer science.

2 SHACL as a Logic

The challenge of extracting from the specification a formal syntax and semantics
was tackled by Corman et al. [13], and the majority of the later SHACL works
have built on their formalization, e.g. [4, 1, 3, 11, 10]. We do the same, and like
most of them, we focus on the ‘core’ of SHACL. Some authors have extended
this formalization to cover more SHACL features; see, for example, the extended
formalization compiled by Jakubowski [16].

2 http://dbpedia.org/
3 https://yago-knowledge.org/
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2.1 Syntax

The main syntactic object in SHACL are the so-called shape constraints, which
assign possibly complex shape expressions to special predicates called shape
names.

For writing these, we use an alphabet consisting of three countably infinite
pairwise disjoint sets: the set of shape names S, the set of property names P,
and the set of node names N. Then shape expressions φ and path expressions ρ
obey the following grammar.

ρ ::= p | p− | ρ ∪ ρ | ρ · ρ | ρ∗

φ ::= s | ⊤ | {a} | ¬φ | φ ∧ φ | φ ∨ φ |≥n ρ.φ | ρ = ρ

where s ∈ S, a ∈ N, p ∈ P, and n ≥ 0 is a natural number. We may write
≤n−1 ρ.φ in place of ¬(≥n ρ.φ), and write ∃ρ.φ and ∀ρ.φ in place of ≥1 ρ.φ
and ≤0 ρ.¬φ, respectively. Those familiar with modal logic will recognise the
syntax of multidimensional modal formulas extended with nominals {a} from
hybrid logics [5], graded modalities ≥n ρ.φ, converse ρ−, and reflexive, transitive
closure as in propositional dynamic logic [14]. We will revisit this relationship
from the perspective of description logics in the next section.

We can now write shape constraints of the form

s ≡ φ

where s ∈ S and φ is a shape expression. In SHACL, shape constraints come
together with a set of targets, indicating at which nodes of the graph the shapes
of interest are to be validated. We focus here on atomic targets of the form s(a)
with s ∈ S and a ∈ N. Since shape names are unary predicates, we can read
s(a) as ‘a is in the interpretation of s’. Then we define a shapes graph as a pair
(C, T ) of a set C of shape constraints where each s ≡ φ has a different s in the
head, and a set T of target atoms.

Example 1. Consider the following shape constraints:

Pizza ≡ ≥2 hasTopping.⊤,

VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,
VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}

Intuitively, these constraints define the shape ‘pizza’ as having at least two top-
pings, and vegetarian pizzas as pizzas having only vegetarian toppings. A shape
can be defined by directly listing the nodes in it, as done here for vegetarian
toppings. To give a rough impression of the way this is written in usual SHACL
documents, we show in Figure 1 an incomplete declaration of the first constraint
in SHACL machine-readable syntax.
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a sh:NodeShape ;
sh:property [

sh:path pizza:hasTopping ;
sh:minCount 2 ] .

Fig. 1. A SHACL shape in machine-readable syntax

2.2 Semantics

We now define the so-called supported model semantics for SHACL, and discuss
other semantics in Section 4.1.

Like other logic formalisms, the semantics of SHACL can be elegantly defined
using interpretations. For our purposes, it will be enough to consider interpreta-
tions whose domains are nodes from N. We consider interpretations I consisting
of a non-empty domain ∆ ⊆ N, and an interpretation function ·I that maps

– each shape name s ∈ S a set sI ⊆ ∆, and
– each property name to a set of pairs sI ⊆ ∆×∆.

The interpretation function I is inductively extended to complex expressions,
see Figure 2. Note that path expressions ρ are interpreted as binary relations ρI
over ∆, while shape expressions φ are interpreted as sets φI ⊆ ∆.

(p−)I ={(d′, d) | (d, d′) ∈ pI}

(ρ ∪ ρ′)I =ρI ∪ ρ′
I

(ρ · ρ′)I ={(c, d) ∈ ∆×∆ | there is some d′ with (c, d′) ∈ ρI , (d′, d) ∈ ρI}

(ρ∗)I ={(d, d) | d ∈ ∆×∆} ∪ (ρ)I ∪ (ρ · ρ)I ∪ · · ·

{a}I = {a}

⊤I = ∆

(¬φ)I = ∆ \ φI

(φ1 ∧ φ2)
I = φ1

I ∩ φ2
I

(φ1 ∨ φ2)
I = φ1

I ∪ φ2
I

(≥n ρ.φ)I = {d ∈ ∆ | there exist distinct d1, . . . , dn

with (d, di) ∈ ρI and di ∈ φI for each 1 ≤ i ≤ n}

(ρ = ρ′)I = {d ∈ ∆ | for all d′ ∈ ∆, (d, d′) ∈ ρI iff (d, ) ∈ ρ′
I}

Fig. 2. Interpretation of path and shape expressions
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We say that I satisfies a constraint s ≡ φ if sI = φI , and I satisfies a shapes
graph (C, T ) if it satisfies all constraints in C and additionally it contains all the
targets, that is, a ∈ sI for every s(a) ∈ T .

SHACL shapes graphs are intended to be validated over an input data graph
(essentially a knowledge graph or RDF graph). A data graph G = (N,E, ℓ) is
defined as a graph with vertices N ⊆ N and a labelling function ℓ : E → 2P,
that is, edges are labelled with sets of property names from P, and a graph is
just a collection of P-indexed binary relations on N .

Given such a graph G = (N,E, ℓ), we say that the interpretation I = (∆, ·I)
is a shape adornment for G if ∆ = N and pI = {(a, b) ∈ E | p ∈ ℓ((a, b))}
for each property p. That is, I is a shape adornment of G if properties p are
interpreted as relations as specified by G. Note that G does not determine the
interpretation of the shape names. In modal logic terms, we can call G a multi-
relational Kripke frame, and I is a multi-relational Kripke model.

In SHACL, the main problem of interest is the validation of given constraints
and targets on a given graph.

Definition 1 (SHACL validation). We say that a data graph G validates a
shapes graph (C, T ) if there exists a shape adornment for G that satisfies (C, T ).

The SHACL validation problem consists of deciding, for a given G and (C, T ),
whether G validates (C, T ).

Example 2. Consider the following shape constraints:

CPizza = {Pizza ≡ ≥2 hasTopping.⊤,

VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,
VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke} }

The graph GPizza in Figure 3 validates the target Pizza(pizza_capricciosa),
but it does not validate the target VeggiePizza(pizza_capricciosa) since there
is no shape adornment I satisfying CPizza where prosciutto ∈ VeggieToppingI .

pizza_capricciosa

mozzarella prosciutto artichoke

hasTopping
hasTopping

hasTopping

Fig. 3. A pizza data graph GPizza

3 SHACL, OWL and Description Logics

The syntax of shape expressions is more than familiar to those acquainted with
description logics, a well-studied family of decidable logics tailored for knowledge
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representation and reasoning [6, 7], and the logics underpinning the OWL stan-
dard. In fact, if instead of shape names we call the symbols in S concept names,
then exactly the same grammar defines concept expressions φ in a description
logic that we will call ALCOIQ=

reg . It extends the well-known description logic
ALCOIQ with regular role expressions and equalities thereof. Concept defini-
tions take the form

s ≡ φ

Hence, there is basically no difference between SHACL constraints and sets of
ALCOIQ=

reg concept definitions, at least syntactically.
In description logics, one often considers not only concept definitions but a

more general form of concept inclusions φ1 ⊑ φ2, and a set of such inclusions is
called an ontology. The variant of OWL called OWL-DL allows writing ontologies
in a DL called SHOIQ that is quite similar to ALCOIQ=

reg [15]. The main
differences are that the concept constructor ρ = ρ′ is omitted, and instead of
regular path expressions ρ we can only use property names p and their inverses
p− inside concept expressions. SHOIQ also allows for subproperty relations, not
supported in SHACL, and for declaring a set of property names that must be
interpreted as transitive relations, which can be used inside concept expressions
of the form ∃p.φ and ∀p.φ.

Semantically they are closely related too. However, we must pay attention
to some subtle details. The semantics of DLs is also defined in terms of inter-
pretations I as above, and the satisfaction of concept definitions is just as for
SHACL constraints. For the more general concept inclusions φ1 ⊑ φ2 we have
satisfaction if φI

1 ⊆ φI
2 , as expected. An interpretation I that satisfies all the

inclusions in an ontology O is called a model of O, in symbols, I |= O. When we
pair an ontology with a data graph G (typically called an ABox in description
logics jargon), then we require I to model G as well, that is, to contain all the
facts given in the graph. Formally, we say that I = (∆, ·I) models G = (N,E, ℓ)
if N ⊆ ∆ and {(a, b) ∈ E | p ∈ ℓ(a, b)} ⊆ pI for each property p. I is a model of
(O, G) if I models both O and G. We say that (O, G) is consistent if it admits
a model, and we say that a fact s(a) (resp. p(a, b)) is entailed by (O, G) if a ∈ sI

(resp. (a, b) ∈ pI) for every model I of (O, G).
We stress here that for reasoning in description logics, we typically consider

all models, in contrast to SHACL, where we restrict our attention to shape
adornments. In fact, SHACL can be seen as a special instance of ALCOIQ=

reg

with closed predicates [24, 20]. Closed predicates are a well-known extension of
description logics for reasoning in settings where complete and incomplete infor-
mation co-exist. A selected set of concepts and roles is declared to be closed, and
the models of the ontology are restricted to those that interpret the closed pred-
icates exactly as in the data. Shape adornments in SHACL precisely coincide
with the models in ALCOIQ=

reg when all roles are closed.
The following example illustrates the difference between SHACL validation

and description logic entailment.
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Example 3. Consider the graph G′
Pizza in Figure 4, and the following shape con-

straints:

C′
Pizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}

Then G′
Pizza validates the target VeggiePizza(pizza_margherita), as witnessed

by the shape adornment I that assigns the nodes mozzarella, tomato and basil
to the shape VeggieTopping and the node pizza_margherita to VeggiePizza.

Assume now that VeggieTopping and VeggiePizza are concept names, and
consider the description logic ontology:

OPizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,
VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}

The interpretation I above is a model of OPizza, G
′
Pizza. However, the following

I ′ is also a model:

VeggieToppingI
′
= VeggieToppingI

hasToppingI
′
= hasToppingI ∪ {(pizza_margherita, new_topping)}

VeggiePizzaI′
= ∅

where pizza_margherita has an additional non-vegetarian topping. This shows
that OPizza, G

′
Pizza does not entail VeggiePizza(pizza_margherita).

pizza_margherita

mozzarella tomato basil

hasTopping
hasTopping

hasTopping

Fig. 4. Another pizza data graph G′
Pizza

3.1 Reasoning in SHACL and in OWL

The fundamental difference in purpose between SHACL and OWL means that
their reasoning problems are also different. In SHACL we are interested in
whether the input graph validates the constraints, which is essentially a model
checking problem. In contrast, in description logics we focus on inferring infor-
mation: determining whether facts and inclusions are entailed by the ontology,
that is, whether they are true in all models. Moreover, models may extend the
graph and make it arbitrarily large. In fact, even for significantly less expressive
description logics than ALCOIQ=

reg—such as ALCIF—there are ontologies that
only have models with an infinite domain.
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The different nature of SHACL reasoning vs traditional description logic
reasoning matters because, as we know very well in logic, entailment is com-
putationally much more challenging than model checking. One can naturally
define logic reasoning problems for SHACL, like satisfiability or containment of
constraints [21, 19]. But the connection to DLs allows us to immediately observe
that such problems are practically always undecidable. Consider the satisfiability
of SHACL constraints: given a set of constraints C, is there a graph for which
an interpretation satisfying the constraints exists? This problem is precisely the
ALCOIQ=

reg satisfiability problem, which has been known to be undecidable for
decades. Indeed, the equality between regular role expressions ρ = ρ′ is a vari-
ation of the well-known role-value maps p1 · · · · · pn ⊆ p′1 · · · · · p′m that were
present already in the very early description logic KL-ONE. Schmidt-Schauß
proved in 1989 that role-value maps make inference in KL-ONE undecidable
[22], one of the oldest undecidability results in the field. It is widely known that
without strong restrictions on the role-value maps, not even the weakest of DLs
remain decidable [8]. Even without path equalities, allowing path expressions in
the counting constructors ≥n ρ.φ and ≤n ρ.φ is another well-known cause of
undecidability [18]. If we only allow property names and their inverses in count-
ing concepts, and restrict complex property paths to allowing expressions of the
forms ∃r∗.φ and ∀r∗.φ, then we end up with the description logic ALCOIQ∗:
the decidability of which is a very long-standing open problem in description
and modal logic [17].

These straightforward observations already make clear that SHACL satisfi-
ability and containment can only be decidable for rather restricted fragments.
For instance, we can restrict ourselves to ALCOIQ, which only allows property
names and their inverses, and obtain decidability. (We note that this logic is
closely related to SHOIQ mentioned above, and their satisfiability problems
are interreducible). A detailed study of fragments of SHACL with (un)decidable
satisfiability and containment problems has been done by Pareti et al. [21], while
Leinberger et al. [19] have shown cases where containment is decidable by reduc-
ing the problem to description logic reasoning.

Description logics also tell us a lot about the complexity of satisfiability and
containment in SHACL fragments. But the news is not particularly positive and
their worst-case complexity is high. Indeed, in the ALCOIQ fragment, satisfia-
bility is complete for NExpTIme [25]. (Here the ontology is considered as input,
that is, we are talking of ontology complexity or combined complexity). On the
positive side, ALCOIQ and SHOIQ are supported by off-the-shelf reasoners
which can handle efficiently large real-world ontologies, and these reasoners can
be directly deployed for deciding SHACL satisfiability and containment in the
corresponding fragments.

4 What has Logic done for SHACL?

Viewing SHACL as a logic allows us to transfer important insights, techniques
and results from other areas of logic. We already illustrated how we can obtain
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some (un)decidability and complexity results directly from description logics. In
this section we briefly summarize a few recent results of our research group that
also illustrate how the logic view of SHACL can be a stepping stone to providing
robust solutions to some SHACL open problems.

4.1 Semantics of Recursive SHACL

Our definition of SHACL expressions above imposes no constraints on the occur-
rences of shape names in the definitions of other shape names, that is, it allows
for recursion. Given a set of SHACL constraints C, its dependency graph has a
node for each shape name occurring in C, and there is an arc from s to s′ if s′
occurs in the body φ of a constraint s ≡ φ for s. C is called recursive if this graph
contains a cycle.4 The SHACL specification does not disallow such recursion, but
when the semantics of validation is defined, one encounters a surprise:

“The validation with recursive shapes is not defined in SHACL and is left
to SHACL processor implementations. For example, SHACL processors
may support recursion scenarios or produce a failure when they detect
recursion.” SHACL Recommendation [29], §3.4.3

Naturally, this lack of proper validation semantics in the presence of recur-
sion was one of the first SHACL open problems to be addressed by means of
formal logic. The semantics that we have presented here is often called supported
model semantics, and it was proposed already by Corman et al. when they first
formalized SHACL [13]. However, this semantics has not been free of criticism.

Example 4. Consider the following constraint, stating that a node may be cer-
tified if it either has a certificate or if it has been approved by a node that is
certified. Consider the graph Gcc below.

certifiedNode ≡ ∃hasCertificate.Certificate ∨ ∃approvedBy.certifiedNode

node_1 node_2

approvedBy

approvedBy

Gcc validates the target certifiedNode(node_1), as witnessed by the adornment

certifiedNodeI = {node_1, node_2}.

Intuitively, node_1 can be considered certified because it was approved by node_2,
which in turn is certified because it was approved by node_1, although no node
has any legitimate certification.
4 Note that this monadic recursion over shape names is orthogonal to the linear re-

cursion over properties present in the path expressions ρ.
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The stable model semantics [4] and the well-founded semantics [12] were both
proposed for avoiding these dubious validations and instead only allow for vali-
dations that are based on proper well-founded assignments. Both semantics are
not only intuitive, but they are also computationally more manageable. Unlike
supported validation, stable validation can be decided in polynomial time if the
constraints are stratified, which intuitively allows only for positive recursion cy-
cles. Here we refer to data complexity, which assumes that the constraints are
fixed and measures the complexity in terms of the size of the data graph only.
Well-founded validation is particularly interesting since it is always computable
in polynomial time; it yields a three-valued approximation of stable models, and
coincides with it whenever there is no recursion involving negation. These results
witness the value of building on the decades of experience of the logic program-
ming and non-monotonic reasoning community when defining proper semantics
for full recursive SHACL, an aspect emphasized in [9]. Techniques for efficient
goal-oriented validation in the presence of recursion, like magic sets, have been
successfully applied to SHACL [3].

4.2 Explaining Non-Validation

The SHACL specification calls for the so-called validation reports, which are
meant to explain to the users the outcome of validating an RDF graph against
a collection of constraints. The specification gives some details about how these
reports should look, e.g., which fields they should contain (e.g., the node(s) and
value(s) that caused the failure of some target), but it does not address the
problem of what does it mean to ‘cause’ a failure, and how to find the causes
when a test does not succeed. These questions are far from obvious.

In our recent work [1] we draw inspiration from logic-based abduction and
database repairs to study the problem of explaining non-validation of SHACL
constraints. In our framework non-validation is explained using the notion of a
repair, i.e., a collection of additions and deletions whose application on an input
graph results in a repaired graph that does satisfy the given SHACL constraints.

Example 5. Consider the following shapes graph (Ct, Tt) and data graph Gt.

Ct ={Teacher ↔ ∃teaches.⊤ ,

Student ↔ ∃enrolledIn.⊤ ∧ ¬Teacher}

Tt ={Student(Ben),Teacher(Ann)}

Gt ={enrolledIn(Ben, c1), teaches(Ben, c2)}

Gt does not validate either target. To validate Student(Ben) we need to re-
move teaches(Ben, c2), while to validate Teacher(Ann) we need to add a fact
teaches(Ann, c) for some c ∈ N. We call the pair (A,D) of Additions A =
{teaches(Ann, c)} and Deletions D = {teaches(Ben, c2)} an explanation for
the SHACL validation problem above.
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Since sometimes we need to introduce fresh nodes, in order to keep things
computationally manageable, we assume that the set of acceptable additions is
somehow given as an (implicit or explicit) data graph H. Then we can define
our SHACL explanations as follows.

Definition 2 ([1]). Let G be a data graph, let (C, T ) be a shapes graph, and let
the set of hypotheses H be a data graph disjoint from G. Then Ψ =(G, C, T,H)
is a SHACL Explanation Problem (SEP). An explanation for Ψ is a pair (A,D),
such that (a) D ⊆ G, A ⊆ H, and (b) (G \D) ∪A validates (C, T ).

A preference order is a preorder ⪯ on the set of explanations for Ψ . A pre-
ferred explanation of a SEP Ψ under the ⪯, or a ⪯-explanation for short, is an
explanation ξ such that there is no explanation ξ′ for Ψ with ξ′ ⪯ ξ and ξ ̸⪯ ξ′.

The following decision problems for explanations are defined:

– ⪯-IsExpl: is a given pair (A,D) a ⪯-explanation for Ψ?
– ⪯-Exist: does there exist a ⪯-explanation for Ψ?
– ⪯-NecAdd: is α a ⪯-necessary addition for Ψ , that is does α occur in A in

every ⪯-explanation (A,D) for Ψ?
– ⪯-NecDel: is α a ⪯-necessary deletion for Ψ , that is does α occur in D in

every ⪯-explanation (A,D) for Ψ?
– ⪯-RelAdd: is α a ⪯-relevant addition for Ψ , that is does α occur in A in

some ⪯-explanation (A,D) for Ψ?
– ⪯-RelDel: is α a ⪯-relevant deletion for Ψ , that is does α occur in D in

some ⪯-explanation (A,D) for Ψ?

We studied all these decision problems for the following preorders ⪯:

– the subset relation (A,D) ⊆ (A′, D′), defined as A′ ⊆ A and D′ ⊆ D,
– the cardinality relation (A,D) ≤ (A′, D′), defined as |A|+ |D| ≤ |A′|+ |D′|,
– the identity; in this case, we may talk of ‘no preference order’ and omit ⪯.

We characterized the computational complexity of all of them, in the general case
and in the non-recursive case. We also analyzed the effect on the complexity of
restricting the set of predicates that can be added or removed. Most of the
problems turned out to be intractable, up to the second level of the polynomial
hierarchy, but some problems can be solved in polynomial time. The results are
summarised in Table 1, see [1] for details.

pref. order IsExpl Exist NecAdd NecDel RelAdd RelDel

∅ NP NP coNP coNP NP NP
⊆ DP NP coNP coNP ΣP

2 ΣP
2

≤ DP NP P ∥NP P ∥NP P ∥NP P ∥NP

Table 1. The complexity of SHACL Explanation Problems (completeness results). The
bounds hold also under signature restrictions and for non-recursive SHACL.
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Our algorithms can be a stepping stone for automatically computing such
explanations, even in intractable cases. For instance, a follow-up work of some
co-authors used Answer Set Programming (ASP) to implement a prototype tool
for repairing SHACL specifications [2].

5 Conclusions and Outlook

The recent emergence of SHACL as a standard for web data provides fresh evi-
dence that, in the complex data landscape of today’s world, increasingly flexible
new formalisms for describing, validating, and managing data are still needed,
and approaches grounded in formal logic are as important as ever. SHACL has
profound connections to well-established research fields of logic in computer sci-
ence, in particular to two related communities: description logics on the one
hand, and logic programming and non-monotonic reasoning on the other. The
debates about the semantics of negation are reminiscent of the challenges that
the latter community faced already in the 1990s, and in retrospect, maybe more
active communication between these two fields could have helped avoid the tor-
tuous road towards the different semantics for validation of recursive SHACL.

It is hard to overstate the similarity between SHACL and description logics.
We gave a few examples of (un)decidability and complexity results that can be
immediately transferred to the SHACL world, but there is much more to leverage
in this connection. The vast trove of computational complexity and decidability
results accumulated by the community can guide further SHACL developments,
and the use of SHACL may bring forward new problems that have not yet been
addressed in description logics.

The open- versus the closed-world assumption is often emphasized as a key
difference between OWL and SHACL. And discussed, SHACL can be seen as
a DL where properties are closed predicates. This points once more towards an
ever-present challenge in knowledge representation and reasoning: combining
open- and closed-world reasoning. Neither of them is enough on its own,
since more often than not complete and incomplete information co-exist, and
useful inferences call for leveraging this partial completeness.

In our ongoing work we are studying, for example, how to do validation
in the presence of ontologies, that is, taking implicit facts into account in the
validation. We are also exploring techniques for SHACL validation when the
graph is subjected to updates, and we are continuing our work on explanations
for SHACL in order to devise better and more useful validation reports.

Many open problems remain ahead, and SHACL is a relatively young field
where technologies are still being constructed. We hope that this short journey
through SHACL and some of its challenges may inspire more logicians to explore
SHACL and other emerging data management solutions and to try to contribute
to that field by bringing insights from well-established areas of logic [23].
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