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Abstract. Combining relevant and classical modal logic is an approach
to overcoming the logical omniscience problem and related issues that
goes back at least to Levesque’s well known work in the 1980s. The present
authors have recently introduced a variant of Levesque’s framework where
explicit beliefs concerning conditional propositions can be formalized.
However, our framework did not offer a formalization of implicit belief in
addition to explicit belief. In this paper we provide such a formalization.
Our main technical result is a modular completeness theorem.
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1 Introduction

Formal models of epistemic notions such as belief are often based on some form
of modal logic and possible-worlds semantics [4]. In this approach, beliefs of an
agent are modelled by a set of accessible possible worlds, and they are expressed
by means of a modal operator quantifying over possible worlds: a proposition is
believed if it is true in every accessible possible world. This endows the model
with many closure principles allowing to make predictions about an agent’s
beliefs given information about their prior beliefs. For instance, if a conjunction
is believed, then so are both conjuncts since every possible world satisfying the
conjunction satisfies both conjuncts as well. However, such predictions are often
inaccurate when it comes to real-life agents. Such agents frequently fail to realize
consequence relations occurring between pieces of information (e.g. if they do not
have sufficient resources at their disposal, such as time and memory), or they
prioritize relevance over consequence (when the consequences at hand are not
relevant to the prior beliefs or the context in general).

The possible-worlds model provides a good rendering of what has to be true
given what is believed by the agent, or what is implicitly believed, but it fails
to model what is actively held to be true by the agent, or what is explicitly
believed. Many adjustments of the model exist that address the issue. Hector
Levesque [9] famously provided a model of explicit belief based on the logic of
First Degree Entailment, FDE, the implication-free fragment of Anderson and
Belnap’s relevant logic of entailment E [1]. In Levesque’s model, explicit beliefs
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are modelled by a set of situations; unlike possible worlds, situations may be
incomplete or inconsistent [2], and so information supported by a situation is not
closed under consequences valid in classical propositional logic. This means that,
in Levesque’s model, explicit belief is not closed under classical consequence,
but it is closed under consequence valid in FDE. While closure under FDE is
a source of some criticism [3], it makes Levesque’s framework a simple model
of agents who prioritize relevance over consequence3. An important aspect of
Levesque’s model is that it combines an account of explicit belief with an account
of implicit belief: a proposition is believed implicitly if it holds in every possible
world satisfying the agent’s explicit beliefs.

Levesque’s model has been extended to allow for nesting of epistemic operators
[8], which makes it possible to articulate various assumptions about the interplay
of explicit and implicit belief. However, the model fails to provide a satisfactory
account of explicit belief concerning conditional propositions. This is related
to the absence of a sensible conditional connective in FDE. In a recent paper
[13], we offered an extension of Levesque’s model using fully-fledged relevant
logic instead of the implication-free fragment. However, while our framework
represented explicit beliefs (truth in all accessible situations), it did not account
for implicit belief (truth in all accessible worlds). In this paper we extend the
framework of [13] with an account of implicit belief. Our main technical result is
a modular completeness theorem applying to a range of relevant epistemic logics
with implicit and explicit belief operators.

The rest of the paper is structured as follows. In Section 2 we introduce the
semantic framework for relevant epistemic logic of explicit and implicit belief,
and in Section 3 we provide sound and complete axiomatisations for several logics
based on the semantic framework. In the concluding Section 4 we summarise the
paper and point to interesting further lines of research.

2 Relevant epistemic logic with classical worlds

In this section we introduce our semantic framework, based on so-called W -
models introduced in [13]. These models combine the standard semantics for
relevant modal logic based on situations [6] with a representation of classical
possible worlds. The point of this combination is to represent agents as reasoning
according to relevant logic while being situated in classical possible worlds. In
our framework, a possible world is a special kind of situation where relevant
negation and implication turn out to behave like their Boolean counterparts. We
define validity as satisfaction in all possible worlds, and so logics based on our
framework extend classical propositional logic CPC.

When it comes to modelling explicit belief in this framework, it is crucial that
any situation (not only possible worlds) can be accessible from possible worlds.

3 Such agents can be seen as reasoning according to Harman’s clutter avoidance principle
[7] in that they do not clutter their minds with trivial but unrelated consequences of
the given information.
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Consequently, explicit beliefs as modelled by a relevant epistemic logic C.L are
closed under the underlying relevant logic L:

`L ϕ1 ∧ · · · ∧ ϕn → ψ

`C.L �ϕ1 ∧ · · · ∧�ϕn → �ψ

Hence, relevant epistemic logics C.L model agents reasoning according to a
relevant logic L while being situated in classical possible worlds. In this paper we
add to the framework of [13] a representation of implicit belief using an additional
epistemic accessibility relation on situations to obtain relevant epistemic logics
CI.L. Our semantics for implicit belief is set up with an eye to two crucial principles
concerning the properties of implicit belief, namely, that implicit belief extends
explicit belief and that it is closed under classical consequence:

`CI.L �ϕ→ �Iϕ
`CPC ϕ1 ∧ · · · ∧ ϕn → ψ

`CI.L �Iϕ1 ∧ · · · ∧�Iϕn → �Iψ

Consequently, implicit belief is the classical closure of explicit belief (see Proposi-
tion 2):

`CPC ϕ1 ∧ · · · ∧ ϕn → ψ

`CI.L �ϕ1 ∧ · · · ∧�ϕn → �Iψ

Definition 1 (Language). Let L be generated from a countable set of atomic
propositions At via the following grammar:

ϕ ∈ L ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | �Iϕ | �Lϕ

where p ∈ At. We abbreviate (ϕ→ ψ) ∧ (ψ → ϕ) as ϕ↔ ψ. Moreover, ∀,∃,⇒
,⇔ will denote, respectively, universal quantification, existential quantification,
implication and equivalence in the meta-language.

The modal operators � and �I have a clear epistemic interpretation, for-
malising explicit and implicit belief, respectively. On the other hand, �L has
a technical role in our framework, namely, internalising in the object language
validity in relevant logic. The role of �L becomes clear after the semantics is set
up.4

Definition 2 (L-model). Let a L-model be the tuple (S,L,≤, ∗, R,Q,QI , QL, V )
such that (S,≤) is a poset; ∗ is an anti-monotonic function on S with respect
to ≤; R is a ternary relation on S which is downward (upward) monotone in
its first and second (third) argument; Q,QL are binary relations on S which are
downward (upward) monotone in their first (second) argument; QI is a binary
relation on S which is downward monotone in its first argument; and L, V (p) are
upward-closed subsets of S, for all p ∈ At. Moreover,

∀s∃x(x ∈ L & Rxss) (1)

s ∈ L & Rstu⇒ t ≤ u (2)

4 �L can be seen as a sort of provability operator; see Lemma 7.
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The definition of L-models is virtually the standard definition of models
for relevant modal logic (see e.g. [6]). L-models consist of a partially ordered
set of situations, or information states, ordered by the amount of information
they contain (support), and each component of the L-model satisfies the usual
monotonicity condition with respect to ≤. We say that ≤ models an information
order on situations in that s ≤ t means that t contains (supports) at least as
much information as s. The unary operation ∗ is the “Routley star”, mapping
each state s to its maximally compatible state, i.e. the state which is maximal
with respect to the information order ≤ among those states that do not support
the negation of any formula supported by s. R is the usual ternary relation
interpreting →, where Rstu means that the result of combining the information
contained in s with that contained in t contains at least as much information
as that contained in u. L is the designated set of logical situations, containing
situations carrying logical information, with Conditions (1-2) enforcing, as usual,
the semantic deduction theorem with respect to relevant implication →. As in
Levesque’s semantics, explicit beliefs are modelled by a set of situations. In
particular, Q is the epistemic accessibility relation associated with explicit belief,
associating with each state s the epistemic state Q(s) of the (contextually fixed)
agent according to the (information contained in) situation s. More specifically,
Q(s) consists of the situations that contain the information that is explicitly
believed by the agent according to the information in s. In comparison to standard
epistemic relevant models, L-models feature two further accessibility relations,
QL and QI , associated with �L and �I , respectively.

Definition 3 (W-model). Let a W-model be the following tuple.

M = (S,W,L, 0, 1,≤, ∗, R,Q,QI , QL, V )

– (S,L,≤, ∗, R,Q,QI , QL, V ) is a L-model;
– W ⊆ S such that for all w ∈W and s, t ∈ S

w∗ = w (3)

Rwww (4)

Rwst⇒ s = 0 or w ≤ t (5)

Rwst⇒ t = 1 or s ≤ w (6)

QIws⇒ s ∈W (7)

QI(w) ⊆ Q(w) (8)

QL(W ) = L (9)

– 0 6∈ V (p), 1 ∈ V (p) for all p ∈ At, such that for all s, t ∈ S, Q(LI) ∈
{Q,QL, QI}

0 ≤ s ≤ 1 (10)

1∗ = 0 & 0∗ = 1 (11)

Q(LI)00 (12)
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Q(LI)1s⇒ s = 1 (13)

R010 (14)

R1st⇒ (s = 0 or t = 1) (15)

where for any relation A, A(x) = {y | Axy} and A(B) = {y | ∃x ∈ B(Axy)}.

As already mentioned, possible worlds are seen as a special kind of situations;
see Conditions (3-8). Conditions (3-6) enforce classical behaviour of negated and
implicative formulas when evaluated at possible worlds, as clarified by Lemma
3. Conditions (7–8) concerning QI yield the intended interpretation of QI(w),
which represents implicit beliefs of the agent in possible world w. In particular,
by Condition (7), QI(w) contains only possible worlds and so implicit beliefs
are closed under classical consequence, while by Condition (8) the “implicit”
epistemic state of the agent at w is a subset of the “explicit” epistemic state,
and so every explicit belief is an implicit belief. Note also that, contrary to Q
and QL, we do not assume that QI is upward monotone in its second argument5.
Finally, Condition (9) plays a fundamental role in connecting the classical and
the relevant layers of our semantics. Stipulating that the set of logical states L is
exactly the set of QL-accessible states from W yields a modified version of the
semantic deduction theorem, as clarified by Lemma 4 (item 1).

The last component of W-models are the bounds 0, 1, which represent the
empty situation and the full situation, respectively (the terminology is clarified
by Lemma 2). The bounds were used in [14] to provide a general frame semantics
for relevant modal logic. In our setting the bounds play a technical role that will
be clarified in the completeness proof; see also their discussion in [13].

Definition 4 (Satisfaction). Let the satisfaction relation in a W-model M
(notation |=) be a binary relation between states of M and formulas of L defined
recursively (on L) as follows.

M, s |= p ⇐⇒ s ∈ V (p)

M, s |= ¬ϕ ⇐⇒ M, s∗ 6|= ϕ

M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ & M, s |= ψ

M, s |= ϕ ∨ ψ ⇐⇒ M, s |= ϕ or M, s |= ψ

M, s |= ϕ→ ψ ⇐⇒ Rstu, M, t |= ϕ⇒M, u |= ψ

M, s |= �ϕ ⇐⇒ Qst⇒M, t |= ϕ

M, s |= �Iϕ ⇐⇒ QIst⇒M, t |= ϕ

M, s |= �Lϕ ⇐⇒ QLst⇒M, t |= ϕ

Let the proposition expressed by a formula ϕ in a W-model M be JϕKM = {s |
M, s |= ϕ}. Let a formula ϕ be valid in a W-model M, written M |= ϕ, iff for all
w ∈W we have that M, w |= ϕ. Let a formula ϕ be entailed by a set of formulas

5 This condition has to do with the canonical model construction (see Section 3), since
in the canonical model Qc

I will not be upward monotone.
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Γ in a W-model M, written Γ |=M ϕ iff for all s ∈ S, M, s |= ϕ if M, s |= ψ for
all ψ ∈ Γ . Let a formula ϕ be classically entailed by a set of formulas Γ in a
W-model M, written Γ |=c

M ϕ iff for all w ∈W , M, w |= ϕ if M, w |= ψ for all
ψ ∈ Γ .

The intended properties of the semantics are highlighted in the following
series of lemmas. We omit reference to M whenever it is clear from the context.

Lemma 1 (Heredity). For every W-model M, s, t ∈ S and ϕ ∈ L: s ∈ JϕKM &
s ≤ t⇒ t ∈ JϕKM.

Proof. By induction on the structure of ϕ. The base case holds by the fact
that V (p) is upward monotone. The cases involving ∧,∨ are trivial, while the
cases involving ¬,→,�,�I ,�L hold thanks to monotonicity properties of the
corresponding accessibility relations (i.e., ∗, R,Q,QI , QL, respectively). ut

Lemma 2 (Full empty). For every W-model M and ϕ ∈ L: M, 1 |= ϕ and
M, 0 6|= ϕ.

Proof. The proof is by induction on the structure of ϕ, as given in [13]. The new
case of ϕ = �Iψ is established as follows. Assuming QI1s, we have by (13) that
s = 1, hence by induction hypothesis (IH) s |= ψ, by which we conclude that
1 |= �Iψ. Moreover, by (12) QI00, hence there is s, namely 0, such that QI0s
and (by IH) s 6|= ψ, by which we conclude that 0 6|= �Iψ. ut

Lemma 3 (Worlds extensionality). For every W -model M, w ∈ W and
ϕ,ψ ∈ L:

M, w |= ¬ϕ ⇐⇒ M, w 6|= ϕ

M, w |= ϕ→ ψ ⇐⇒ M, w 6|= ϕ or M, w |= ψ

Proof. The first claim follows from (3). The second claim follows by (4) in one
direction, while the other is established by case distinction, assuming Rwst and
s |= ϕ. If w 6|= ϕ, by (6) either t = 1 (by which we conclude by Lemma 2 that
t |= ψ), or s ≤ w, (by which we conclude by Lemma 1 that w |= ϕ, which is a
contradiction). If w |= ψ, by (5) w ≤ t, hence by Lemma 1 we conclude that
t |= ψ. ut

Lemma 4 ((Classical) entailment). For every W-model M and ϕ,ψ ∈ L:

1. ϕ |=M ψ ⇔M |= �L(ϕ→ ψ);
2. ϕ |=c

M ψ ⇔M |= ϕ→ ψ.

Proof. The first item follows from (1-2, 9) and Lemma 1, while the second from
Lemma 3.

Distinguishing between explicit and implicit beliefs has interesting applications
to the problem of logical omniscience. W-models help to identify the origin of
logical omniscience and circumvent the problem to some extent. To recall, the
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logical omniscience problem for an epistemic logic extending classical propositional
logic lies in the fact that whenever a set of formulas Γ classically entails ϕ and
the agent believes each formula in Γ , then the agent automatically believes ϕ [5].

In the spirit of Levesque’s [9], omniscience is avoided since it is possible
that ϕ classically entails ψ in a model M without JϕKM ⊆ JψKM. Crucially, Q
is allowed to “reach out” to non-worldly situations from possible worlds, thus
providing counterexamples to classically valid entailments. On the other hand,
the situation with implicit belief is different: since QI connects possible worlds
only with possible worlds by Condition (7), it cannot reach counterexamples to
classically valid entailments. Thus, logical omniscience is restored, as clarified by
Proposition 1. We stress that this is a welcome result, since implicit belief captures
the (classical) consequences of explicit belief, i.e. what an ideal, unbounded agent
would explicitly believe; see Proposition 2 at the end of the section.

Proposition 1 (Logical omniscience). For all Γ, {ϕ} ⊆ L and all W-models
M:

1. Γ |=c
M ϕ 6⇒ �Γ |=c

M �ϕ;
2. Γ |=c

M ϕ⇒ �IΓ |=c
M �Iϕ.

where �(I)Γ = {�(I)ψ | ψ ∈ Γ} for �(I) ∈ {�,�I}.

Proof. Item (1) follows from the fact that, for Γ = {ψi | i ∈ K},
⋂

i∈K(JψiK ∩
W ) ⊆ JϕK ∩W does not in general imply

⋂
i∈K(JψiK ∩ Q(W )) ⊆ JϕK ∩ Q(W ).

For example, consider the formulas ¬p ∨ q and p → q, which are true in the
same possible worlds for all W -model M, hence ¬p ∨ q |=c

M p→ q but the two
formulas may not be true in the same situations. In particular, take the W-model
M with S = {s, t} such that s∗ = t, t 6∈ V (p), s ∈ V (p), s 6∈ V (q), Qss and Rsss
(the remaining components can be specified so that M is indeed a W -model).
In M, we have s |= �(¬p ∨ q) but s 6|= �(p → q). Item (2) follows from the
fact that, thanks to (7) we have that QI(W ) ⊆W , by which we conclude that⋂

i∈K(JψiK∩W ) ⊆ JϕK∩W does imply
⋂

i∈K(JψiK∩QI(W )) ⊆ JϕK∩QI(W ). ut

We note that, thanks to the above proposition, the logic of W-models is
hyperintensional, in that agents can distinguish between logically equivalent
propositions. The fact that in W-models agents are not logically omniscient with
respect to explicit belief has other interesting consequences. Most notably, agents’
belief bases are not cluttered by irrelevant information. That is, explicit belief is
not closed under some implications valid in classical logic where the consequent
introduces information that is unrelated to the information expressed in the
antecedent. In our framework, “irrelevant” is seen simply as “not following by
relevant logic”. For instance, the following clutter principles fail for explicit belief,
but they do hold for implicit belief:

�ϕ→ �(ψ → ϕ) (16)

�ϕ→ �(ψ ∨ ¬ψ) (17)

�(ϕ ∧ ¬ϕ)→ �ψ (18)
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Avoidance of epistemic clutter in our framework is mediated by the fact that
relevant logics satisfy the variable sharing principle: an implication ϕ → ψ is
provable only if ϕ and ψ share at least one propositional variable. This means
that cases where ϕ and ψ are “totally unrelated” have counterexamples which
can then be exploited in our framework to give counterexamples to �ϕ→ �ψ.
However, we note that some aspects of epistemic clutter, as one may understand
the notion, are preserved in our framework as, for instance, �ϕ→ �(ϕ ∨ ψ) is
valid, for all ϕ and ψ (even if ψ is “totally unrelated” to ϕ).

We conclude this section by commenting on the relation of explicit and implicit
belief in our framework. Proposition 2 says that, in a specific sense, implicit
beliefs of an agent are the classical closure of the agent’s explicit beliefs.

Lemma 5 (Implicit-explicit). For every W-model M and ϕ ∈ L: �ϕ |=c
M

�Iϕ.

Proof. This follows from Condition (8).

Lemma 6 (Classical-implicit). For every W-model M and ϕ1, . . . , ϕn, ψ ∈ L:
ϕ1, . . . , ϕn |=c

M ψ ⇒ �Iϕ1, . . . ,�Iϕn |=c
M �Iψ.

Proof. This follows from Condition (7).

Proposition 2 (Classical closure). For all ϕ1, . . . , ϕn, ψ ∈ L without occur-
rences of modal operators, the following are equivalent:

1. ϕ1 ∧ . . . ∧ ϕn → ψ is a classical tautology;
2. �ϕ1 ∧ . . . ∧�ϕn → �Iψ is valid in all W-models.

Proof. 1 implies 2: If
∧

i≤n ϕi → ψ is a classical tautology, then
∧

i≤n ϕi |=c
M ψ

for all W-models M by Lemma 3. Then,
∧

i≤n �Iϕi |=c
M �Iψ by Lemma 6, which

entails
∧

i≤n �ϕi |=c
M �Iψ by Lemma 5. Consequently,

∧
i≤n �ϕi → �Iψ is valid

in all W-models M by Lemma 4 (item 2).
2 implies 1: If

∧
i≤n ϕi → ψ is a propositional formula that is not a classical

tautology, then there is a classical valuation v such that v(ϕi) = 1 for all ϕi and
v(ψ) = 0. We may turn this valuation into a W-model M with the set of states
S = {0, v, 1} and V such that v ∈ V (p) iff v(p) = 1 for all p ∈ At. Moreover, we
assume that W = {v}, Q(I)vv, and the rest is added so that this structure is
indeed a W-model6. It is obvious that �ϕ1 ∧ . . .∧�ϕn → �Iψ is not valid in M.

From a semantic point of view, implicit belief is stronger than the classical
closure of explicit belief, as Conditions (7-8) ensure only that QI(w) ⊆ Q(w)∩W
for all w ∈ W and not the stronger condition QI(w) = Q(w) ∩W . However,
the above proposition tells us that this does not matter in general. The present
weaker semantics is more amenable to the canonical model technique.

6 We can define M similarly as in the +-construction used in the proof of Proposition
7, with the proviso that we do not add a new possible world w since v itself is seen
as the only possible world in the model.



Relevant Reasoning and Implicit Beliefs 9

3 Axiomatization

In this section we introduce a Hilbert-style axiomatisation for our logic of explicit
and implicit belief and prove that it is sound and complete with respect to the
class of W-models. In fact, we provide a modular soundness and completeness
result for a family of several logics CI.L, where L ranges over a number of relevant
logics, extending our basic system at the propositional and modal level. The
methods employed here are the same as the ones used in [13]. In particular,
we use a Henkin-style canonical model construction (see Definition 8) which
combines the usual strategies for completeness in classical propositional logic
(defining worlds as maximally consistent CI.L-theories) and relevant modal logics
(defining information states as prime L-theories). We note that a crucial step
in the proof is a model construction allowing to transform every L-model into
a suitable W -model, so that `L ϕ ⇒`CI.L �Lϕ is an admissible meta-rule (see
Lemma 7 Item (1)). A similar result for the framework without implicit belief
was proven in [13].

We begin by recalling Fuhrmann’s axiomatization of the basic conjunctively
regular relevant modal logic BM.C [6]. In our formulation, the logic contains three
modal operators, not one.

Definition 5 (Axiom system BM.C). Let BM.C be a conjunctively regular
multi-modal axiom system comprising the following axioms and rules:

– The following axioms and rules of the propositional relevant logic BM [12]:

(BM1) ϕ→ ϕ (BM8) ¬(ϕ ∧ ψ)→ (¬ϕ ∨ ¬ψ)

(BM2) (ϕ ∧ ψ)→ ϕ (BM9) (¬ϕ ∧ ¬ψ)→ ¬(ϕ ∨ ψ)

(BM3) (ϕ ∧ ψ)→ ψ (BM10) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))

(BM4) ϕ→ (ϕ ∨ ψ) (BM11) ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

(BM5) ψ → (ϕ ∨ ψ) (BM12) (ϕ ∧ (ψ ∨ χ))→ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(BM6)
ϕ ϕ→ ψ

ψ
(BM13)

ϕ→ χ ψ → ξ

(ϕ→ ψ)→ (χ→ ξ)

(BM7)
ϕ ψ

ϕ ∧ ψ
(BM14)

ϕ→ ψ

¬ψ → ¬ϕ

– The following axioms and rules, for �(IC) ∈ {�,�I ,�L}:

(�(IC).C) �(IC)ϕ ∧�(IC)ψ → �(IC)(ϕ ∧ ψ)

(�(IC).M)
ϕ→ ψ

�(IC)ϕ→ �(IC)ψ

Figure 1 lists further axioms and rules one may add to BM.C in order to
obtain well-known relevant axiom systems (see [6] for a taxonomy).

Our goal is to set up a general framework that allows the user to use the
relevant logic that is most suitable given their intuitions or the situation at hand.
Obvious candidates include modal extensions of the strong relevant logics E or R,
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which received detailed discussion and motivation in [1] and [10], respectively.
In particular, the logic E.C (the conjunctively regular modal extension of E) is
obtained by adding (L1–L8) and (L11) to BM.C, and R.C results from E.C by
adding (L9).

In what follows, we use the variable L for an axiom system extending BM.C
with axioms and rules of Figure 1, and we stipulate that Rstuv := ∃x(Rstx &
Rsuv), Rs(tu)v := ∃x(Rsxv & Rtux), RQ(I)stu := ∃x(Rstx & Q(I)xu)
and Q(I)Rstu := ∃x(Q(I)sx & Rxtu). Moreover, we assume that in (L12)-
(L17) the frame condition with the suitable accessibility relation Q(I) ∈ {Q,QI}
corresponds to the �(I)-variant of each. Let a L-model be a W -model satisfying
the frame conditions corresponding to the axioms and rules of L from Figure 1.
Finally, let the �L-version of a L-axiom (L-rule) be obtained by prefixing �L to
the axiom (to each of the premises and the conclusion of the rule).

Axiom/rule Frame condition

(L1) ϕ↔ ¬¬ϕ s∗∗ = s
(L2) (ϕ→ ψ)→ (¬ψ → ¬ϕ) Rstu⇒ Rsu∗t∗

(L3) ((ϕ→ ψ) ∧ (ψ → χ))→ (ϕ→ χ) Rstu⇒ Rs(st)u
(L4) ϕ ∨ ¬ϕ s ∈ L⇒ s∗ ≤ s
(L5) (ϕ→ ¬ϕ)→ ¬ϕ Rss∗s
(L6) (ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)) Rstuv ⇒ Rs(tu)v
(L7) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) Rstuv ⇒ Rt(su)v
(L8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) Rstu⇒ Rsttu
(L9) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) Rstuv ⇒ Rsutv
(L10) ϕ→ (ϕ→ ϕ) Rstu⇒ (s ≤ u ∨ t ≤ u)

(L11)
ϕ

(ϕ→ ψ)→ ψ
∃x(x ∈ L & Rsxs)

(L12)
ϕ

�ϕ
(x ∈ L & Qxs)⇒ s ∈ L

(L13) �(I)(ϕ→ ψ)→ (�(I)ϕ→ �(I)ψ) RQ(I)stu⇒ ∃x(Q(I)tx & Q(I)Rsxu)
(L14) �(I)ϕ→ ϕ Q(I)ss
(L15) �(I)¬ϕ→ ¬�(I)ϕ ∃x(Q(I)sx

∗ & Q(I)s
∗x)

(L16) �(I)ϕ→ �(I)�(I)ϕ (Q(I)st & Q(I)tu)⇒ Q(I)su
(L17) ¬�(I)ϕ→ �(I)¬�(I)ϕ (Q(I)s

∗u & Q(I)st)⇒ Q(I)t
∗u

Fig. 1. Frame conditions with the corresponding axioms and rules for L.

Definition 6 (Axiom system CI.L). Let the logic CI.L consist of the following:

– an axiomatisation of classical propositional logic (CPC);
– the �L-versions of axioms and rules of L;
– the following axioms and rules:

(��I) �ϕ→ �Iϕ

(�I.K) �I(ϕ→ ψ)→ (�Iϕ→ �Iψ)

(�I.N)
ϕ

�Iϕ
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(BR)
�L(ϕ→ ψ)

ϕ→ ψ

Let provability of a formula ϕ in CI.L, written `CI.L ϕ, be defined as usual.

Theorem 1 (CI.L soundness). For every L-model M: `CI.L ϕ⇒M |= ϕ.

Proof. By induction on the length of CI.L-proofs. The axioms of CPC are valid
thanks to Lemma 3. The fact that, for each L, all L-axioms are satisfied in all
states s ∈ L in all L-models is established as usual in relevant modal logic; see
[13] for details. The cases corresponding to the �I -variants of (L13) − (L17)
are established similarly as their �-variant. Then, we infer that �Lϕ is valid
in each L-model for each L-axiom ϕ using (9). The fact that the �L-versions
of L-rules preserve validity is established similarly. The cases corresponding to
the remaining axioms and rules is established as follows. For (�I.K), assume
w |= �I(ϕ→ ψ) and w |= �Iϕ for all w ∈W . Hence, for all s such that QIws,
s |= ϕ → ψ and s |= ϕ. By (7) we have s ∈ W , hence s |= ψ, by which we
conclude that w |= �Iψ. For (��I), assume w |= �ϕ and QIws for some w ∈W
and s ∈ S. By (8) we have Qws, hence by w |= �ϕ we have s |= ϕ. Hence, we
conclude that w |= �Iϕ. For (�I.N), assume w |= ϕ for all w ∈ W and QIws
for some arbitrary s ∈ S. By (7) we have s ∈ W , hence s |= ϕ, by which we
conclude that |= �Iϕ. For (BR), assume w |= �L(ϕ → ψ) for all w ∈ W . By
Lemma 4 we have JϕK ⊆ JψK, hence by W ⊆ S and Lemma 3 we conclude that
w |= ϕ→ ψ. ut

The following lemma clarifies the relationship between the logics L and CI.L.
In particular, by item (1), the modal operator �L expresses L-provability within
CI.L, and items (2) and (3) state some interesting consquences of item (1). We
note that item (1) will be crucial in establishing that Condition (9) holds in the
canonical model.

Lemma 7 (L-CI.L). For every ϕ ∈ L:

1. `L ϕ ⇔`CI.L �Lϕ;
2. `L ϕ ⇒`CI.L ϕ, for L not containing (L12);
3. `CI.L �Lϕ ⇒`CI.L ϕ, for L not containing (L12).

Proof. For item (1), one direction is established by induction on the length
of L-proofs. If ϕ is an L-axiom, by definition of CI.L �Lϕ is a CI.L-axiom.
If ϕ is obtained by a L-inference rule with premises ϕ1, . . . , ϕn, by IH `CI.L
�Lϕ1, . . . ,`CI.L �Lϕn, hence by application of the �L-version of the rule we
conclude `CI.L �Lϕ. For the other direction we construct a W-model M+ from
a L-model M = (S,≤, L,R, ∗, Q,QI , V ) such that if M 6|= ϕ, then M+ 6|= �Lϕ
(the result then follows by 1). Let M+ = (S+,≤+,W+, R+, ∗+, Q+, Q+

L , Q
+
I , V

+)
be defined as follows:

S+ = S ∪ {w, 0, 1}
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≤+ = ≤ ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
W = {w}
L+ = L ∪ {w, 1}
R+ = R ∪ {(w,w,w)} ∪ {(0, s, t), (s, 0, t), (s, t, 1) | s, t ∈ S+}
∗+ = ∗ ∪ {(w,w)} ∪ {(0, 1), (1, 0)}
Q+ = Q ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
Q+

L = QL ∪ {(w,w)} ∪ {(w, s) | s ∈ L} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
Q+

I = QI ∪ {(w,w)} ∪ {(0, s) | s ∈ S+}
V +(p) = V (p) ∪ {1} for all p

It suffices to prove (i) that M+ is a W-model; (ii) that for all s ∈ S, M, s |= ϕ⇔
M+, s |= ϕ; and (iii) that each frame condition of Figure 1 holds in M+ whenever
it holds in M. Putting (i)-(iii) together, we conclude that if there is l ∈ L such
that M, l 6|= ϕ, then (M+, w) 6|= �Lϕ. (i) is established as in [13], with the new
cases involving (9) and the monotonicity property of Q+

I holding by inspection
of the definition of M+. (ii) is established by induction on the structure of ϕ, as
in [13], with the new case ϕ = �Iψ established as follows. If M, s 6|= �Iψ, then
M+, s 6|= �Iψ by QI ⊆ Q+

I and IH. Conversely, if M+, s 6|= �Iψ, then there is t
such that Q+

I st and M+, t 6|= ψ. By inspection of the definition of Q+
I , t ∈ S and

so QIst, which implies using IH that M, s 6|= �Iψ. (iii) is established virtually as
in [13] thanks to the observation that s ∈ L+ iff Q+

Lws (the case corresponding
to the �I -variants of (L12)− (L17) is almost identical as their �-variants).

Item (2) is established by induction on the length of L-proofs. All implicational
axioms and rules of L are provable (preserve provability) in CI.L by item (1) and
(BR), and (Adj) preserves provability thanks to `CPC ϕ→ (ψ → (ϕ ∧ ψ)) for all
ϕ,ψ7. Item (3) follows from items (1) and (2). ut

Definition 7 (Theories, Pairs). A L-theory is a set of formulas T closed
under provable implications and under conjunction, i.e. for all ϕ,ψ ∈ L (i) ϕ ∈ T
and `L ϕ → ψ implies ψ ∈ T and (ii) ϕ,ψ ∈ T implies ϕ ∧ ψ ∈ T . A L-theory
is regular if it contains all theorems of L; prime if for all ϕ,ψ ∈ L ϕ ∨ ψ ∈ T
implies ϕ ∈ T or ψ ∈ T ; proper if it does not contain all formulas of L.

A pair of sets of formulas (Γ,∆) is (C).L-independent (for (C.)L ∈ {CI.L, L})
iff there are no finite non-empty sets Γ ′ ⊆ Γ and ∆′ ⊆ ∆ such that `(C).L

∧
Γ ′ →∨

∆′.

Lemma 8 (Extension Lemma). If (Γ,∆) is L-independent (CI.L-independent
and both Γ and ∆ are non-empty), then there is a prime L-theory (non-empty
proper prime CI.L-theory) Σ such that Γ ⊆ Σ and ∆ ∩Σ = ∅.

Proof. [11]. ut
7 Note that (L12) is problematic since ϕ in general is not an implication, so we cannot

use item (1) and (BR).



Relevant Reasoning and Implicit Beliefs 13

Definition 8 (Canonical model). Let the canonical CI.L-model be the follow-
ing tuple:

Mc = (Sc,W c, Lc, 0c, 1c ≤c, Rc, ∗c, Qc, Qc
L, V

c)

– Sc is the set of prime L-theories;
– W c is the set of non-empty proper prime CI.L-theories;
– Lc is the set of regular prime L-theories;
– 0c = ∅ and 1c = L;
– ≤c=⊆;
– ϕ ∈ s∗c iff ¬ϕ 6∈ s;
– Rcstu iff ϕ→ ψ ∈ s & ϕ ∈ t⇒ ψ ∈ u;
– Qcst iff �ϕ ∈ s⇒ ϕ ∈ t;
– Qc

Lst iff �Lϕ ∈ s⇒ ϕ ∈ t;

– Qc
Ist iff

{
�Iϕ ∈ s⇒ ϕ ∈ t if s 6∈W c

(�Iϕ ∈ s⇒ ϕ ∈ t) & t ∈W c if s ∈W c

– s ∈ V c(p) iff p ∈ s.

In what follows, we omit the superscript from the canonical CI.L-model Mc

whenever the context allows this.

Lemma 9 (Canonical model). Mc is a L-model.

Proof. First, the canonical model is well-defined since W ⊆ S (`L ϕ→ ψ implies
`CI.L �L(ϕ → ψ) by the first item of Lemma 7, and `CI.L �L(ϕ → ψ) implies
`CI.L ϕ → ψ using (BR)). The monotonicity properties of ∗, R,Q,QL hold by
inspection of the definition of M. To show that QI is downward monotone in its
first argument, assume QIst, u ≤ s and �Iϕ ∈ u. If s ∈ W , then by QIst we
have t ∈ W and by u ≤ s we have �Iϕ ∈ s, by which we conclude that ϕ ∈ t.
If s 6∈ W , then by u ≤ s we have �Iϕ ∈ s, by which we conclude by QIst that
ϕ ∈ t. The proof for 1-6 and 10-15 is as in [13]8. The remaining conditions are
established as follows. (7) holds since, assuming QIst and s ∈W , by definition
of QI we have that t ∈ W . (8) holds since, assuming QIst, �ϕ ∈ s and s ∈ W ,
by (��I) we have �Iϕ ∈ s, hence by definition of QI we conclude that ϕ ∈ t.
(9) holds by the following argument. By contraposition, assume s 6∈ L. i.e. ϕ 6∈ s
for some ϕ such that `L ϕ. By Lemma 7 `CI.L �Lϕ, hence �Lϕ ∈ w for all
w ∈W , which together with ϕ 6∈ s implies that not QLws for all w ∈W . Hence,
s 6∈ QL(W ). Conversely, assume s ∈ L. We have to prove that there is w ∈ W
such that QLws. If s = 1, then it is sufficient to show that W is non-empty. This

8 The presence of the bounds 0, 1 is necessary for the following reason. The bound-free
versions of Conditions (5-6) are sufficient for Lemma 3, but these simpler versions
do not hold in the canonical model. For instance, ∅ is a perfectly legitimate prime
L-theory, and Rw∅t obviously holds for all w ∈W c and t ∈ Sc. Hence, Rwst⇒ w ⊆ t
fails. (The argument that Rwst ⇒ s ⊆ w fails is similar, exploiting the possibility
that t = L.) In this situation we can either add extensional truth constants to the
language, and so rule out ∅ and L as legitimate L-theories, or work with ∅ and L as
special kinds of states in the model while modifying the frame conditions (5-6) so
that they refer to these special states. We chose the second option.
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follows from the fact that each CI.L considered here is consistent by Theorem 1. If
s 6= 1, then we reason as follows. Consider the pair ({ψ |`CI.L ψ}, {�Lϕ | ϕ /∈ s})
and note that both sets in the pair are non-empty. The pair is CI.L-independent,
since otherwise

– `CI.L
∨

i<n �Lϕi for some n > 0 only if (by `CI.L �Lϕ ∨�Lψ → �L(ϕ ∨ ψ))
– `CI.L �L

∨
i<n ϕi only if (by Lemma 7)

– `L
∨

i<n ϕi only if (by s ∈ L)
–

∨
i<n ϕi ∈ s only if (since s is prime)

– ϕi ∈ s for some i < n

which contradicts ϕi 6∈ s. It follows using Lemma 8 that there is a non-empty
proper prime CI.L-theory w such that QLws. Finally, the fact that the frame
conditions corresponding to (L1)-(L17) are canonical is established as in [13],
where the new cases of the conditions corresponding to the �I -variants of (L12)-
(L17) are virtually identical to their �-variants. ut

Lemma 10 (Truth). For every ϕ ∈ L: ϕ ∈ s⇔Mc, s |= ϕ.

Proof. By induction on the structure of ϕ. The proof employs the standard
arguments of relevant modal logic (using the fact that �,�L are conjunctively
regular modalities, see e.g. [6]), except for the case ϕ := �Iψ, which we show as
an illustration. For one direction, assume �Iϕ ∈ s and Qcst. Hence, ϕ ∈ t, by
which we conclude that t |= ϕ by IH. For the other direction, assume �Iψ 6∈ s
and consider the pair t0 = ({χ | �Iχ ∈ s}, {ψ}). In case s ∈ W c, we have to
show that t0 is CI.L-independent. This holds, since otherwise

– `CI.L χ1 ∧ · · · ∧ χn → ψ only if (by (�I.C) and (�I.M), which are derivable
using (�I.K) and (�I.N) in the usual way)

– `CI.L �Iχ1 ∧ · · · ∧�Iχn → �Iψ only if (by construction of t0)
– �Iψ ∈ s

contradicting �Iψ 6∈ s. Hence, by Lemma 8 there is, t ∈W c such that QIst and
ψ /∈ t. If s 6∈W c, then the argument is similar – we just need to show that t0 is
L-independent. In both cases, s 6|= �Iψ, using the induction hypothesis. ut

Theorem 2 (Completeness). For all ϕ ∈ L: If M |= ϕ for every L-model M,
then `CI.L ϕ.

Proof. The theorem follows from Lemmas 9 and 10. ut

4 Conclusion

This paper extends our framework from [13] with a formalization of implicit
belief. In the spirit of Levesque [9], we model explicit beliefs of an agent by a
set of accessible situations that may contain counterexamples to classically valid
entailments, and we model implicit beliefs by a subset of accessible situations
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that behave like classical possible worlds. In our setting, explicit belief is closed
under the underlying relevant logic, while implicit belief is closed under classical
logic and corresponds to the classical closure of explicit belief. The framework is
best seen as formalizing agents that reason using a relevant logic because they
prioritize relevance over classical consequence with the goal of not cluttering their
belief bases by irrelevant consequences of their information. Our main technical
result is a modular completeness theorem for a family of relevant epistemic logics
based on the framework, extending the completeness result of [13].

We note that undecidability of some relevant logics L (such as E and R, for
instance [15]) implies undecidability of CI.L in view of Lemma 7. We conjecture
that, conversely, if L is decidable, then so is CI.L.

Natural topics for future research include a study of extensions of the present
framework with a formalization of group-epistemic notions (common and dis-
tributed belief) and with a formalization of epistemic dynamics (public announce-
ment, or action models in general). Another topic is a deeper investigation of
possible applications in knowledge representation.

Acknowledgement. We thank the anonymous reviewers for comments. This work
was supported by the Czech Science Foundation grant no. GA22-01137S.

References

1. Alan Ross Anderson and Nuel D. Belnap. Entailment: The Logic of Relevance and
Necessity, Volume I. Princeton University Press, 1975.

2. Jon Barwise and John Perry. Situations and Attitudes. MIT Press, 1983.
3. Ronald Fagin and Joseph Y. Halpern. Belief, awareness, and limited reasoning.

Artificial Intelligence, 34(1):39 – 76, 1988.
4. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning

About Knowledge. MIT Press, 1995.
5. Ronald Fagin, Joseph Y. Halpern, and Moshe Vardi. A nonstandard approach to

the logical omniscience problem. Artificial Intelligence, 79:203–240, 1995.
6. Andre Fuhrmann. Models for relevant modal logics. Studia Logica, 49(4):501–514,

1990.
7. Gilbert Harman. Change in View: Principles of Reasoning. MIT Press, 1986.
8. Gerhard Lakemeyer. Tractable meta-reasoning in propositional logics of belief. In

IJCAI 1987, pages 401–408. Morgan Kaufmann Publishers Inc., 1987.
9. Hector Levesque. A logic of implicit and explicit belief. In Proceedings of AAAI

1984, pages 198–202, 1984.
10. Edwin D. Mares. Relevant logic and the theory of information. Synthese, 109(3):345–

360, 1996.
11. Greg Restall. An Introduction to Substrucutral Logics. Routledge, London, 2000.
12. Richard Routley, Val Plumwood, Robert K. Meyer, and Ross T. Brady. Relevant

Logics and Their Rivals, volume 1. Ridgeview, 1982.
13. Igor Sedlár and Pietro Vigiani. Relevant reasoners in a classical world. In

David Fernández Duque, Alessandra Palmigiano, and Sophie Pichinat, editors,
Advances in Modal Logic, Volume 14, pages 697–718, London, 2022. College Publi-
cations.



16 I. Sedlár and P. Vigiani

14. Takahiro Seki. General frames for relevant modal logics. Notre Dame Journal of
Formal Logic, 44(2):93–109, 2003.

15. Alasdair Urquhart. The undecidability of entailment and relevant implication. The
Journal of Symbolic Logic, 49(4):1059–1073, 1984.


	Relevant Reasoning and Implicit Beliefs

