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Abstract. Veltman semantics is the basic Kripke-like semantics for in-
terpretability logic. Verbrugge semantics is a generalization of Veltman
semantics. An appropriate notion of bisimulation between a Verbrugge
model and a Veltman model is developed in this paper. We show that
a given Verbrugge model can be transformed into a bisimilar Veltman
model.
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1 Introduction

Interpretability logic is an extension of provability logic, which formalizes the
notion of relative interpretability between arithmetical first-order theories. In-
tuitively, we say that such a theory T interprets another theory T ′ if there is
a translation from the language of T ′ to the language of T such that all trans-
lations of axioms of T ′ are provable in T . Intepretability logic is a modal logic
which, together with usual unary modality □, whose intended interpretation in
this context is provability, has another modality ▷, which is binary. Formulas of
the form A ▷ B are intended to mean that some base theory T extended with
the formula A interprets the theory obtained by extending the same base theory
T with the formula B. In this paper we will only deal with modal semantics of
interpretability logic in general, so we omit overviewing axiomatic systems of in-
terpretability logic (cf. e.g. [9] for this, and also for more details on arithmetical
aspects).

The basic semantics of interpretability logic is defined on Veltman models,
Kripke-like structures built over standard Kripke models of provability logic,
which means that the accessibility relation is transitive and converse well foun-
ded, by adding a family of relations Sw between worlds R-accessible from w,
for each world w in the model, satisfying certain properties, e.g. reflexivity and
transitivity (a precise definition is given in the next section). Verbrugge semantics
([8], cf. also [1]) is a generalization in which relations Sw are no longer between
worlds, but between worlds and sets of worlds. This semantics proved to be useful
in showing some independence results which could not be proved using Veltman
semantics ([11]), in proving some completeness results in cases of incompleteness
w.r.t. Veltman semantics ([5], [2]), and it also enabled using filtration technique,
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which could not be used on Veltman models, in order to prove finite model
property and consequently some decidability results ([6], [4]).

This paper addresses the following question: for a given Verbrugge model,
can we obtain a Veltman model which would be closely related with the initial
Verbrugge model, preferably by some appropriately defined notion of bisimula-
tion, or at least by modal equivalence. This question is natural, since Veltman
models are still appealing due to their relative simplicity, so we would like to keep
them as the basic semantics and it would be nice to have a bridge by which we
could possibly transfer some results from Verbrugge semantics back to Veltman
semantics, or better understand why some of them cannot be transferred.

It is not surprising that this question was being addressed from the very
beginning of work on Verbrugge semantics: already in [8] (cf. also [7]) a transfor-
mation of a given Verbrugge model to a modally equivalent Veltman model was
provided, but using different notion of Verbrugge model than the one used in the
present paper (different notions of Verbrugge models come from various possible
ways to define so-called quasi-transitivity, a property of Verbrugge models which
corresponds to transitivity of relations Sw in Veltman models). Similar attempt
in [10] resulted in Veltman model bisimilar to a given Verbrugge model in a
certain sense, but under additional conditions of image-finiteness and inverse
image-finiteness. Also, this was an indirect result: bisimilarity was observed be-
tween the same kind of structures, after a transformation. In the present paper
we will work with a directly defined notion of bisimulation between different
kinds of structures, namely between a Verbrugge model and a Veltman model,
and we will be able to avoid additional constraints on these structures.

In Section 2 we recall basic definitions and we define the notion of bisimu-
lation between a Verbrugge model and a Veltman model. In Section 3 we pro-
vide arguments in favour of thus defined notion, e.g. we prove an analogue of
Hennessy-Milner theorem. In Section 4 we obtain a Veltman model bisimilar to
a given Verbrugge model. In Section 5 we conclude with some remarks on future
work.

2 Bisimulation between Verbrugge and Veltman model

The alphabet of interpretability logic consists of countably many propositional
variables and symbols ⊥, → and ▷. Formulas are given by

φ ::= p | ⊥ |φ1 → φ2 |φ1 ▷ φ2,

where p ranges over the set of propositional variables. We use usual abbreviations
⊤ := ¬⊥, ¬φ := φ → ⊥, φ1 ∨ φ2 := ¬φ1 → φ2, φ1 ∧ φ2 := ¬(¬φ1 ∨ ¬φ2),
φ1 ↔ φ2 := (φ1 → φ2) ∧ (φ2 → φ1), □φ := ¬φ▷⊥, ♢φ := ¬□¬φ.

A Veltman model is a tuple (W,R, {Sw : w ∈W},⊩) such that:

– W ̸= ∅ is a set called the domain, whose elements are called worlds
– R ⊆ W ×W is a transitive and converse well-founded relation called the

accessibility relation
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– Sw ⊆ R[w]×R[w], where R[w] = {u ∈W : wRu}, is a reflexive and transitive
relation such that wRuRv always implies uSwv, for each w ∈W

– ⊩ is a relation between worlds and formulas such that for all w ∈W we have
w ̸⊩ ⊥, w ⊩ φ1 → φ2 if and only if w ̸⊩ φ1 or w ⊩ φ2, and w ⊩ φ1 ▷ φ2 if
and only of for all u ∈ W such that wRu and u ⊩ φ1 there is v ∈ W such
that uSwv and v ⊩ φ2

1

A Verbrugge model is a tuple (W,R, {Sw : w ∈ W},⊩), where W and R are
as in the definition of Veltman models, while Sw ⊆ R[w]× (P(R[w]) \ {∅}) such
that:

– if wRu, then uSw{u} (quasi-reflexivity)
– if uSwV and vSwZv for all v ∈ V , then uSw

⋃
v∈V Zv (quasi-transitivity)

– if wRuRv, then uSw{v}
– if uSwV and V ⊆ Z ⊆ R[w], then uSwZ (monotonicity),

while ⊩ is defined similarly as in the definition of Veltman model, except the
following: w ⊩ φ1 ▷ φ2 if and only if for all u such that wRu and u ⊩ φ1 there
is V such that uSwV and for all v ∈ V we have v ⊩ φ2 (we write V ⊩ φ2).

When we need to emphasize that w ⊩ φ is observed in the context of a
structure M, we will write M, w ⊩ φ.

As aforementioned, there are other variants of Verbrugge models in the liter-
ature, which differ from the above one only in the definition of quasi-transitivity
and in some cases in omitting monotonicity. In this paper we work only with the
above definition, since it is predominant in the literature (cf. a recent overview
[1], which includes a discussion on other possibilities).

Bisimulation is the basic equivalence between modal models. It has three
defining conditions: atomic equivalence between related worlds (at), the con-
dition describing how the first model is simulated in the second one (forth),
and the condition describing how the second model is simulated in the first one
(back). When we work with the same kind of structures, (forth) and (back) are
mutually symmetric. But now we will define the notion of bisimulation between
different kinds of structures, which will therefore lack this symmetry. In fact, the
direction from Verbrugge model to Veltman model (forth) will be much more
complex than the opposite one.

Definition 1. Let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model and
let M′ = (W ′, R′, {S′

w′ : w′ ∈ W ′},⊩) be a Veltman model. A bisimulation
between M and M′ is any non-empty relation Z ⊆W ×W ′ such that:

(at) M, w ⊩ p if and only if M′, w′ ⊩ p for all w ∈ W,w′ ∈ W ′ such that wZw′,
for each propositional variable p

(forth) if wZw′ and wRu, then there exists a non-empty U ′ ⊆W ′ such that w′R′u′

and uZu′ for all u′ ∈ U ′ and for any F : U ′ →W ′ such that u′S′
w′F (u′) for

all u′ ∈ U ′, there is V such that uSwV and for all v ∈ V there is u′ ∈ U ′

such that vZF (u′)

1 Equivalently, we can define a Veltman model to be (W,R, {Sw : w ∈ W}, V ), where
V maps each propositional variable to a subset of W , and then define satisfaction
relation ⊩ recursively, but this is non-essential and just a matter of style.



4 T. Perkov

(back) if wZw′ and w′R′u′, then there exists u ∈ W such that wRu, uZu′ and for
each V ⊆W such that uSwV there are v ∈ V and v′ ∈W ′ such that u′S′

w′v′

and vZv′.2

Consider an example of thus defined bisimulation.

Example 1. Consider a Verbrugge model M such that:

– W = {0, 1, 2, 3}, R = {(0, 1), (0, 2), (0, 3)}, 1S0{2, 3}
– 1 ⊩ p, 2 ⊩ q, 3 ⊩ r

Now, consider a Veltman model M′ as follows:

– W ′ = {0′, 1′, 1′′, 2′, 3′}, R′ = {(0′, 1′), (0′, 1′′), (0′, 2′), (0′, 3′)},
1′S′

0′2
′, 1′′S′

0′3
′

– 1′ ⊩ p, 1′′ ⊩ p, 2′ ⊩ q, 3′ ⊩ r

Note that we omitted some pairs in S0 and S′
0′ , namely those enforced by

(quasi)-reflexivity and monotonicity.
It is easy to verify that Z = {(0, 0′), (1, 1′), (1, 1′′), (2, 2′), (3, 3′)} is a bisim-

ulation.

The following proposition shows that the necessary requirement on any no-
tion of bisimulation is satisfied: bisimilar worlds are modally equivalent.

Proposition 1. Let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model,
M′ = (W ′, R′, {S′

w′ : w′ ∈ W ′},⊩) a Veltman model and Z ⊆ W × W ′ a
bisimulation between M and M′. Then for all w,w′ such that wZw′ we have
that w and w′ are modally equivalent, i.e. M, w ⊩ φ if and only if M′, w′ ⊩ φ,
for each formula φ.

Proof. The claim is proved by induction on the complexity of a formula. We
only present the inductive step in the case of a formula of the form φ1 ▷ φ2.

Assume M, w ⊩ φ1 ▷ φ2 and wZw′. We need to prove M′, w′ ⊩ φ1 ▷ φ2.
Let u′ ∈ W ′ such that w′R′u′ and u′ ⊩ φ1. Then (back) implies there is u such
that wRu and uZu′. By the induction hypothesis u ⊩ φ1. Since w ⊩ φ1 ▷ φ2,
there is V such that uSwV and V ⊩ φ2. But (back) also implies that for any

2 As pointed out by a reviewer, one could alternatively generalize these conditions to
develop an analogous notion of bisimulation between Verbrugge models, and then
establish a connection between a Verbrugge and a Veltman model by composing a
bisimulation between Verbrugge models and a simple transformation from a Velt-
man to a Verbrugge model described at the beginning of Section 4. The present
approach has an advantage that the already complex (forth) condition has an ad-
ditional quantifier in case of two Verbrugge models, and (back) condition would be
symmetric to (forth) when observed between two Verbrugge models, while in the
present paper it is much simpler. Nevertheless, an analogous notion of bisimulation
between Verbrugge models is of independent interest and is thoroughly studied in a
near future paper [3].
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Fig. 1. Illustration of Example 1

Sw-successor of u, thus also for V , there are v ∈ V and v′ ∈ W ′ such that vZv′

and u′Sw′v′. Again by the induction hypothesis v′ ⊩ φ2, as desired.
Conversely, assume M′, w′ ⊩ φ1 ▷ φ2 and wZw′ and prove M, w ⊩ φ1 ▷ φ2.

Let u ∈W such that wRu and u ⊩ φ1. Then by (forth) there is U ′ ̸= ∅ such that
w′R′u′ and uZu′, and thus by the induction hypothesis u′ ⊩ φ1, for all u

′ ∈ U ′,
such that for any choice of one S′

w′ -successor for each world in U ′, there is V
such that uSwV and each world in V is bisimilar to some of those S′

w′ -successors.
Now for all u′ ∈ U ′, since w′ ⊩ φ1▷φ2 and u′ ⊩ φ1, there is v

′ such that u′Sw′v′

and v′ ⊩ φ2. For such a world v′, put F (u′) = v′. Since the above holds for
any choice F of one S′

w′ -successor for each u′ ∈ U ′, it holds in particular for the
choice F . Thus there is V such that uSwV and each v ∈ V is bisimilar to some
F (u′), so by the induction hypothesis v ⊩ φ2 for all v ∈ V , as desired. ■

Example 2. Since Z defined in Example 1 is a bisimulation, the previous propo-
sition implies that 0 and 0′ are modally equivalent (as are all pairs in Z).

3 Hennessy-Milner theorem

As aforementioned, the first requirement of any notion of bisimulation is that
it implies modal equivalence. That requirement shows that the definition is not
too weak, i.e. structural relation between two models is strong enough to ensure
modal formulas cannot distinguish them. But on the other hand, some proposed
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relation between models can be too strong. For example, isomorphism of course
implies modal equivalence, but it is obviously unnecessarily strong, i.e. much
weaker structural relations can imply modal equivalence. In other words, one
would like to have a converse of the previous proposition, to see that the defined
notion of bisimulation is just enough strong. Unfortunately, it is well known
that the direct converse never holds (a counterexample can easily be constructed
from some of the known counterexamples for basic modal logic). But, there are
some approximations, notably Hennessy-Milner-like theorems, which say that
the converse holds in case of image-finite models. If Hennessy-Milner analogue
holds for some proposed notion, then it is a good sign that the notion is just
about as strong as bisimulation should be.

Theorem 1. Let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model and let
M′ = (W ′, R′, {S′

w′ : w′ ∈W ′},⊩) be a Veltman model such that relations R and
R′ are image-finite, i.e. for all w ∈ W,w′ ∈ W ′ we have that R[w] and R′[w′]
are finite.

Then any w ∈W and w′ ∈W ′ are modally equivalent if and only if there is
a bisimulation Z between M and M′ such that wZw′.

Proof. Let Z ⊆ W ×W ′ be the modal equivalence between worlds of M and
M′, i.e. wZw′ if and only if w and w′ satisfy exactly the same formulas. We will
prove that Z is a bisimulation between M and M′. Together with the previous
proposition, this clearly implies the claim.

Obviously (at) holds. Assume (back) does not hold, i.e. there are w,w′, u′

such that wZw′ and w′R′u′ and for all u such that wRu and uZu′ there is V
such that uSwV and for all v ∈ V and v′ such that u′Sw′v′ we have that v and
v′ are not modally equivalent.

For any x such that wRx which is not modally equivalent to u′ there is a
formula φx such that u′ ⊩ φx and x ̸⊩ φx. Since there are only finitely many
such worlds x, there is a finite conjunction φ of one such formula for each x, so
u′ ⊩ φ. Observe now that for any u such that wRu we have uZu′ if and only if
u ⊩ φ.

Now, let u ∈ W such that wRu and uZu′. By the assumption, there is
Vu ⊆ R[w] such that uSwVu and no v ∈ Vu is modally equivalent to any v′ such
that u′Sw′v′. For each y ∈ R[w] which is not modally equivalent to any v′ such
that u′Sw′v′, and for each such v′, there is a formula ψy,v′ which is satisfied at
y, but not at v′. Since Sw-successors of u

′ are R-successors of w, there are only
finitely many of them, so there is a finite conjunction ψy of one such formula
for each v′, and we have y ⊩ ψy and v′ ̸⊩ ψy. But now we clearly have Vu ⊩ ψ,
where ψ is the disjunction of all ψy, where y ∈ R[w] is not modally equivalent
to u′. Hence, w ⊩ φ▷ ψ. Since wZw′, we have w′ ⊩ φ▷ ψ. Since u′ ⊩ φ, there
is v′ such that u′Sw′v′ and v′ ⊩ ψ, so v′ ⊩ ψy for some y and thus v′ ⊩ ψy,v′ ,
which is a contradiction.

It remains to prove (forth). Assume it does not hold, i.e. there are w,w′, u
such that wZw′, wRu and for any U ′ ̸= ∅ such that w′R′u′ and uZu′ for all
u′ ∈ U ′, there is a choice F : U ′ → W ′ of one S′

w′ -successor for each u′ ∈ U ′



Bisimulations between Verbrugge models and Veltman models 7

such that for all V such that uSwV there is v ∈ V not equivalent to F (u′) for
any u′ ∈ U ′.

In particular, this holds if we take U ′ to be the set of all u′ ∈ R′[w′] such
that uZu′. Further in this proof U ′ will denote that set.

Similarly as in the proof of (back), we can show that there is a formula φ
such that u ⊩ φ and for all u′ ∈ R′[w′] we have uZu′ if and only if u′ ⊩ φ.
Furthermore, for any u′ ∈ U ′ and any V such that uSwV , there is a formula
ψu′,V which is satisfied at F (u′), but not at some v ∈ V . For each u′ ∈ U ′, let
ψu′ be the conjunction of all ψu′,V , ranging over all V such that uSwV . Again,
this is clearly a finite conjunction, and we have F (u′) ⊩ ψu′ .

Let ψ be the disjunction of all ψu′ , where u′ ∈ U ′. Clearly w′ ⊩ φ▷ ψ. Now
wZw′ implies w ⊩ φ ▷ ψ. Since u ⊩ φ, there is V such that uSwV and V ⊩ ψ.
Hence, V ⊩ ψu′ for some u′ ∈ U ′. But then V ⊩ ψu′,V , which is a contradiction,
since there is v ∈ V not satisfying ψu′,V . ■

The reader may be surprised to see that, in the definition of bisimulations
between Verbrugge models and Veltman models, the condition (forth) demands
the existence of a set of worlds U ′ instead of just the existence of at least one
world as usual. But without this, the notion of bisimulation would not be useful.
To see this, note that a seemingly more natural (forth) would demand: if wZw′

and wRu, then there is u′ such that w′R′u′, uZu′ and for all v′ such that u′S′
w′v′

there is V such that uSwV and vZv′ for all v ∈ V . It is easily checked that
this does imply modal equivalence, but nevertheless it is too restrictive, since it
has a consequence that all worlds in V are mutually modally equivalent, which
practically collapses Verbrugge semantics to Veltman semantics.

The following example illustrates why we need (forth) to be as complex as
it is, and also provides an idea how to proceed with the main goal of the paper:
find a bisimilar Veltman model for a given Verbrugge model.

Example 3. To illustrate usefulness of seemingly too complicated (forth), con-
sider again the bisimulation Z defined in Example 1. Let us consider just one
part of the verification that Z is a bisimulation, namely (forth) for 0R1 and 0Z0′.
Then the good choice for U ′ is {1′, 1′′}. Then e.g. for F defined by F (1′) = 2′,
F (1′′) = 3′, we have 1S0{2, 3}, 2Z2′, 3Z3′.

With the aforementioned more restrictive definition of bisimulation, we would
not have a bisimulation in this example, thus we can use it as a counterexample
for Hennessy-Milner analogue in that case. Namely, in the situation illustrated
above, for 0R1 and 0Z0′ the restrictive (forth) would force us to choose just
one R′-successor of 0′ bisimilar to 1. Then for both possible choices we would
not be able to satisfy the remaining requirement of (forth), e.g. for 1′ and its
S′
0′ -successor 2

′, there is no V such that 1S0V and all elements of V are bisimilar
to 2′.
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4 Obtaining a Veltman model bisimilar to a given
Verbrugge model

It is straightforward to obtain a Verbrugge model from a given Veltman model
M = (W,R, {Sw : w ∈ W},⊩): we use the same W and R, and define uS′

wV if
and only if uSwv for some v ∈ V . It is very easy to see that Z = {(w,w) : w ∈W}
is a bisimulation between thus obtained Verbrugge model and M.

Although it is very simple, our running example already illustrates that the
opposite direction is much more involved. The basic idea is that each world from
a given Verbrugge model will have multiple copies in the associated Veltman
model, to make it possible for Sw-connections with sets of worlds to be simulated
by connections with worlds which are representatives of these sets.

So, let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model. We will de-
fine a Veltman model associated with M, which we will denote by V el(M) =
(W ′, R′, {S′

w′ : w′ ∈W ′},⊩).
First we introduce some notation and terminology.

4.1 Sw-paths

When we consider subsets of W , it will often be essential that they are repre-
sented as certain unions. We will keep track of such information in the following
way: instead of some X ⊆ W , we will consider a family X = {Xi : i ∈ I}
such that X =

⋃
i∈I Xi. We will use the notation X for the sake of simplicity,

although, of course, X is not uniquely determined by X. It will, however, always
be clear form the context what we mean by X.

For non-empty U, V ⊆W such that U =
⋃

i∈I Ui and V =
⋃

u∈U Vu, we write

U Sw V if uSwVu for all u ∈ U . Observe that the quasi-transitivity can now be
expressed in the following way: if uSwV and V Sw Z, then uSwZ.

Observe also that uSwV is equivalent to {u}Sw V , where {u} = {{u}} and
V = {V } are singleton families, which is of course more complicated notation,
but useful for considering some sequences as Sw-paths, as follows.

Definition 2. Consider a finite path of the form {u}Sw V 1 Sw V2Sw . . . Sw Vk.
We call the sequence {u}, V 1, V2, . . . , Vk an Sw-path starting with u, or simply
an Sw-path if it is clear from the context what it starts with.

In what follows, to avoid repeating all properties each time we mention such
paths, and since we will not consider any other kind of paths, when we shortly
say that something is an Sw- path, we will always mean that it is a finite path
starting from a singleton family which has a singleton set as its only element. If
wRu, we will consider just {u} to be an Sw-path (of length zero).

If {u}, V1, V2, . . . , Vk, Vk+1, . . . , Vk+l is an Sw-path, then for a given v ∈ Vk
we denote by {v}, V ′

1 , V
′
2 , . . . , V

′
l the Sw-path such that V ′

i ⊆ Vk+i, i = 1, 2, . . . , l,
which is uniquely determined in the way that V ′

1 is the element of the family
Vk+1 which is determined by v, i.e. obtained as an Sw-successor of v, and V ′

i+1 is

the subfamily of Vk+i+1 consisting exactly of elements determined by elements
of V ′

i , for i = 1, 2, . . . , l− 1. We say that thus obtained Sw-path is induced by v.
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4.2 Well defined choice of representatives

For an Sw-path {u}, V1, V2, . . . , Vk, we say that (u, v1, v2, . . . , vk) is a well defined
sequence of representatives if vi ∈ Vi for all i = 1, . . . , k, and vi+1 is a world from
the element of the family Vi+1 which is determined by vi, i.e. obtained as an Sw-
successor of vi, for i = 1, . . . , k − 1.

Definition 3. Let w ∈ W and x ∈ W such that xRw, and let fx be a func-
tion which maps each Sx-path starting with w to a well defined sequence of
representatives (when needed, if fx({w}, V1, . . . , Vn) = (w, v1, . . . , vn), we write
fx({w}, V1, . . . , Vn)i = vi, i = 1, . . . , n, and fx({w}, V1, . . . , Vk)0 = w). Then
we say that fx is a well defined choice of representatives of Sx-paths
starting with w, if the following conditions hold:

– fx({w}, V1) = (w, v1), where v1 ∈ V1 is arbitrarily chosen, for each Sx-path
of length 1

– if fx({w}, V1, . . . , Vn) is defined for each Sx-path of length n, then for each
Sx-put of length n+ 1 we have the following cases:
• fx({w}, V1, V2, . . . , Vn+1)i+1 = fx({w}, V2, . . . , Vn+1)i for i = 1, . . . , n, if
V1 = {u} is singleton and wRu

• fx({w}, V1, . . . , Vn+1) = (w, v1, . . . , vn+1), otherwise, where we have that
fx({w}, V1, . . . , Vn) = (w, v1, . . . , vn), and vn+1 is arbitrarily chosen so
that (w, v1, . . . , vn+1) is a well defined sequence of representatives and

fx({w}, V1, . . . , Vn, Vn+1)n+1 = fx({w}, V1, . . . , Vn, Vn+1
′
)n+1 whenever

the element of the family Vn+1 determined by vn equals the element of

the family Vn+1
′
determined by vn

4.3 A Veltman model associated with a given Verbrugge model

Now we are ready to define V el(M) and to prove that it is indeed a Veltman
model.

Definition 4. Let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model. By
V el(M) = (W ′, R′, {S′

w′ : w′ ∈W ′},⊩) we denote a structure associated with
M, defined as follows:

– W ′ consists of all ordered pairs (w, f), where w ∈ W , and f is a function
which maps each x ∈ W such that xRw to a function fx which is a well
defined choice of representatives of Sx-paths starting with w

– (w, f)R′(u, g) if and only if wRu and for all x such that xRw, for each
Sx-path {u}, V1, . . . , Vk (observe that then {w}, {u}, V1, . . . , Vk is an Sx-path
starting with w) we have

fx({w}, {u}, V1, . . . , Vk)i+1 = gx({u}, V1, . . . , Vk)i, i = 1, . . . , k

– (u, g)S′
(w,f)(v, h) if and only if (w, f)R′(u, g), (w, f)R′(v, h) and there is an

Sw-path {u}, V1, . . . , Vk such that v = gw({u}, V1, . . . , Vk)k, for some k ⩾ 0,
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and for any continuation, i.e. for any Sw-path {u}, V1, . . . , Vk, Vk+1, . . . , Vk+l

we have

gw({u}, V1, . . . , Vk+l)k+i = hw({v}, V ′
1 , . . . , V

′
l )i, i = 1, . . . , l

where Sw-path {v}, V ′
1 , . . . , V

′
l is induced by v

– V el(M), (w, f) ⊩ p if and only if M, w ⊩ p, for all (w, f) ∈ W ′, for each
propositional variable p

Proposition 2. Let M be a Verbrugge model. Then V el(M) is a Veltman model.

Proof. Obviously R′ is converse well founded. To show that it is also transitive,
let (w, f)R′(u, g)R′(v, h). Then wRuRv and therefore wRv. Furthermore, for an
arbitrary x such that xRw and an arbitrary Sx-path {v}, V1, . . . , Vk we have

hx({v}, V1, . . . , Vk)i = gx({u}, {v}, V1, . . . , Vk)i+1

= fx({w}, {u}, {v}, V1, . . . , Vk)i+2 = fx({w}, {v}, V1, . . . , Vk)i+1, i = 1, . . . , k

(the last equality holds since fx is a well defined choice of representatives).
Now we verify properties of the relation S′

(w,f) for an arbitrary (w, f). The re-

flexivity trivially follows from the convention that {u} is considered to be an Sw-
path of length 0. To prove the transitivity, assume (u, g)S′

(w,f)(v, h)S
′
(w,f)(z, s).

Since (u, g)S′
(w,f)(v, h), there is an Sw-path {u}, V1, . . . , Vk such that v = vk =

gw({u}, V1, . . . , Vk)k and other properties from the definition of the relation
S′
(w,f) hold. Also, since (v, h)S′

(w,f)(z, s), there is an Sw-path {v}, V ′
1 , . . . , V

′
l

such that z = zl = hw({v}, V ′
1 , . . . , V

′
l )l, with other properties from the defini-

tion of S′
(w,f).

Put Vk+j = (Vk \{v})∪V ′
j and Vk+j = {{x} : x ∈ Vk \{v}}∪V ′

j , j = 1, . . . , l.

Since vSwV
′
1 i xSw{x} for all x ∈ Vk \ {v}, we have Vk Sw Vk+1. Similarly, since

V ′
j Sw V ′

j+1 for j = 1, . . . , l, we have that {u}, V1, . . . , Vk+l is an Sw-path. Then

(u, g)S′
(w,f)(v, h) implies gw({u}, V1, . . . , Vk+l)k+l = hw({v}, V ′

1 , . . . , V
′
l )l = z.

To check the remaining condition needed to conclude (u, g)S′
(w,f)(z, s), take

any finite sequence Z1, . . . , Zm such that {u}, V1, . . . , Vk+l, Z1, . . . , Zm is an Sw-
path. Consider the Sw-path {v}, V ′

1 , . . . , V
′
l , Z

′
1, . . . , Z

′
m induced by v and the

Sw-path {z}, Z ′′
1 , . . . , Z

′′
m induced by z. Then (u, g)S′

(w,f)(v, h)S
′
(w,f)(z, s) implies

gw({u}, V1, . . . , Vk+l, Z1, . . . , Zm)k+l+j = hw({v}, V ′
1 , . . . , V

′
l , Z

′
1, . . . , Z

′
m)l+j =

sw({z}, Z ′′
1 , . . . , Z

′′
m)j , for all j = 1, . . . ,m.

Finally, assume (w, f)R′(u, g)R′(v, h) and show (u, g)S′
(w,f)(v, h). First, we

have wRuRv, so uSw{v}, i.e. {u}, {v} is an Sw-path and obviously it must be
gw({u}, {v})1 = v. Note that for any continuation {u}, {v}, V 2, . . . , Vl+1, the Sw-
path induced by v is actually {v}, V 2, . . . , Vl+1. Furthermore, since (u, g)R′(v, h),
by the definition of the relation R′ applied to the path {v}, V 2, . . . , Vl+1, we
have gw({u}, {v}, V2, . . . , Vl+1)i+1 = hw({v}, V2, . . . , Vl+1)i, i = 1, . . . , l, which
is exactly what we need to conclude (u, g)S′

(w,f)(v, h). ■
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4.4 The main result

Theorem 2. Let M = (W,R, {Sw : w ∈ W},⊩) be a Verbrugge model. Put
wZ(x, f) if and only if w = x. Then Z is a bisimulation between M and V el(M).

Proof. The condition (at) holds by the definition of satisfaction in V el(M).
To show (back), choose any (w, f) ∈ W ′ and suppose (w, f)R′(u, g). Then

wRu and uZ(u, g). Let V ⊆ W such that uSwV . Then for v = gw({u}, V )1
we have v ∈ V . It remains to define some h such that (u, g)S′

(w,f)(v, h). First,

to ensure (w, f)R′(v, h), for all x such that xRw put hx({v}, V1, V2, . . . )i =
fx({w}, {v}, V1, V2, . . . )i+1, i = 1, 2, . . . , for each Sw-path {v}, V1, V2, . . .

Now, we define hw as follows: for each Sw-path {v}, V1, V2, . . . , if Sw-path

{u}, V , V1
′
, V2

′
, . . . is such that {v}, V1, V2, . . . is induced by v with respect to

it, put hw({v}, V1, V2, . . . )i = gw({u}, V , V1
′
, V2

′
, . . . )i+1, i = 1, 2, . . . , which is

not ambiguous, i.e. does not depend on a choice of Sw-path {u}, V , V1
′
, V2

′
, . . . ,

due to the definition of well defined choice of representatives.
To be more precise, to conclude that hw is well defined, we need to show that

for any Sw-paths {u}, V , V ′
1 , . . . , V

′
k and {u}, V , V ′′

1 , . . . , V
′′
k such that the Sw-

path {v}, V1, . . . , Vk is induced by v with respect to both of those paths, we have
gw({u}, V , V ′

1 , . . . , V
′
k) = gw({u}, V , V ′′

1 , . . . , V
′′
k ). We prove this by induction on

k. For k = 1, since {v}, V1 is induced by v with respect to both {u}, V , V ′
1

and {u}, V , V ′′
1 , the element of V ′

1 determined by v equals the element of V ′′
1

determined by v.
So, by definition of well defined choice of representatives, gw({u}, V , V ′

1)2 =

gw({u}, V , V ′′
1 )2. Also, of course gw({u}, V , V ′

1)1 = gw({u}, V , V ′′
1 )1 = v, so

gw({u}, V , V ′
1) = gw({u}, V , V ′′

1 ). Assume now that we have proved the claim

for k = n and let us prove it for k = n + 1. Let {v}, V1, . . . , Vn+1 be induced
by v with respect both to {u}, V , V ′

1 , . . . , V
′
n+1 and {u}, V , V ′

1 , . . . , V
′
n+1. By in-

duction hypothesis, we have gw({u}, V , V ′
1 , . . . , V

′
n) = gw({u}, V , V ′′

1 , . . . , V
′′
n ).

Since {v}, V1, . . . , Vn+1 is induced by v with respect to both paths, and since
gw({u}, V )1 = v, the elements of families V ′

n+1 and V ′′
n+1 determined by the

world gw({u}, V , V ′
1 , . . . , V

′
n)n+1 must be equal, because they are determined in

the same way by the induced path. Hence, by the definition of well defined choice
of representatives, gw({u}, V , V ′

1 , . . . , V
′
n+1)n+2 = gw({u}, V , V ′′

1 , . . . , V
′′
n+1)n+2,

as needed.
For all other x such that xRv we can choose hx arbitrarily. It is easy to see

that for thus defined h we have (u, g)S′
(w,f)(v, h).

It remains to show (forth). Let w ∈ W , (w, f) ∈ W ′ and u such that wRu.
Let U ′ = {(x, g) ∈W ′ : x = u and (w, f)R′(x, g)}. It is easy to see that U ′ ̸= ∅.
We claim that this is a good choice of U ′ which shows that (forth) holds, i.e.
that for any choice of one S′

(w,f)-successor for each world in U ′ there is V such

that uSwV and each v ∈ V is bisimilar to some of those S′
(w,f)-successors, i.e.

the first component of some of them equals v (we will shortly say that such v is
covered). Assume the opposite, i.e. there exists a choice of one S′

(w,f)-successor
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for each world in U ′ such that for any V such that uSwV there is v ∈ V which
is not bisimilar to any of those S′

(w,f)-successors. Let F : U ′ → W ′ be such a

choice of S′
(w,f)-successors.

We will show that there exists a well defined choice of representatives of Sw-
paths starting with u such that each representative on any path is not covered,
i.e. does not equal the first component of any (v, h) ∈ F (U ′). For each path
{u}, V1, . . . , Vn, denote by V ′

1 the set of all uncovered elements in V1, and by V ′′
1

the set of all covered elements in V1. Then denote by V ′
2 the set of all uncovered

worlds belonging to those elements of the union V2 which are determined by
elements from V ′

1 , i.e. they are their Sw-successors, and denote by V ′′
2 the set of all

such worlds which are covered. Analogously define V ′
3 , V

′′
3 , . . . , V

′
n, V

′′
n . Obviously,

a desired well defined choice of representatives will exist if for any path all sets
V ′
1 , V

′
2 , . . . , V

′
n are non-empty. Now, the assumption implies V ′

1 ̸= ∅. Assuming
V ′
2 = ∅, by quasi-transitivity vSw{v} for all v ∈ V ′′

1 and V ′
1 Sw V ′′

2 would imply
uSw(V

′′
1 ∪V ′′

2 ), hence we would find an Sw-successor of u with all of its elements
covered, contrary to the assumption. Similarly, for any k we can see that, if
V ′
k = ∅ while all before it are non-empty, we would have uSw(V

′′
1 ∪ · · · ∪ V ′′

k ),
where V ′′

1 ∪ · · · ∪ V ′′
k is covered, which contradicts the assumption.

Thus we proved that there is a well defined choice of representatives gw such
that all representatives on each path are uncovered. For all x such that xRw we
can choose gx such that the condition from the definition of R′ holds, and for
all other x ∈W we can choose gx arbitrarily. In this way we obtain g such that
(w, f)R′(u, g). But, by the definition of S′

(w,f), the world F (u, g) is obtained as
a representative determined by gw, which is impossible, since all representatives
determined by gw are uncovered. ■

Corollary 1. For any formula φ and for all (w, f) ∈W ′ we have:
M, w ⊩ φ if and only if V el(M), (w, f) ⊩ φ.

5 Further work

By analogy to other notions of bisimulation, it is to be expected that finite
approximations of bisimulation, so-called n-bisimulations, where n is a natural
number, can be defined, as well as bisimulation games and n-games, with de-
sirable properties: (n-)bisimilarity is equivalent to the existence of Defender’s
winning strategy in bisimulation (n-)game, and n-bisimilarity implies n-modal
equivalence, i.e. the equivalence w.r.t. formulas of modal depth at most n. Fur-
thermore, we conjecture that the converse in the case of finite alphabet would
also hold. Together with Hennessy-Milner analogue we proved in Section 3, these
results would round up arguments in favour of the definition of bisimulation be-
tween Verbrugge and Veltman models presented in this paper, but this exceeds
limits and purpose of this paper, the main purpose being to show how we can
transform a Verbrugge model to a bisimilar Veltman model.

More important further line of research, closely related to this purpose, is
to explore how this transformation behaves with respect to particular classes
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of Verbrugge models and Veltman models, with additional constraints related
to various principles of interpretability, which are used as additional axioms of
many systems of interpretability logic in the literature. For example, if a given
Verbrugge model M is an ILM-model, i.e. belongs to the characteristic class of
Verbrugge models related to so-called Montagna’s principle, does V el(M) be-
long to the corresponding characteristic class of Veltman models? An analogous
question may be addressed system by system, or more generally, if possible, con-
ditions may be provided under which such a preservation works. Or if it does
not work, can we modify the construction of V el(M) for a particular principle or
set of principles to make it work? Certainly, there is no general positive answer,
since obviously for systems complete w.r.t. Verbrugge semantics but incomplete
w.r.t. Veltman semantics, a transformation from a Verbrugge model to a modally
equivalent Veltman model does not exist (cf. [5] for the case of the system ILP0).
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5. Mikec, L., Vuković, M.: Interpretability logics and generalized Veltman semantics.
The Journal of Symbolic Logic 85, 749–772 (2020)
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