
Subsumption-Linear Q-Resolution for QBF

Theorem Proving

Allen Van Gelder

Computer Science Dept., SOE–3, Univ. of California,
Santa Cruz, CA 95064 USA avg@cs.ucsc.edu

Abstract. Subsumption-Linear Q-Resolution (SLQR) is introduced for
proving theorems from Quantified Boolean Formulas. It is an adaptation
of SL-Resolution, which applies to propositional and first-order logic. In
turn SL-Resolution is closely related to model elimination and tableau
methods. A major difference from QDPLL (DPLL adapted for QBF) is
that QDPLL guesses variable assignments, while SLQR guesses clauses.
In prenex QBF (PCNF, all quantifier operations are outermost) a propo-
sitional formula D is called a nontrivial consequence of a QBF Ψ if Ψ is
true (has at least one model) and D is true in every model of Ψ . Due
to quantifiers, one cannot simply negate D and look for a refutation, as
in propositional and first-order logic. Most previous work has addressed
only the case that D is the empty clause, which can never be a nontrivial
consequence.
This paper shows that SLQR with the operations of resolution on both
existential and universal variables as well as universal reduction is infer-
entially complete for closed PCNF that are free of asymmetric tautolo-
gies; i.e., if D is logically implied by Ψ , there is a SLQR derivation of D
from Ψ . A weaker form called SLQR–ures omits resolution on universal
variables. It is shown that SLQR–ures is not inferentially complete, but
is refutationally complete for closed PCNF.

1 Introduction

Theorem proving, i.e., showing that a given formula F logically implies another
formula G, is a fundamental task in any logic. We assume the reader is familiar
with standard terminology of logic, as found in several texts [4, 8]. Recent work
on high-performance solvers for propositional formulas and quantified boolean
formulas (QBFs) has focused on determining a given formula’s satisfiability, or
truth value. For propositional formulas this emphasis is partly justified by the
fact that F logically implies G if and only if (F ∧¬G) is unsatisfiable. The QBF

analogy of this simple relationship does not hold. That is,
−→
Q · (F ∧¬G) may be

false but
−→
Q · F does not logically imply

−→
Q · G, where QBF logical implication is

defined in Def. 1.1.

Definition 1.1 Let Φ =
−→
Q.F be a closed QBF; that is,

−→
Q is the quantifier

prenex, F is a propositional formula, and every variable in F appears in the
prenex. We say that a propositional formula D on the same set of variables as

2 Allen Van Gelder

F is a logical consequence of F , written F |= D, if D is true in every model
of F . We say that a propositional formula D on the same set of variables as F
is a nontrivial consequence of Φ if Φ is true (has at least one model tree) and
F |= D.

Due to quantifiers, one cannot simply negate D and look for a refutation,
as in propositional and first-order logic. Most previous work has addressed only
the case that D is the empty clause [3], which can never be a nontrivial conse-
quence. We say a proof system is inferentially complete if any Ψ that is logically
implied by Φ can be proven from Φ in the proof system; in other words all logical
consequences of Φ are provable in the proof system.

All propositional formulas have a logically equivalent formula in conjunctive
normal form (CNF), i.e., as a set of conjunctively joined clauses that are them-
selves disjunctively joined sets of literals. Propositional resolution is essentially
inferentially complete for propositional CNF; technically, clausal subsumption is
also needed in case a clause derived from F by resolution properly subsumes a
clause that is a logical consequence of F .

Alls QBFs have a logically equivalent formula in prenex conjunctive normal
form (PCNF), i.e., all quantifiers are outermost operations and the remaining
propositional formula, commonly called the matrix, is expressed in CNF. A QBF
is said to be closed if every variable is quantified.

A further technical condition is important for inferential completeness: A
QBF is said to be AT-free if it contains no asymmetric tautologies, as defined
and studied by Heule et al. [6]. QBFs translated from applications are normally
AT-free, but certain preprocessing operations might introduce asymmetric tau-
tologies.

Although the precise definition is quite technical, a simple example of asym-
metric tautology is a set of clauses in which a certain variable, say x is accom-
panied by some other variable, say y with the same polarity as x in each clause
containing x. The variable y may occur in some other clauses, as well. All resolu-
tions with x as the clashing variable are tautologous. Please see the cited paper
for further details.

Although it is known that QU-resolution is inferentially complete for closed
AT-free PCNF [20], we are not aware of any implemented QBF proof system
with this property.

For propositional CNF formulas a model is a partial assignment that satisfies
every clause. For closed PCNF formulas with k universal variables a model is
a set of 2k prefix-ordered total assignments that comprises a strategy for the
E-player, such that each assignment in the set has a different assignment to the
universal variables and satisfies every clause in the matrix [16, 21, 20]. The term
model tree is often used to emphasize the structural constraints. (See Def. 2.4 for
structural details). For both logics Φ logically implies Ψ if and only if every model
of Φ is also a model of Ψ . The additional complexity of model trees compared to
a single assignment explains why many theorem-proving ideas do not transfer
easily from CNF to PCNF.

SLQR for QBF Theorem Proving 3

This paper introduces Subsumption-Linear Q-Resolution (SLQR) for prov-
ing theorems from Quantified Boolean Formulas in PCNF. SLQR is an adap-
tation of SL-Resolution, which applies to propositional and first-order logic.

A major difference between SLQR and QDPLL (DPLL adapted for QBF)
is that QDPLL guesses and backtracks on variable assignments, while SLQR
guesses and backtracks on clauses. The inferential power of SLQR is compared
with other Q-Resolution and tableau strategies.

A primary motivation for the SLQR discipline is to reduce the search space
compared to ad-hoc heuristics for choosing the next resolution operation. Several
optimizations reduce the choices while preserving completeness:

1. One operand of every resolution operation is the immediately preceding de-
rived clause (linearity).

2. When a clashing literal needs to be chosen in the first operand, there are
restrictions on which literals need to be considered, and once a literal that
meets those restrictions has been chosen, alternative choices of clashing lit-
eral need not be considered.

3. When backtrackable choices are made for the second clause operand, logical
analysis is used to rule out many unnecessary choices.

SL-Resolution is closely related to model elimination [12, 13, 15, 18, 2] and
tableau methods [11]. Discussions and thorough bibliographies may be found in
several texts [14, 8]. Terminology varies among these sources.

Letz adapted a tableau-oriented point of view for QBF solving [10]. However,
his solver Semprop branches on variables, similarly to QDPLL solvers such as
depQBF, QuBE, and others.

After introducing and analyzing needed technical machinery for prefix-or-
dered QU-resolution in Section 2 this paper introduces Subsumption-Linear Q-
Resolution (SLQR) in Section 4, including the special operation ancestor reso-
lution, and proves that SLQR is inferentially complete.

2 Preliminaries

In their most general form, quantified boolean formulas (QBFs) generalize propo-
sitional formulas by adding universal and existential quantification of boolean
variables (often abbreviated to “variables”). A quantified variable is denoted by
∀u (variable u is universal) or ∃ e (variable e is existential). A literal is a variable
or a negated variable. See [8] for a thorough introduction and a review of any
unfamiliar terminology.

Definition 2.1 The truth value of a closed QBF is either 0 (false) or 1 (true),
as defined by induction on its principal operator.

1. (∃ e Ψ(e)) = 1 iff (Ψ(0) = 1 or Ψ(1) = 1).
2. (∀uΨ(u)) = 0 iff (Ψ(0) = 0 or Ψ(1) = 0).
3. Other operators have the same semantics as in propositional logic.

4 Allen Van Gelder

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to 1, and player A (Universal) tries to set universal variables to make the QBF
evaluate to 0 (see [9] for more details).

Definition 2.2 For this paper QBFs are in prenex conjunctive normal form

(PCNF), and are closed ; i.e., Ψ =
−→
Q.F consists of a quantifier prefix

−→
Q and a

set of quantifier-free clauses F (often called the matrix) such that every variable

in F occurs in
−→
Q . The number of clauses in F is denoted by |F|. In the context

of a matrix, clauses are understood to be combined conjunctively.

A clause is a disjunctively connected set of literals. A clause is called tau-
tologous if it contains some literal and its complement; otherwise it is called
non-tautologous. Clauses are frequently written enclosed in square brackets (e.g.,
[p, q, r]) and [] denotes the empty clause.

We follow certain notational conventions for boolean variables and literals
(signed variables) to make reading easier: Lowercase letters near the beginning

of the alphabet (e.g., b, c, d, e) denote existential literals, while lowercase letters
near the end of the alphabet (e.g., u, v, w, x) denote universal literals, while
middle letters (e.g., p, q, r) are of unspecified quantifier type. Quantifier types
are implied frequently throughout the paper without restating this convention.

In contexts where a literal is expected, p might denote a positive or negative
literal, while p denotes the negation of p. To emphasize that p stands for a
variable , rather than a literal, the notation |p| is used. Clauses may be written
as [p, q, r]); [] denotes the empty clause.

For set-combining operations on clauses, besides ∪ for union and ∩ for inter-
section, we use + for disjoint union , − for set difference , and write p instead
of [p] when it is an operand for one of these operations. Thus C + p adds p to
a clause that does not already contain p, while C − p removes p from a clause
that might or might not contain p.

The symbols α, β, and γ denote (possibly empty) sequences of literals or sets
of literals, depending on context; vars(α) denotes the set of variables underlying
the literals of α. (Because a clause is a set, a notation like [p, α] implicitly
specifies that p is not in α.) The symbol ⊥ is sometimes used as a literal denoting
false and is treated as being outer to all other literals.

Definition 2.3 The quantifier prefix (often shortened to prenex) is a se-
quence of quantified variables. A variable closer to the beginning (end) of the
sequence is said to be outer (inner) to another variable. The prenex is parti-
tioned into quantifier blocks (abbreviated to qblocks). Each quantifier block
is a maximal consecutive subsequence of the prenex with variables with the same
quantifier type, and has a unique quantifier depth , denoted as qdepth, with
the outermost qblock having qdepth = 1. The notation p ≺ q means that p is in
a qblock outer to the qblock of q. The notation p � q means that p is the same
qblock as q or p ≺ q. There is no special notation for p and q being in the same
qblock. The notation is extended to sets of variables or literals in the obvious
ways; e.g., P ≺ q means that each p ∈ P satisfies p ≺ q. In situations where

SLQR for QBF Theorem Proving 5

variables within a quantifier block are considered to have a fixed order, p ≺≺ q

means: p precedes q in the same quantifier block or p ≺ q.

A few special operations on sets of literals are defined. A prenex
−→
Q is assumed

to be known by the context. For a set S of literals:

exist(S) = {the existential literals in S} (1)

univ(S) = {the universal literals in S} (2)

(S ≺ q) = {the literals in S outer to q} (3)

(q ≺ S) = {the literals in S inner to q} (4)

Depending on context, the set of literals might be a clause, a prenex, a partial
assignment, or other logical expression.

Definition 2.4 Let a closed PCNF Ψ =
−→
Q.F be given. Let V denote the

variables of Ψ . A QBF strategy for Ψ is a set of boolean functions {pj(βj)},
where pj ranges over the variables of one quantifier type and βj consists of all
variables q of the opposite quantifier type such that q ≺ pj . The function pj(βj) is
called a Skolem function if pj is existential and is called an Herbrand function if
pj is universal. For Skolem functions βj = univ(V) ≺ pj ; for Herbrand functions
βj = exist(V) ≺ pj .

A winning strategy for player E is a QBF strategy in which pj ranges over
the existential variables such that F always evaluates to 1 if player E always
chooses pj = pj(βj) when pj is the outermost unassigned variable in the two-
person game mentioned in Def. 2.1. A winning strategy for player A is a QBF
strategy in which pj ranges over the universal variables such that F always
evaluates to 0 if player A always chooses pj = pj(βj) when pj is the outermost
unassigned variable in the same game. Exactly one of the players has a winning
strategy. Winning strategies can be generalized to closed QBFs that are not in
prenex conjunctive normal form, whose variables may have only a partial order
[9].

A clause D is said to be logically implied by Ψ if
−→
Q. (F∪{D}) has the same

set of winning strategies for player E as does Ψ . The term logical consequence

is also used. In this case, D is said to be a strategy-sound inference from Ψ ,
following [21]. As a less stringent requirement, a clause D is said to be a safe

inference from Ψ if
−→
Q. (F ∪ {D}) has the same truth value as Ψ (i.e., adding

D does not change the set of winning strategies for player E from nonempty to
empty).

Dually, deletion of a clause D from Ψ is said to be a strategy-sound op-

eration if
−→
Q. (F − {D}) has the same set of winning strategies for player E as

does Ψ . A clause deletion is said to be a safe operation if
−→
Q. (F − {D}) has

the same truth value as Ψ (i.e., deleting D does not change the set of winning
strategies for player E from empty to nonempty).

Definition 2.5 The proof system known as Q-resolution consists of two opera-
tions, resolution and universal reduction. Resolution is defined as usual, except
that the clashing literal is always existential; resolvents must be non-tautologous

6 Allen Van Gelder

for Q-resolution. Universal reduction is special to QBF.

rese(C1, C2) = α ∪ β where C1 = [e , α] , C2 = [e, β] (5)

unrdu(C3) = γ where C3 = [γ, u] . (6)

unrdu(C3) is defined only if u is tailing for γ, which means that the qdepth of u
is greater than that of any existential literal in γ, i.e., (u ≺ exist(γ)) = ∅.

A clause is fully reduced if no universal reductions on it are possible. The
fully reduced form of C is denoted as unrd∗(C). For this paper all clauses in
given PCNFs are assumed to be fully reduced and non-tautological, unless stated
otherwise.

Q-resolution is of central importance for PCNFs because it is a strategy-
sound and refutationally complete proof system [7, 8], as restated in Theorem 2.6
below. Recall that a clause-based proof system is refutationally complete if the
empty clause can be derived from every formula whose truth value is 0.

Theorem 2.6 [7] Let the closed PCNF Ψ =
−→
Q.F be given. Ψ evaluates to false

if and only if [] can be derived from Ψ by Q-resolution.

We say that a proof system is inferentially complete if whenever D is logically
implied (see Def. 2.4), then some subset of D can be derived in the proof system.
Note that Q-resolution is not inferentially complete. A simple example is

∀u ∃e∃f. {[u, e] , [u , f]} .

Nothing can be derived by Q-resolution, but the clause [e, f] is logically implied,
which can be seen by enumerating all the winning strategies {e(u), f(u)} and
observing that [e, f] evaluates to 1 for all values of u in each strategy.

The proof system known as QU-resolution is Q-resolution with the added
operation of resolution on universal variables. QU-resolution is inferentially com-
plete for closed PCNF and is able to provide exponentially shorter refutations
for certain QBF families [20]. However, the challenge for using QU-resolution in
practice is knowing when universal resolution is likely to be productive.

Definition 2.7 A QU-derivation or Q-derivation , often denoted as Π or Γ
or Σ, is a rooted directed acyclic graph (DAG) in which each vertex is either
an original clause (a DAG leaf), or a proof operation (an internal vertex). A
Q(U)-refutation is a Q(U)-derivation of the empty clause. This paper follows the
convention that DAG edges are directed away from the root. A Q(U)-derivation
is tree-like if every internal vertex has only one incoming edge, except that the
root has no incoming edge.

A subderivation of a Q(U)-derivation Π is any rooted sub-DAG of Π whose
vertices consist of some root vertex V and all DAG vertices of Π reachable from
V and whose edges are the induced edges for this vertex set.

In a proof DAG, each internal vertex is represented as a tuple with fields
consisting of:

– a specified operation type (resolution or universal reduction or “copy”),
– a specified clashing literal or universal-reduction literal (null for “copy”),

SLQR for QBF Theorem Proving 7

– one or two directed edge(s) to its operand(s),
– a derived clause.

(See Fig. 1.) The same tuple may be used to represent a leaf, in which case the
operation type is “leaf”, the clashing literal is null, there are no outgoing edges,
and the clause is an original clause. When there is no confusion, a vertex may
be referred to by its clause; however, the same clause may appear in more than
one vertex.

The “copy” just transfers the same clause to another vertex, and is included
for technical reasons. A DAG containing copy operations (and correctly de-
rived clauses) is called a generalized derivation . The copy operations can be
“spliced out” in the obvious manner to produce a derivation: If V contains a
copy operation, replace all incoming edges to V by edges to the child of V . See
[19] for details on propositional derivations. The QBF variant is developed in
[5].

In the normal case of a resolution operation, the first, or left, edge goes to a
vertex whose clause contains the negation of the clashing literal, and the second,
or right, edge goes to a vertex whose clause contains the clashing literal. In any
case, the union of the two operand clauses may not contain any complementary
pair of literals other than the clashing literals.

We say that a literal q has a proof operation at the (internal) DAG vertex V

if q or q is the literal specified in V ; we say that a literal q has a proof operation
in Π if q has a proof operation at some DAG vertex in Π.

For a proof DAG Π, root(Π) is the clause at the root, leaves(Π) is the set
of clauses in the leaves, and

support(Π) =
−→
Q

′

. leaves(Π), (7)

where
−→
Q

′

is the subsequence of
−→
Q that contains only the variables that appear

in leaves(Π).

Definition 2.8 An assignment is a partial function from variables to truth
values, and is usually represented as the set of literals that it maps to true.
Assignments are denoted by ρ, σ, τ , etc. A total assignment assigns a truth
value to every variable.

Application of an assignment σ to a logical expression, followed by truth-
value simplifications,1 is called a restriction . Restrictions are denoted by q⌈σ,
C⌈σ, F⌈σ, etc. If σ assigns variables that are quantified in Ψ , those quantifiers
are deleted in Ψ⌈σ, and their variables receive the assignment specified by σ.

3 Prefix-Ordered QU-Resolution

This section examines the restriction on QU-resolution derivations to be prefix-
ordered, as defined below. The main result of this section is Lemma 3.6, which

1 I.e., simplifications where one operand is 0 or 1.

8 Allen Van Gelder

concludes that prefix-ordered QU-resolution is inferentially complete. This is a
stepping stone to the main results of the paper about SLQ resolution in Section 4.

In analogy with regular propositional resolution as defined by Kleine Büning
and Lettmann [8], who cite Tseitin’s classical paper, we define regularity for
QU-resolution derivations. Definition Def. 3.1 is more precise than one that is
often seen, which specifies that no variable has more than one proof operation
on any path in Γ . The two definitions are equivalent for refutations, but not for
derivations in general.

For example, the four propositional clauses [b, ¬e] [e, ¬c] [c, ¬d] [b, e] derive
[d, e], but the derivation should not be called regular because a proof operation
on e is needed..

Definition 3.1 A QU-resolution derivation Γ is said to be regular in p if no
derived clause D that contains |p| has a proof operation on |p| on some path in
Γ from D to a leaf. A QU-resolution derivation Γ is said to be regular if it is
regular in p for all variables |p| that have proof operations in Γ .

Definition 3.2 We define QU-resolution to be prefix-ordered if the literals
that have proof operations appear in the quantifier-prefix order on every path
in the proof DAG, with the outermost closest to the root.

A prefix-ordered QU-refutation is necessarily regular, but other prefix-ordered
QU-derivations are not necessarily regular. The ensuing material requires some
technical terminology, defined next.

Definition 3.3 A clause C subsumes clause D if the literals of C comprise a
subset of the literals of D or if D is tautologous. Subsumption is proper if the
subset is proper. In this sense, any tautologous clause is treated as containing
every possible literal and is properly subsumed by any non-tautologous clause.

Minimality of clauses and sets of clauses is important in the technical mate-
rial. A set of clauses is minimal under stated conditions if no proper subset of
its clauses satisfies all of the conditions. Minimality of the set does not require
minimum cardinality.

A clause C is QU-minimal for a PCNF Ψ if it is derivable from Ψ by
QU-resolution and no proper subset of unrd∗(C) is derivable from Ψ by QU-
resolution. A clause C is Q-minimal for a PCNF Ψ if it is derivable from Ψ

by Q-resolution and no proper subset of unrd∗(C) is derivable from Ψ by Q-
resolution.

Q-minimality of C does not require minimum cardinality; that is, some other
clause E such that |E| < |C| may be derivable by Q-resolution, provided that E
does not properly subsume unrd∗(C). The same holds for QU-minimality.

Definition 3.4 A QU-derivation Π is QU-irreducible if:

1. The clause derived in root(Π), say D, is QU-minimal for support(Π),

2. leaves(Π) is minimal for the QU-derivation of D from support(Π),

3. Π contains no proof operations on variables in D,

4. all proper subderivations of Π are QU-irreducible.

SLQR for QBF Theorem Proving 9

Ψ ∃d ∃e ∀u ∃f

C1 e u f

C2 d f

C3 d e f e, u, f d, f d , e , f

✍✌
✎☞
f

��✠ ❅❅❘

d, e, uD1:

❄

✡✡❏❏u

d, eD2:

Fig. 1. PCNF Ψ in chart form (left) and proof DAG (right) for Example 3.5. Circles
enclose the clashing literal for resolution; triangles denote universal reduction. C3 is
not part of the DAG rooted at D2, but is its own trivial DAG.

Note that this definition does not require that the set of DAG vertices is minimal.
In particular, every QU-irreducible derivation has a tree-like version.

Q-irreducible derivations are defined analogously.

Example 3.5 To illustrate Q-minimality and QU-minimality, consider the for-
mula Ψ , shown in Fig. 1 as a clause-literal incidence graph (chart form for short).
No universal resolutions are possible so Q and QU properties are the same. Let:

D1 = resf (C1, C2) = [d, e, u] Π1 = the subderivation whose root is D1

D2 = unrdu(D1) = [d, e] Π2 = the derivation of D2

Π3 = the zero-step derivation of C3.

Then D1 is Q-minimal for Ψ even though D2 is a proper subset, because the
difference is only tailing universal literals. Also, [d, f] is Q-derivable and narrower
than D1, but it is not a subset of D1.

However, C3 is not Q-minimal for Ψ even though it is an original clause, be-
cause resd(C3, C2) is a proper subset of unrd∗(C3). But the trivial subderivation
Π3 is Q-irreducible, because leaves(Π3) = {C3}.

To see that points 1 and 2 of Def. 3.4 are consistent, add a new “indicator”
literal aj to each clause Cj ∈ F , the matrix. Replace the clause to be derived

by
[

D,
∨

j aj

]

. Then points 1 and 2 are both true if and only if
[

D,
∨

j aj

]

is

Q-minimal for the modified clauses.
We need the following Lemma 3.6 for analyzing SLQR. QU-minimal clauses

and minimal sets of clauses are important in the ensuing material. Recall the
terminology in Def. 3.3 and Def. 3.4.

Lemma 3.6 Let the closed PCNF Ψ =
−→
Q.F be given. By convention, every

clause in F is non-tautological and fully reduced. Let clause D be QU-minimal
for Ψ . Then D can be derived from Ψ by a QU-derivation Γ such that Γ is
prefix-ordered, regular, tree-like and QU-irreducible.

Proof: Let G ⊆ F be any subset such that D is not logically implied by
any proper subset of G. Let Φ =

−→
Q.G. Then D is also QU-minimal for Φ. The

10 Allen Van Gelder

proof of inferential completeness of QU-resolution in [20, Th. 5.4] constructs a
QU-derivation of D from Φ with the required properties, and this is also a QU-
derivation from Ψ . The cited theorem promises to derive D(−) but by minimality
of D it must derive D exactly.

4 Subsumption-Linear Q-Resolution

This section defines subsumption-linear Q-resolution (SLQR) derivations and
derives the main results of the paper.. We show that SLQR has the same inferen-
tial power as full QU-resolution; i.e., SLQR is inferentially complete for AT-free
PCNF formulas. As mentioned in Section 1, a QBF is said to be AT-free if it
contains no asymmetric tautologies [6]. QBFs translated from applications are
normally AT-free, but certain preprocessing operations might introduce asym-
metric tautologies.

We also define a weaker variant SLQR–ures that does not include resolution
on clashing universal literals, and show that SLQR–ures has the same inferential
power as full Q-resolution when all literals in the derived clause are outermost.
Hence SLQR–ures is refutationally complete. Lemma 3.6 is an important step-
ping stone. We also show a PCNF and a Q-derivable clause for which there is
no SLQR–ures derivation.

Definition 4.1 Given a QBF Φ =
−→
Q.F and a target clause T , a subsumption-

linear Q-resolution (SLQR)) derivation of T consists of a top clause D0 ∈ F
and a sequence of m ≥ 0 derivation steps with Dm = T of the form

Di =

{

resp(i)(Di−1, Ci) where p(i) is any literal and 1 ≤ i ≤ m

unrdu(i)(Di−1) where u(i) is universal and 2 ≤ i ≤ m
(8)

such that each Ci is either a clause in F or is an earlier derived clause Dj that
meets the precise criteria given below and is called an ancestor clause.

The Di are called center clauses. The Ci are called side clauses. The
literals of a side clause Ci are categorized as follows: p(i) is the clashing literal;
if Ci is derived, p(i) is also called an ancestor literal; q ∈ Ci is a target literal
if q ∈ T ; q ∈ Ci is a merge literal if q ∈ Di−1 and q is not a target literal; q ∈ Ci

is an extension literal if q ∈ Di and q is not in any of the preceding categories.
At the step where Di is to be derived let Dj (j ≤ i− 2) be an earlier derived

clause and let q ∈ Dj be the clashing literal for the derivation ofDj+1. ThenDj is
defined to be an ancestor clause at this step in the proof if Dj−{q} is a proper

subset of each subsequently derived clause Dj+1, . . ., Di−1. If q = p(i) (the
clashing literal in Di−1), then the resolution of Di−1 and Dj is called ancestor

resolution , p(i) is called the ancestor literal , and Di consists of all literals in
Di−1 except p(i) . The word “subsumption” in the name “SLQR” is explained
by the last relationship. If ancestor resolution is possible, other choices for side
clause can be disregarded.

If Dj is an ancestor clause but q 6= p(i) , q still plays a role as an ancestor
literal: Some original clause must be chosen to resolve withDi−1. If any extension

SLQR for QBF Theorem Proving 11

literal of this resolution would be q, then this clause is inadmissible as a side
clause at this step. A derivation that adheres to this policy (and also disallows
derivation of tautologous clauses) is called tight [14].

Considering SLQR as a proof search system, the procedure to extend Di−1

to Di consists of selecting a literal in Di−1 for the proof operation, and if the
operation is resolution, selecting a side clause. It is known from antiquity [1]
that propositional SL-resolution is complete for any literal-selection policy; i.e.,
it is not necessary to backtrack on the selected literal and try other selections.
For simplicity and attention to implementation concerns, we consider only the
LIFO policy for SLQR, defined next.

Definition 4.2 Given a QBF Φ =
−→
Q.F and a target clause T , the LIFO selec-

tion policy , also called the most recently introduced policy is defined informally
as follows. In a SLQR derivation, assume that each center clause Di−1 is repre-
sented by a last-in, first-out stack (LIFO) of its literals that are not in T , called
the L-stack , as well as a separate set of literals that are in T , which we call the
T-subset .

The L-stack is partitioned into contiguous sections such that all literals in a
given section were introduced into a center clause Dj , j ≤ i − 1, as extension
literals in the earlier resolution operation that derived Dj , and these literals are
in quantifier order within the section with the innermost closest to the top of
the L-stack. Further, this section has been intact for all center clauses between
Dj and Di−1. The L-stack as a whole may not be quantifier ordered. The LIFO
selection policy selects the literal on top of the L-stack of the current center
clause, say Di−1.

Whatever proof operation derives Di, the selected literal will not be in Di,
so the L-stack of Di may be formed by starting with that of Di−1, popping the
selected literal, and then possibly pushing a new section on top consisting of
extension literals. A SLQR derivation develops by working on the section on top
of the current L-stack until the current L-stack is empty. Readers familiar with
Prolog will recognize the similarity to how the Prolog interpreter works.

4.1 Derivation Power of SLQR

This section investigates when a QU-derivable clause T also has a SLQR deriva-
tion. For propositional resolution, it is well known that the answer is essentially
“always”.2 The situation for closed PCNF is not so simple.

The proof of the next theorem employs the framework first published by
Anderson and Bledsoe [1]. Minimal clauses and minimal sets of clauses are im-
portant in the ensuing material. Recall the terminology in Def. 3.3.

Theorem 4.3 Given a closed PCNF Ψ =
−→
Q.F , let T be a minimal clause such

that there is a QU-resolution derivation of T from Ψ , call it Π, and no proper
subset of F permits derivation of T . Then for every clause C0 ∈ F and for the

2 If the derived clause is not minimal, propositional resolution may derive a subsuming
clause.

12 Allen Van Gelder

LIFO selection function (see Def. 4.2) there exists a SLQR derivation of T from
Ψ whose top clause is C0. Further, for each literal q ∈ T , q has no proof operation
in the SLQR derivation.

Proof: Please see https://users.soe.ucsc.edu/ avg/Papers/slqr-long.pdf.

4.2 Derivation Power of SLQR–ures

SLQR–ures is the same as SLQR except that resolution on clashing universal lit-
erals is not permitted. This section investigates when a Q-derivable clause T also
has a SLQR–ures derivation. For propositional resolution, it is well known that
the answer is essentially “always,” and this is just a special case of Theorem 4.4
below.3 The situation for closed PCNF is not so simple.

The proof of the next theorem employs the framework first published by
Anderson and Bledsoe [1]. Minimal clauses and minimal sets of clauses are im-
portant in the ensuing material. Recall the terminology in Def. 3.3.

Theorem 4.4 Given a closed PCNF Ψ =
−→
Q.F , let T be a minimal clause such

that there is a Q-resolution derivation of T from Ψ , call it Π, and no proper
subset of F permits derivation of T by Q-resolution. Further, let the literals of
T be outermost among the literals of F . Then for every clause C0 ∈ F there
exists a SLQR–ures derivation of T from Ψ whose top clause is C0. Further, for
each literal q ∈ T , q has no proof operation in the SLQR–ures derivation. In
particular, SLQR–ures is refutationally complete for closed PCNF.

Proof: The proof is similar to that of Theorem 4.3 and is omitted. The
hypothesis that T is outer to all literals with proof operations ensures that
whenever a universal literal is the selected literal universal reduction is available,
so universal resolution is not needed. Refutational completeness follows by letting
T = [].

The preceding Theorem 4.4 shows that SLQR–ures has the full inferential
power of Q-resolution for a very restricted set of derived clauses.

In fact, there are important clauses that can be derived by prefix-ordered
tree-like Q-resolution, but not by SLQR–ures.

Theorem 4.5 There exists a closed PCNF such that the clause [u, h] is derivable
by prefix-ordered tree-like Q-resolution and not by SLQR–ures, u is universal
and outermost, h is existential and innermost, [u, h] is minimal, and the matrix
is minimal.

Proof: Please see https://users.soe.ucsc.edu/ avg/Papers/slqr-long.pdf.

4.3 Details for LIFO SLQR

Definition 4.6 The details of updating the stack are important, and some help-
ful terminology is now introduced. Proof operations are classified as follows:

1. Reduction operation: a universal reduction on a universal literal;

3 If the derived clause is not minimal, propositional resolution may derive a subsuming
clause.

SLQR for QBF Theorem Proving 13

2. Extension operation: a resolution that introduces at least one literal not in
the U-set or in the E-stack of the current center clause;

3. Contraction operation: a resolution that introduces no literals into the U-set
or the E-stack, but possibly adds some literals to the T-subset.

For a resolution operation, the literals in the side clause are classified as follows:

1. Clashing literal : does not appear in the resolvent; pop its complement from
the top of the E-stack;

2. Target literal : any literal in T ; union this with the T-subset;
3. Universal literal : any universal literal not in T ; union this with the U-set;
4. Merge literal : already in the E-stack; do not push this on the E-stack;
5. Extension literal : none of the above; all extension literals are pushed on the

E-stack in outer to inner prefix order; the innermost extension literal is on
top of the new E-stack.

Extension and merge literals are existential and the terminology stems from
model elimination.

To get the center-clause data structure started, define the initial center clause to
be ⊤, a tautologous clause that contains all literals. We use the sound extension
that rese(⊤, C) = C for all non-tautologous C that do not contain the existential
variable |e|. If the desired top clause is C0, the literal selection rule simply
chooses some literal whose variable is not among vars(C0). Then C0 becomes
the side clause for step 0. This artificial protocol makes all original clauses in
the derivation appear as side clauses and simplifies later descriptions. The literals
of the C0 are processed as described in Def. 4.6.

The foregoing description can be formalized in mathematical terms of sets
and sequences. We only note that the center clauses, disregarding the T-subset
and U-set, can be regarded as existential literal sequences that can be partitioned
into contiguous subsequences such that each subsequence is in prefix order and
contains some subset of the extension literals of a single extension operation.

Definition 4.7 A LIFO SLQR is an SLQR that uses the LIFO selection func-
tion and also has an admissibility requirement for side clauses used for an ex-
tension operation.

At step i (to derive Di) suppose the selected literal is p . A side clause
C (which necessarily contains p) is inadmissible if for some j < i − 1, Dj

subsumes resp(Di−1, C) (including the case that the resolvent is tautologous).
A derivation attempt fails if the current center clause was formed by resolution
with an inadmissible side clause. In this case the LIFO-selected literal is ⊥.

Example 4.8 The motivation for inadmissible clauses is that it prevents looping
[14]. Suppose the current center clause is Di = ({} , {β} ,

[

α, f
]

), where the T-

subset is empty, the U-set is β, and the E-stack is
[

α, f
]

. Thus f is selected.

Suppose there are clauses C1 = [f, g] and C2 =
[

g, f
]

. Resolving (extending)
Di with C1 gives Di+1 = ({} , {β} , [α, g]), then extending with C2 would give
Di+2 = ({} , {β} ,

[

α, f
]

), creating a cycle. So C2 is inadmissible to resolve with
Di+1. If no other side clause containing g is admissible, then the LIFO SLQR

14 Allen Van Gelder

selected literal at step i+ 2 is ⊥, forcing the derivation attempt to fail. Thus a
successfully completed LIFO SLQR never contains an inadmissible side clause.

Corollary 4.9 Given a QBF Ψ =
−→
Q.F , let T be a minimal clause such that

there is a Q-resolution derivation of T from Ψ , call it Π, and no proper subset of
F permits derivation of T . Further, let the literals of T be outermost among the
literals of F . Then for every clause C0 ∈ F there exists a LIFO SLQR derivation
of T from Ψ whose top clause is C0. Further, for each literal q ∈ T , q has no
proof operation in the LIFO SLQR derivation.

Proof: Please see https://users.soe.ucsc.edu/ avg/Papers/slqr-long.pdf.

5 Conclusion

Subsumption-Linear Q-Resolution (SLQR) was introduced for proving theorems
from Quantified Boolean Formulas. It is an adaptation of SL-Resolution, which
in turn is closely related to model elimination and tableau methods. A major
difference from QDPLL (DPLL adapted for QBF) is that QDPLL guesses vari-
able assignments, while SLQR guesses clauses. Inferential completeness of SLQR
for AT-free PCNFs is shown when it is allowed to use resolution with universal
clashing variables; without that operation it is refutationally complete.

Future work should study heuristics for clause selection and lemma retention.

5.1 Acknowledgment

We thank the reviewers for their careful reading and suggestions for clarifying
the paper.

SLQR for QBF Theorem Proving 15

References

1. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and a
new technique for establishing completeness. Journal of the ACM 17(3), 525–534
(1970)

2. Astrachan, O.L., Loveland, D.W.: The use of lemmas in the model elimination
procedure. Journal of Automated Reasoning 19, 117–141 (1997)

3. Beyersdorff, O., Chew, L. Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Transactions on Computation Theory 11, 1–42 (2019)

4. Burris, S.: Logic for Mathematics and Computer Science. Prentice Hall (1998)
5. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating

proofs and strategies for both true and false QBF formulas. In: Proc. IJCAI (2011)
6. Heule, M., Seidl, M., Biere, A.: Efficient Extraction of Skolem Functions from

QRAT Proofs. In: Proc. FMCAD (2014)
7. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean

formulas. Information and Computation 117, 12–18 (1995)
8. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms.

Cambridge University Press (1999)
9. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver

with game-state learning. In: SAT, LNCS (2010)
10. Letz, R.: Lemma and model caching in decision procedures for quantified boolean

formulas. In: Proc. TABLEAUX (LNAI 2381). pp. 160–175 (2002)
11. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection

tableau calculi. JAR 13, 297–337 (1994)
12. Loveland, D.W.: Mechanical theorem-proving by model elimination. Journal of the

ACM 15(2), 236–251 (1968)
13. Loveland, D.W.: A simplified format for the model elimination theorem-proving

procedure. JACM 16(3), 349–363 (1969)
14. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland,

Amsterdam (1978)
15. Minker, J., Zanon, G.: An Extension to Linear Resolution with Selection Function.

Information Processing Letters 14(4), 191–194 (1982)
16. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Proc. CP 2006

(LNCS 4204). pp. 514–529 (2006)
17. Slivovsky, F.: Quantified CDCL with Universal Resolution. In: Proc. Sat 2022.

(2022)
18. Van Gelder, A.: Autarky pruning in propositional model elimination reduces failure

redundancy. Journal of Automated Reasoning 23(2), 137–193 (1999)
19. Van Gelder, A.: Input distance and lower bounds for propositional resolution proof

length. In: Theory and Applications of Satisfiability Testing (SAT) (2005)
20. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula

solving. In: Proc. CP. pp. 647–673 (2012)
21. Van Gelder, A., Wood, S.B., Lonsing, F.: Extended failed literal detection for QBF.

In: Proc. SAT. pp. 86–99 (2012)

