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Abstract. Hilbert and Ackermann asked for a method to consistently
extend incomplete theories to complete theories. Gödel essentially proved
that any theory capable of encoding its own statements and their proofs
contains statements that are true but not provable. Hilbert did not ac-
cept that Gödel’s construction answered his question, and in his late
writings and lectures, Gödel agreed that it did not, since theories can
be completed incrementally, by adding axioms to prove ever more true
statements, as science normally does, with completeness as the vanishing
point. This pragmatic view of validity is familiar not only to scientists
who conjecture test hypotheses but also to real-estate agents and other
dealers, who conjure claims, albeit invalid, as necessary to close a deal,
confident that they will be able to conjure other claims, albeit invalid,
sufficient to make the first claims valid. We study the underlying logical
process and describe the trajectories leading to testable but unfalsifi-
able theories to which bots and other automated learners are likely to
converge.

1 Introduction

Logic as the theory of theories was originally developed to prove true statements.
Here we study developments in the opposite direction: modifying interpretations
to make true some previously false statements. In modal logic, such logical pro-
cesses have been modeled as instances of belief update [2,3,10]. In the practice
of science, such processes arise when theories are updated to explain new ob-
servations [22, Ch. 4]. In public life, the goal of such processes is to influence
some public perceptions to better suit some private preferences [11, Part V].
This range of applications gave rise to a gamut of techniques of influence and
belief engineering, from unsupervised learning to conditioning.

From incomplete theories to complete beliefs. The idea to incrementally
complete incomplete theories [9] arose soon after Gödel proved his Incomplete-
ness Theorem [14]. Alan Turing wrote a thesis about ordinal towers of comple-
tions and discovered the hierarchy of unsolvability degrees [35]. The core idea
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was to keep recognizing and adding true but unprovable statements to theo-
ries. In the meantime, interests shifted from making true statements provable
to making false statements true. Many toy examples of belief updates and revi-
sions have been formalized and studied in dynamic-epistemic logic [4,7], but the
advances in belief engineering and the resulting industry of influence overtook
the theory at great speed, and turned several corners of market and political
monetization. The theory remained fragmented even on its own. While modal
presentations of Gödel’s theorems appeared early on [33], the computational
ideas, that made his self-referential constructions possible [34], never transpired
back into modal logic. The point of the present paper is that combining belief
updates with universal languages and self-reference leads to a curious new logi-
cal capability, whereby theories and models can be steered to assure consistency
and completeness of future updates. This capability precludes disproving current
beliefs and the framework becomes belief-complete in a suitable formal sense,
discussed below.

The logical framework combining belief updates and universal languages may
seem unfamiliar. The main body of this paper is devoted to an attempt to
describe how it arises from familiar logical frameworks. Here we try to clarify
the underlying ideas.

Universality. Just like Gödel’s incompleteness theorems, our constructions of
unfalsifiable beliefs are based on a universal language L. The abstract charac-
terization of universality, which we borrow from [24, Ch. 2], is that L comes
equipped with a family of interpreters {} : L × A −→ B, one for each pair of
types1 A,B, such that every function f : A −→ B has a description2

pfq in L,
satisfying3

f = {pfq} (1)

This is spelled out in Sec. 4. The construction in Sec. 5 will imply that every
g : L×A −→ B has a fixpoint Γ , satisfying

g(Γ, a) = {Γ}(a) (2)

Any complete programming language can be used as L. Its interpreters support
(1) and its specializers induce (2). A sufficiently expressive software specification
framework [28] would also fit the bill, as would a general scientific formalism [22].

Gödel’s incompleteness: true but unprovable statement. Gödel used the
set of natural numbers N as L, with arithmetic as a programming language. The
concept of a programming language did not yet exist, but it came into existence
through Gödel’s construction. An arithmetic expression specifying a function f

was encoded as a number pfq and decoded by an arithmetic function {} : N×

1 Each pair carries a different interpreter {}
AB

but we elide the superscripts.
2 There may be many descriptions for each f and pfq refers to an arbitrary one.
3 The curly bracket notation allows abbreviating λa.{} (p, a) to {p}.



N −→ N as in (1). A restriction of (2) was proved for arithmetic predicates
p : N −→ B, where B = {0, 1} ⊂ N, and a fixpoint of a predicate g : L×A −→ B

was constructed as a predicate encoding pγq satisfying4

g (pγq , a) = {pγq}(a) = γ(a) (3)

To complete the incompleteness proof, Gödel constructed a predicate ¶ : N −→ B

characterizing provability in formal arithmetic:

¶ (ppq , a) ⇐⇒ ⊢ p(a) (4)

for all arithmetic predicates p : N −→ B. Although proofs may be arbitrarily
large, they are always finite, and if p(a) has a proof, ¶ will eventually find it. On
the other hand, since arithmetic predicates, like all arithmetic functions, satisfy
p = {ppq}, we also have

¶ (ppq , a) = {ppq}(a) = p(a) (5)

Setting g(p, a) = ¶(p¬pq , a) in (2) induces a fixpoint γ with

¶(p¬γq , a)
(3)
= {pγq}(a)

(5)
= ¶ (pγq , a) (6)

But (4) then implies

⊢ ¬γ(a) ⇐⇒ ⊢ γ(a) (7)

which means that neither γ nor ¬γ can be provable. On the other hand, the
disjunction γ ∨¬γ is classically true. The statement γ ∨ ¬γ is thus true but not
provable, and arithmetic is therefore incomplete.

Belief completeness: universal updating. Remarkably, the same encoding-
fixpoint conundrum (1–2), which leads to the incompleteness of static theories,
also leads to the completeness of dynamically updated theories. Updating is
presented as state dependency. The function f in (1) is now in the form f :
X × A −→ X × B where X is the state space. It may be more intuitive to
think of f as a process, since it captures state changes5. We conveniently present
it as a pair f = 〈f ′, f ′′〉, where f ′ : X × A −→ X is the next state update,
whereas f ′′ : X × A −→ B is an X-indexed family of functions f ′′

x : A −→ B.
The elements of the universal language L are now construed as belief states.
Its universality means that every observable state x from any state space X is
expressible as a belief. The interpreters {} : L×A −→ L×B are also presented

4 Although this discussion is semi-formal, it may be helpful to bear in mind that the
equality {pγq}(a) = γ(a) is extensional : it just says that interpreting the description
pγq on an input value a always outputs the value γ(a). But the process whereby
{pγq}(a) arrives at this value may be different from a given direct evaluation of
γ(a).

5 In automata theory, such functions are called the Mealy machines.



as pairs {} =
〈

{}′, {}′′
〉

, where {}′ : L × A −→ L updates the belief states

whereas {}′′ : L × A −→ B evaluates beliefs to functions. Just like every state
x in X determines a function f ′′

x : A −→ B, every belief ℓ in L determines a

function {ℓ}
′′
: A −→ B, which makes predictions based on the current belief.

Generalizing the fixpoint construction (2), every process f = 〈f ′, f ′′〉 : X×A −→
X ×B now induces an assignment JfK : X −→ L of beliefs to states such that

{JfK(x)}
′
= JfK (f ′

x) {JfK(x)}
′′
= f ′′

x (8)

The construction of JfK is presented in Sec. 6. Here we propose an interpretation.
The second equation says that the output component of {} behaves as it did in
(1): it interprets the description JfK(x) and recovers the function f ′′

x executed
by the process f at the state x. The first equation says that the interpreter {}
maps the JfK-description of the state x to a JfK-description of the updated state
f ′
x:

f ′ : x 7−→ f ′
x

{}
′
: JfK(x) 7−→ JfK (f ′

x)
(9)

Any state change caused by the process f is thus explained by a belief update
of JfK along {}. Interpreting the belief states JfK by the interpreter {} provides
belief updates that can be construed as explanations in the language L of any
state changes in the process f . All that can be learned about f is already ex-
pressed in JfK and all state changes that may be observed will be explained by
the updates anticipated by the current belief, as indicated in (9). The belief is
complete.

Remark. In coalgebra and process calculus, the universal interpreters {} : L×
A −→ L × B would be characterized as weakly final simulators [30]. They are
universal in the sense that the same state space L works for all types A,B. See
[24, Sec. 7.2] for details and references.

The logic of going dynamic. When L is a programming language, the inter-
preter {} interprets programs as computable functions A −→ B, where A and B

are types, usually predicates that allow type checking. When L is a language of
software specifications or scientific theories construed as beliefs about the state
of the world, the interpreter {} updates beliefs to explain the state changes ob-
served in explainable processes X ×A −→ X × B, where A,B and X are state
spaces. States are usually also defined by some predicates, but their purpose is
not to be easy to check but to define the state changes as semantical reassign-
ments. This is spelled out in Sec. 2.1. Dynamic reassignments of meaning bring
us into the realm of dynamic logic. If the propositions from a lattice T are used
as assertions about the states of the world or the states of our beliefs about the
world, then the dynamic changes of these assertions under the influence of events
from a lattice E can be expressed in terms of Hoare triples

A{e}B (10)



saying that the event e ∈ E after the precondition A ∈ T leads to the post-
condition B ∈ T . The Hoare logic of such statements was developed in the late
1960s as a method for reasoning about programs. The algebra of events E was
generated by program expressions, whereas the propositional lattice T was gen-
erated by formal versions of the comments inserted by programmers into their
code, to clarify the intended meanings of blocks of code [13,17]. A triple (10)
would thus correspond to a block of code e, a comment A describing the assumed
state before e is executed, as its precondition, and a comment B describing the
guaranteed state after e is executed, as its postcondition. By formalizing the
“assume-guarantee” reasoning of software developers, the Hoare triples provided
a stepping stone into the logic of state transitions in general. The propositional
algebra of dynamic logic can be viewed as a monotone map

T o × E × T
−{−}−
−−−−−−→ O

where O is a lattice of truth values, whereas T and E are as above, and T o is
T with the opposite order. If the lattice T is complete, then each event e ∈ E
induces a Galois connection

A⋊ e ⊢ B ⇐⇒ A{e}B ⇐⇒ A ⊢ [e]B

determining a dynamic modality [e] : T −→ T for every e ∈ E [31]. The induced
interior operation ([e]B)⋊E ⊢ B says that [e]B is the weakest precondition that
guarantees B after e. The induced closure A ⊢ [e] (A⋊ e) says that A⋊ e is the
strongest postcondition that can be guaranteed by the assumption A before e. In
addition to formal program annotations, dynamic logic found many other uses
and interpretations [6,10,15]. Here we use it as a backdrop for the coevolution
of theories and their interpretations.

Updating completeness. In static logic, a theory is complete when all state-
ments true in a reference model are provable in the theory. In dynamic logic,
the model changes dynamically and the true statements vary. There are different
ways in which the notion of completeness can be generalized for dynamic situa-
tions. The notion of completeness that seems to be of greatest practical interest
is the requirement that the theory and the model can be dynamically adapted
to each other: the theory can be updated to make provable some true state-
ments or the model can be updated to make true some false statements. This
requirement covers both the theory updates in science and the model updates
by selffulfilling and belief-building announcements in various non-sciences. The
logical frameworks satisfying such completeness requirements allow for matching
current beliefs and future states.



2 World as a monoidal category

2.1 State spaces as objects

In computation, a state is a family of typed variables with a partial assignment
of values. In science, a state is a family of observables, some with expected
values. Formally, a state can be viewed as a family of predicates, or a theory in
first-order logic, with a specified model. Both can be presented in the standard
Tarskian format, where a theory is a quadruple of sorts, operations, predicates,
and axioms, and its interpretation is an inductively defined model [8].

Theories as sketches. In this extended abstract, theories are presented as cat-
egorical sketches and their models are specified in extended functorial semantics
[1,5,19,20,21]. While this may not be the most popular view, it is succinct enough
to fit into the available space. The main constructions, presented in Sec. 4–6, do
not depend on the choice of presentation. The reader could thus skip to Sec. 3
and come back as needed.

Definition 1. A clone Σ is a cartesian category6 freely generated by sorts, oper-
ations, and equational axioms of a logical theory. A theory is a pair Θ = 〈Σ,Γ 〉,
where Σ is a clone and Γ is a set of cones and cocones in Σ, capturing the general
axioms7 of the logical theory. A model of Θ is a cartesian functorM : Σ −→ Set

mapping the Γ -cones into limit cones and the Γ -cocones into colimit cocones. A
state of belief (or belief state) is a triple

A = 〈ΣA, ΓA,MA〉

where ΘA = 〈ΣA, ΓA〉 is a theory and MA its model in a category Set of sets
and functions. An element of the model MA is called an observable of the state
A.

States of A as extensions of MA. The reference model MA determines the
notion of truth in the state space A. It expresses properties that may not be
proved in the theory ΘA or even effectively specified8. The reference modelMA

should thus not be thought of as a single object of the category of all models of
ΘA but as the (accessible) subcategory of model extensions ofMA. These model
extensions are the states of the state space A. The structure of a state space can

6 We stick with the traditional terminology where a category is cartesian when it
has cartesian products. The cartesian product preserving functors are abbreviated
to cartesian functors. This clashes with the standard terminology for morphisms
between fibrations, but fibrations do not come about in this paper.

7 Equational axioms could be subsumed among cones and cocones, and omitted from
Σ, which would boil down to the free category generated by sorts and operations.

8 E.g., the set of all true statements of Peano arithmetic is expressed by its standard
model, but most of them cannot be described effectively.



be further refined to capture other features of theories in science and engineering,
including their statistical and complexity-theoretic valuations [32,36]. While such
refinements have no direct impact on our considerations, they signal that we are
in the realm of inductive inference, which may feel unusual for the Tarskian
framework of static logic, normally concerned with deductive aspects. The fact
that the theory ΘA has a modelMA implies that it is logically consistent but it
does not imply that it is true within an external frame of reference, a “reality” that
may drive the state transitions, i.e. the processes of extending and reinterpreting
theories. The intuition is that the states in the space A are observables that may
never be observed, sinceMA may be incompatible with the actual observations.
The theory ΘA may be consistent but wrong.

Examples of state spaces include logical theories with standard models that
arise not only in natural sciences but also in social systems, as policy formal-
izations. A software specification with a reference implementation can also be
viewed as a state space. Updates and evolution of a software system can then be
analyzed using a higher-order dynamic logic [12]. The functorial semantics view
was spelled out in [23], used in a software synthesis tool [26,28,29], and applied
in algorithm design [25,27].

2.2 Transitions as morphisms

Intuitively, a transition f from a state space A to a state space B is a specification
that induces a transition from any A-state to a B-state. We first consider the
transitions arising from reinterpreting theories and then expand to modifying
the reference models.

Definition 2. An interpretation of state space A in a state space B is a log-
ical interpretation of the theory ΘB = 〈ΣB, ΓB〉 in the theory ΘA = 〈ΣA, ΓA〉
which reduces the reference model MA to MB. More precisely, an interpreta-
tion f : A −→ B is a cartesian functor f : ΣA ←− ΣB mapping ΓB-(co)cones to
ΓA-(co)cones according to a given assignment fΓ : ΓA ←− ΓB and making the
following diagram commute

ΣA ΣB

Set

MA MB

f

(11)

The models MA and MB map the (co)cones from ΓA and ΓB to (co)limits of
sets, as required by Def. 1.

Interpretations as assignments. The structure of interpretations of software
specifications and the method to compose them were spelled out in [23,28]. Since



software specifications are finite, an interpretation f : ΣA ←− ΣB boils down to
a tuple of assignments

x1 := t1 ; x2 := t2 ; . . . ; xn := tn

of terms t = 〈t1, t2, . . . , tn〉 from ΣA to variables x = 〈x1, x2, . . . , xn〉 from ΣB

in such a way that, for each axiom γ ∈ ΓB, the substitution instance

f(γ) = [x := t]γ

is a theorem derivable from the axioms in ΓA. In Hoare logic [17], a state tran-
sition f : ΣA ←− ΣB is presented as a triple ΘA{x := t}ΘB . By definition, this
triple is valid if and only if ΘA ⊢ [x := t]ΘB , where [x := t]ΘB is the result
substituting the ΘA-terms t for ΘB-variables x in all axioms γ ∈ ΓB. Condition
(11) moreover requires that this theory interpretation recovers the model MB

from the model MA.

In general, however, it is not always possible to transform all computational
states annotated at all relevant program points into one another by mere sub-
stitutions. That is why Hoare logic does not boil down to the assignment clause,
but specifies the meaning of other program constants in other clauses, which can
be viewed as more general state transitions.

Definition 3. A state transition f : A −→ B is a cartesian functor f : ΘA ←−
ΘB mapping ΓB-(co)cones to ΓA-(co)cones according to a given assignment
fΓ : ΓA ←− ΓB and moreover making the following diagram commute

ΘA ΘB

Set

MA MB

f

(12)

whereMA is the extension ofMA along the completion ΣA →֒ ΘA of ΣA under
the limits and colimits generated by ΓA; ditto for MB.

General sketches. In Def. 2, theories were presented as pairs Θ = 〈Σ,Γ 〉, where
the category Σ is comprised of sorts, operations, and equations of the theory,
whereas the cones and the cocones in Γ specify its predicates and axioms. In
Def. 3, a theory Θ is presented as the category obtained by completing Σ under
the limits and the colimits specified by Γ . This general sketch, with the family of
limit cones and colimit cocones from Γ , is now denoted Θ, by abuse of notation. A
detailed construction of this sketch can be found in [21, §4.2–3]. It is a canonical
view of the theory derived in the signature Σ from the axioms Γ . Since the
category Θ is the Γ -completion of Σ, any functor M : Σ −→ Set mapping
the Γ -(co)cones in Σ to (co)limit (co)cones in Set has a unique Γ -preserving



extension M : Θ −→ Set. These extensions are displayed in (11). The upshot
of saturating the sketches from Def. 2 in the form Θ = 〈Σ,Γ 〉 to the general
sketches over Θ in Def. 3 is that the general explainable transitions are now
simply the structure-preserving functors displayed in (11).

2.3 Monoidal category of state spaces and transitions

Let

– U be the category of state spaces from Def. 1 and transitions from Def. 3,
and let

– U• be the category of state spaces from Def. 1 and interpretations from
Def. 2.

In both cases, the monoidal structure is induced by the disjoint unions of theories:

A⊗B =
〈

ΣA +ΣB , ΓA + ΓB , [MA +MB]
〉

(13)

where MA⊗B = [MA +MB] : ΣA +ΣB

ΓA⊗B

−−−−→ Set maps ΣA like MA and ΣB

like MB. The tensor unit is I = 〈⊥,⊥, ∅〉, where the truth value ⊥ denotes
the inconsistent theory or sketch, its only axiom, and ∅ is its empty model. It
obviously satisfies I ⊗A = A = A⊗ I. The associativity of the tensor ⊗ follows
from the associativity of the disjoint union +. The arrow part of ⊗ is induced
by the disjoint unions as coproducts. The coproduct structure equips every state
space A with a cartesian comonoid structure

A⊗A
∆

←−−−−−− A

⊸

•

−−−−→ I (14)

ΣA +ΣA
[id,id]
−−−−−→ ΣA

⊥
←−−− ⊥

This provides a categorical mechanism for cloning and erasing states, which
makes some observations repeatable and deletable, as required for testing in
science and software engineering. However, U is not a cartesian category, and
⊗ is not a cartesian product, because some transitions f : A −→ B do not
in general boil down to functors ΣA ←− ΣB, but only to functors ΘA ←− ΣB,
where ΘA is a completion of ΣA under the ΓA-(co)-limits. Intuitively, this means
that the axioms of the theory ΘB may not be interpreted as axioms of ΘA, but
may be mapped into theorems, which only arise in the ΓA-completion. This
captures the uncloneable and undeletable states that arise in many sciences,
including physics of very small or very large (quantum or cosmological) and
economics. The only transitions that preserve the cartesian structure (14) are
the interpretations f : A −→ B, with the underlying functors ΣA ←− ΣB. They
form the category U•, which is the largest cartesian subcategory of U . If the
states α ∈ U(I, A) are thought of as observables, the states a ∈ U•(I, A) are the
actual observations.



3 String diagrams

Constructions in monoidal categories yield to insightful presentations in terms
of string diagrams [18,24, Ch. 1]. We will need them to present the construc-
tions like (2) and in particular (8). While commutative diagrams like (11) dis-
play compositions of morphisms and abbreviate their equations, string diagrams
display decompositions of morphisms. Monoidal categories come with two com-
position operations: the categorical (sequential) morphism composition ◦ and
the monoidal (parallel) composition ⊗. The former is drawn along the vertical
axis, the latter along the horizontal axis. The objects are drawn as strings, the

morphisms as boxes. A morphism A
f
−→ B is presented as a box f with a string A

hanging from the bottom and a string B sticking out from the top. The identities
are presented as invisible boxes: the identity on A is just the string A. The unit
type I is presented as the invisible string. There are thus boxes with no strings

attached. The composite morphism g ◦ f = (A
f
−→ B

g
−→ C) is drawn bottom-up,

by hanging the box f on the string B under the box g. The monoidal composi-
tion is presented as the horizontal adjacency: the composite (g ◦ f) ⊗ (s ◦ t) is
drawn by placing the boxes g ◦ f next to the boxes for s ◦ t:

B

A

f

g

C

U

V

t

f⊗t

g◦f

s

W

(15)

The middle-two-interchange law (g◦f)⊗(s◦t) = (g⊗s)◦(f⊗t) corresponds to the
two ways of reading the diagram: vertical-first and horizontal-first, marked by
the red and the blue rectangle respectively. The string diagrams corresponding
to the cartesian comonoids (14) are

A A

AA ⊸

•

∆
(16)



The equations that make them into commutative comonoids look like this:

= = = =

State parametrization and updating. Products A⊗B denote a space where
A and B but do not interfere. In a diagram, they are just parallel strings. Since
the product states from the space X ⊗ A do not interfere, a transition g : X ⊗
A −→ B can be viewed as X-parametrized family gx : A −→ B, as it was viewed
in Sec. 1. Since the product states from X⊗B also remain separate, a transition
q : X⊗A −→ X⊗B can be viewed as X-updating process, as it was also viewed
in Sec. 1. The corresponding string diagrams are

B

X A

g

B

X A

X

q (17)

Shape conventions. While the boxes in (15) and (17) are rectangular, the
cartesian “boxes” in (16) are reduced to black dots. In general, the boxes denot-
ing general transitions can vary in shape, and fixed shapes are used for generic
notations. E.g., the interpreters, introduced in (19) below, are denoted by trape-
zoids, and the interpretations, that are fed to them, by triangles. A black dot on
a box signals that it is cartesian, i.e. belongs to U•.

Projections. Using the cartesian structure from (16), a state updating transi-
tion q can still be decomposed like before

q′ =

(

X ⊗A
q
−→ X ×B

id⊗ ⊸

•

−−−→ X

)

q′′ =

(

X ⊗A
q
−→ X ⊗B

⊸

•
⊗id
−−−→ B

)

(18)

In general, however, although the transitions u : Z −→ U and v : Z −→ V can

be paired into 〈u, v〉 = (Z
∆
−→ Z ⊗ Z

u⊗v
−−−→ U ⊗ V ), the pair 〈q′, q′′〉 may not be

equal to q in the universe U , unless it happens to be cloneable, in the sense that
it commutes with ∆.

4 Universal language

A theory of theories, such as the categorical theory of sketches, is a theory.
Category theory is also a theory and functorial semantics provides a categorical



theory of reference models. The theory of state spaces from Sec. 2.1 can thus
be formalized and presented as a state space in the category U . The theory of
state spaces from Sec. 2.1 can thus be formalized into a sketch with a reference
model and presented as a state space in the category U . The theory of state
transitions from Sec. 2.2 is another sketch, and with another reference model it
is also a state space in U . Call it L. The fact that the states in L correspond to
the transitions in U means that it satisfies a parametrized version of (1). It is a
universal language for U . Its interpreters follow from its definition, as the models
of the theory of transitions. Since there is no room here to spell out the details of
a theory of transitions and show that the correspondence of its cartesian models
and the transitions in U equips L with all interpreters, we postulate the existence
of the interpreters by the following definition.

Definition 4. An universal interpreter for state spaces A,B is a transition
{} : L ⊗ A −→ B in U which is universal for all parametric families of tran-
sitions from A to B. This means that for any state space X and any transition
g ∈ U(X ⊗A,B) there is an interpretation G ∈ U•(X,L) with

{}
=

P

BB

X A

g

G

X A

•
(19)

On one hand, a universal interpreter is universal for parametric families. On the
other hand, it is a parametric family itself. It is thus capable of interpreting
itself. This capability of self-reflection was crucial for Gödel’s incompleteness
construction. This capability is embodied in the specializers, which are derived
directly from Def 4.

Lemma 1. For any X,A,B there is an interpretation [ ] ∈ U•(L×X,L) which
specializes from a given X ⊗A-interpreter to an A-interpreter, in the sense

{}
=

L

BB

X A

{}
[ ]

X A

•

LL

(20)



Hoare logic of interpreters and specializers. If interpreters are presented
as Hoare triples in the form (X⊗A){G}B, and if X [G] denotes a specialization
of G to X as above, then (20) can be written as the invertible Hoare rule

(X ⊗A){G}B
============
A{X [G]}B

Explanations. Interpretations (in the sense of Def. 2) of arbitrary states from
some space X along G ∈ U•(X,L) in a universal language L can be construed
as explanations. If L is a programming language, they are programs. The idea
that explaining a process means programming a computation has been pur-
sued in theory of science from various directions [22, and references therein]. A
universal language L is thus a universal space of explanations. The idea of pro-
gramming languages as universal state spaces is pursued in [24, Ch. 7]. Just like
any universal programming language makes every computation programmable,
any universal language from Def. 4 makes any observable transition explainable.
What we cannot explain, we cannot recognize, and therefore we cannot observe.
But it gets funny when we take into account how our explanations influence
our observations, and how our current explanations can be made to steer future
observations. This is sketched in the next two sections.

5 Self-explanations

When a state change depends on our explanations, then we can find an explana-
tion consistent with its own impact: the state changes the way the explanation
predicts. More precisely, if a family of transitions in the form t : L⊗X⊗A −→ B,
then the predictions tℓx can be steered by varying the explanations ℓ for every
x until a family of explanations ptq : X −→ L is found, which is self-confirming
at all states x, i.e. it satisfies t(ptqx , x, a) = {ptqx}a.

Proposition 1. For any belief transition t ∈ U(L ⊗ X ⊗ A,B) there is an ex-
planation ptq ∈ U•(X,L) such that

• •

A A

t

B B

{}=

ptq ptq

XX

•

(21)



Proof. Let T ∈ U•(X,L) be an explanation of the transition on the left in (21).

•

• •

A A

[ ]

t

B B

{}=

T

XX

(22)

H exists by Def. 4. Then ptqx = [Tx] is self-confirming, because

•

• •

A A

[ ]

t

B B

{}=

T

XX

•
T

•

•
T

A

B

{}=

X

•
T

A

B

{}=

•

•[ ]

X

•
T

•ptq ptq

•

(23)
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6 Unfalsifiable explanations

A transition in the form q : X ⊗ A −→ X ⊗ B updates the state x on input a

to a state x′ = q′x(a) in X and moreover produces an output b = q′′x(a) in B.
A correct explanation JqK : X −→ L of the process q must correctly predict the
next state and the output. The predictions are extracted from an explanation
by the interpreter {}. In this case, the predictions of an explanation JqK of the
process q at a state x and on an input a will be in the form {JqKx}(a) in X⊗B.

A correct prediction of the output b = q′′x(a) is simply {JqKx}
′′
(a) = b. However,

the external state x′ = q′x(a) may not be directly observable. It is believed to
be explained by JqKx′ . A correct prediction of the next state is thus a correct



prediction of its explanation {JqKx}
′
(a) = JqKx′ . At each state x, the explanation

JqKx is required to anticipate the explanations JqKx′ of all future states and be
consistent with them. If the explanation JqKx′ at a future state x′ = q′x(a) is

found to be inconsistent with the explanation {JqKx}
′
(a), then the explanations

JqK of the process q have been proven false. This is the standard process of
testing explanations. Our claim is, however, that a universal language allows
constructing testable but unfalsifiable explanations, that remain consistent at all
future states. This persistent consistency can be viewed as a dynamic form of
completeness. It is achieved by predicting the state updates of the given process
q and anticipating their explanations, as in the following construction.

Proposition 2. For any process q ∈ U(X ⊗ A,X ⊗ B) there is an explanation
JqK ∈ U•(X,L) which maintains consistency of all future explanations:

=

L

X

JqK

A

B

q

L

X A

B

•

•

JqK

{}
(24)

Proof. Set JqK = [Q] where Q is an explanation of the belief transition q post-
composed with a specialization over the state space X of updates:

=

Q

q

•

•
Q

{}

•

[ ]

=

Q
•

{}
•[ ]

(25)

�

7 From natural science to artificial delusions

7.1 What did we learn?

We sketched the category U of state spaces A,B, . . ., comprised of theories with
reference models. A transition f : A −→ B transforms the A-states to B-states.



Such morphisms capture theory expansions, reinterpretations, and map observ-
ables of type A to observables of type B. They can be construed in terms of
dynamic logic and support reasoning about the evolution of software systems
or scientific theories. The crucial point is that the category U contains a uni-
versal language L of explanations and belief updates. The self-reference in such
languages was the crux of Gödel’s incompleteness constructions. While Gödel
established that static theories capable of self-reference cannot be complete or
prove their own consistency, we note that dynamic theory and model updates
allow constructing testable theories that preempt falsification. While a static
model of a given theory fixes a space of true statements once and for all, the
availability of dynamic semantical updates opens up the floodgates of changing
models and varying notions of truth. Faster learners conquer this space faster.
The bots, as the fastest learners among us, have been said to acquire their delu-
sions from our training sets. The presented constructions suggest that they may
also become delusional by dynamically updating their belief states and steering
their current explanations of reality into persistent consistency, resilient to fur-
ther learning. They may also combine the empiric delusions from our training
sets with the logical delusions constructed in a universal language, leverage one
against the other, and get the best of both worlds.

But why would they do that?

7.2 Beyond true and false

Why did the Witches tell Macbeth that it is his destiny to be king thereafter,
whereupon he proceeded to kill the King? Why did the Social Network have to
convince its very first users that more than half of their friends were already
users? Some statements only ever become true if they are announced to be
true when they are false. They are self-fulfilling prophecies. There are also self-
defeating claims. In the dynamic logic of social interactions, most claims interfere
with their own truth values in one way or another. If I convince enough people
that I am rich, I stand a better chance to become rich. If we convince enough
people that this research direction is promising and well-funded, it will become
well-funded and promising. Just like true statements about nature help us to
build machines and get ahead in the universe, the manipulations of truth seem
to help us get ahead in society. They are the high-level patterns of language that
used to be studied in early logic right after the low-level patterns of meaning
(that used to be called “categories”). If you train a bot to speak correctly, it will
start speaking convincingly as soon as it learns long enough n-grams. It will lie
not only the static lies contained in its training set but also the lies generated
dynamically, according to the rules of rational interaction. Rhetorics used to be
studied right after grammar, sophistic argumentation after syllogisms, witchcraft
arose from cooking, magic from tool building. The bot religions arise along that
well-trodden path.



We presented two constructions. One produces self-confirming explanations. The
other one explains all future states, so it is testable but not falsifiable. Science
requires that its theories are testable and falsifiable. Religion explains all fu-
ture observations. If you train a bot on long enough n-grams, it may arrive at
persistently unfalsifiable false beliefs.

Truth be told, all of the constructions presented in this extended abstract have
only been tested on toy examples. We may be just toying with logic. Nevertheless,
the fact that semantical assignments are programmable, tacitly established by
Gödel and mostly ignored as an elephant in the room of logic ever since, seems
to call for attention, as beliefs transition beyond the human carriers.
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