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Abstract. Multi-focusing is a generalization of Andreoli’s focusing pro-
cedure which allows the parallel application of synchronous rules to
multiple formulae under focus. By restricting to the class of maximally
multi-focused proofs, one recovers permutative canonicity directly in the
sequent calculus without the need to switch to other formalisms, e.g.
proof nets, in order to represent proofs modulo permutative conversions.
This characterization of canonical proofs is also amenable for the mech-
anization of the normalization procedure and the performance of further
formal proof-theoretic investigations in interactive theorem provers.
In this work we present a sequent calculus of maximally multi-focused
proofs for skew non-commutative multiplicative linear logic (SkNMILL),
a logic recently introduced by Uustalu, Veltri and Wan which enjoys
categorical semantics in the skew monoidal closed categories of Street.
The peculiarity of the multi-focused system for SkNMILL is the presence
of at most two foci in synchronous phase. This reduced complexity makes
it a good starting point for the formal investigations of maximally multi-
focused calculi for richer substructural logics.

Keywords: skew non-commutative MILL · maximal multi-focusing ·
skew monoidal closed categories · substructural logics · Agda

1 Introduction

Focusing is a technique introduced by Andreoli for reducing permutative non-
determinism in proof search. It was originally applied to the cut-free sequent
calculus of classical first-order linear logic [3] and subsequently ported to many
other proof systems [9]. Andreoli’s key idea was the organization of root-first
proof search in the alternation of two distinct phases: the asynchronous phase,
where invertible rules are eagerly applied, and the synchronous phase, where
non-invertible rules are applied on a selected formula which is brought under
focus.
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Focusing still retains a large amount of non-determinism in proof search,
since many different formulae can possibly be brought under focus. Specifically,
the non-determinism introduced by inessential permutative conversions is not
resolved. Typically, a linear logician would solve this issue by leaving the sequent
calculus and moving to a graphical representation of proofs, such as Girard’s
proof nets [7]. Chaudhuri et al. [6] showed that it is not necessary to depart
from the sequent calculus formalism to represent canonical derivations wrt. the
equational theory generated by the permutative conversions. They introduce
a multi-focused sequent calculus where multiple formulae can simultaneously
be brought under focus and decomposed during the synchronous phase. They
then present a rewriting system on multi-focused proofs whose normal forms are
maximally multi-focused. These are derivations f which, at the beginning of each
synchronous phase, always pick the largest number of formulae to bring under
focus among the multi-focused derivations which are equivalent to f wrt. the
equational theory of permutative conversions. In this sense, maximally multi-
focused proofs exhibit the maximal amount of parallelism. Chaudhuri et al.
showed that these are equivalent to proof nets for unit-free multiplicative classical
linear logic. Multi-focusing and maximality have subsequently been applied to
other deductive systems [5,4], in particular variants of intuitionistic logic [13,12].

This work serves as a starting point for a comprehensive study of maxi-
mal multi-focused deductive systems for a large class of substructural logics.
It is well-known that many substructural logics enjoy normalization procedures
targeting variants of proof nets, e.g. the Lambek calculus [8]. Nevertheless, an
extensive study of maximally multi-focused proofs for these logics is missing.
We believe this to be especially beneficial for the development of proof-theoretic
investigations of logical systems in interactive theorem provers, such as Agda or
Coq, where the graphical syntax of proof nets would be harder to implement
than sequent calculi, whose inference rules are standard example of inductive
type families.

We initiate this endeavor by considering skew non-commutative multiplica-
tive linear logic (SkNMILL), a weak substructural logic recently introduced by
the author in collaboration with Uustalu and Wan [16]. This logic is a semi-
associative and semi-unital variant of Lambek calculus (with only one residual):
it validates structural rules of associativity (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) and
unitality I ⊗ A → A and A → A ⊗ I, but none of their inverses. Uustalu et al.
introduce a cut-free sequent calculus for SkNMILL whose sequents are triples of
the form S | Γ ` A, where S is an optional formula (called stoup), Γ is an or-
dered list of formulae and A is a single formula. A peculiarity of this calculus is
that left logical rules act exclusively on the formula in the stoup position, never
on formulae in context Γ . This makes this sequent calculus a good candidate
for initiating the formal study of maximal multi-focusing of substructural log-
ics: during the synchronous phase, at most two formulae can be brought under
focus, the stoup formula and the succedent formula. From this perspective, the
sequent calculus of SkNMILL is among the “simplest” deductive system which
enjoys non-trivial multi-focusing.
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The study of SkNMILL was initially motivated by its categorical semantics
in the skew monoidal closed categories of Street [15]. These categories arise
naturally in semantics of programming languages [1], while semi-associativity
has found strong connections with combinatorial structures such as the Tamari
lattice and Stasheff associahedra [20,10]. From a category-theoretic perspective,
the maximal multi-focusing procedure described in this paper provides a solution
to the coherence problem for skew monoidal closed categories.

The paper starts with a brief introduction of SkNMILL and its cut-free sequent
calculus. It continues with a presentation of a sound and complete multi-focused
sequent calculus. As expected, the latter does not resolve all the permutative
non-determinism, but its introduction is pedagogically useful as it sets the stage
for the more involved maximally multi-focused sequent calculus. The latter uses
a system of tags, similarly employed by Uustalu et al. in their calculus of normal
forms [16], which are inspired by Scherer and Rémy’s saturation technique [14].
Tags are used to keep track of new formulae appearing in context from the
application of invertible rules and to decide whether multi-focusing on both the
stoup and succedent formulae is admissible or not.

An important contribution of this project is the formalization of the maximal
multi-focusing calculus for SkNMILL and the proof of its correctness in the Agda
proof assistant. The code, containing all the material presented in the paper,
can be found at:

https://github.com/niccoloveltri/multifocus-sknmill

2 The Sequent Calculus of SkNMILL

We recall the definition of the sequent calculus for SkNMILL originally introduced
in [16]. Formulae are generated by the grammar A,B ::= X | I | A⊗B | A( B,
where X comes from a fixed set At of atomic formulae, I is a multiplicative unit,
⊗ is a multiplicative tensor and( is a linear implication. Formulae I and A⊗B
are positive while A( B is negative.

A sequent is a triple of the form S | Γ ` A, where the succedent A is a
single formula (as in non-commutative multiplicative linear logic NMILL) and the
antecedent is divided in two parts: an optional formula S, called stoup, and an
ordered list of formulae Γ , called context. The metavariable S always denotes a
stoup, i.e. S can be a single formula or empty, in which case we write S = −.

Derivations of a sequent S | Γ ` A are inductively generated by the rules
in Figure 1. There are a few important differences with the sequent calculus of
NMILL: 1) left rules can only act on the formula in stoup position, not on formulae
in context; 2) the right ⊗-rule, when read bottom-up, forces the formula in the
stoup (whenever it is present) to move to the stoup of the first premise, it
cannot move to the antecedent of the second premise; 3) as in NMILL, there are
no structural rules of exchange, weakening and contraction, but there is a new
structural rule pass which moves the leftmost formula in context to the stoup,
whenever the latter is empty.

https://github.com/niccoloveltri/multifocus-sknmill
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X | ` X
ax

A | Γ ` C
− | A,Γ ` C

pass

− | Γ ` C
I | Γ ` C IL

A | B,Γ ` C
A⊗B | Γ ` C ⊗L

− | Γ ` A B | ∆ ` C
A( B | Γ,∆ ` C (L

− | ` I
IR

S | Γ ` A − | ∆ ` B
S | Γ,∆ ` A⊗B ⊗R

S | Γ,A ` B
S | Γ ` A( B

(R

Fig. 1. Sequent calculus for SkNMILL.

⊗R (IL f, g) $ IL (⊗R (f, g)) (f : − | Γ ` A, g : − | ∆ ` B)

⊗R (⊗L f, g) $ ⊗L (⊗R (f, g)) (f : A′ | B′, Γ ` A, g : − | ∆ ` B)

pass ((R f) $ (R (pass f) (f : A′ | Γ,A ` B)

IL ((R f) $ (R (IL f) (f : − | Γ,A ` B)

⊗L ((R f) $ (R (⊗L f) (f : A | B,Γ,C ` D)

(L (f,(R g) $ (R ((L (f, g)) (f : − | Γ ` A′, g : B′ | ∆,A ` B)

⊗R (pass f, g) $ pass (⊗R (f, g)) (f : A′ | Γ ` A, g : − | ∆ ` B)

⊗R ((L (f, g), h) $ (L (f,⊗R (g, h)) (f : − | Γ ` A, g : B | ∆ ` C, h : − | Λ ` D)

Fig. 2. Equivalence of derivations in the sequent calculus.

As in NMILL rules IL, ⊗L and (R are invertible, while the other logical
rules are not. The structural rule pass is also non-invertible. Two forms of cut
are admissible, since the cut formula can either be located in the stoup or in
the context of the second premise. A general axiom, or identity, rule is also
admissible.

S | Γ ` A A | ∆ ` C
S | Γ,∆ ` C scut

− | Γ ` A S | ∆0, A,∆1 ` C
S | ∆0, Γ,∆1 ` C

ccut
A | ` A

axA

A stoup S is called irreducible if it is either empty, an atom or a negative
formula. This means that the stoup formula cannot be further reduced using left
invertible rules IL and ⊗L in root-first proof search. Analogously, a succedent
formula A is irreducible when it is atomic or positive, so it cannot be reduced
by the right invertible rule (R.

We consider an equivalence relation $ on sets of derivations. This is the con-
gruence generated by the pairs of derivations in Figure 2, which are permutative
conversions. The congruence $ has been chosen to serve as the proof-theoretic
counterpart of the equational theory of skew monoidal closed categories [15]. In
fact, there exists a syntactic skew monoidal closed category which has formulae
of SkNMILL as objects, and morphisms between formulae A and B are given by
the set of derivations of A | ` B quotiented by the equivalence relation $. This
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Asynchronous Phase

S | Γ,A ⇑ B
S | Γ ⇑ A( B

(R
A | B,Γ ⇑ Q
A⊗B | Γ ⇑ Q ⊗L

− | Γ ⇑ Q
I | Γ ⇑ Q IL

T | Γ ⇓ Q
T | Γ ⇑ Q foc

Synchronous Phase

T | Γ ⇓lf Q Q | ∆ ⇓ A
b

T | Γ,∆ ⇓ A
b

focL
S

b
| Γ ⇓ T T | ∆ ⇓rf Q

S
b
| Γ,∆ ⇓ Q

focR

X | ⇓ X
ax

S | Γ ⇑ A UT(b, c, S,A)

S
b
| Γ ⇓ A

c

unfoc

Left-Focusing Phase

A | Γ ⇓lf Q
− | A,Γ ⇓lf Q

pass
− | Γ ⇑ A B | ∆ ⇓lf Q
A( B | Γ,∆ ⇓lf Q

(L
Q | ⇓lf Q

blurL

Right-Focusing Phase

− | ⇓rf I
IR

T | Γ ⇓rf A − | ∆ ⇑ B
T | Γ,∆ ⇓rf A⊗B

⊗R
M | ⇓rf M

blurR

Fig. 3. Multi-focused sequent calculus for SkNMILL.

category is the free skew monoidal closed category generated by the set At. We
refer to [16] for more details on categorical semantics.

We employ the following convention for naming formulae and stoups:

P positive formula
N negative formula
Q positive or atomic formula
M negative or atomic formula
T irreducible stoup (− or M)

3 A Multi-Focused Sequent Calculus

We now present a multi-focused sequent calculus for SkNMILL, which draws inspi-
ration from the one given by Chaudhuri et al. for multiplicative-additive classical
linear logic [6]. Inference rules are given in Figure 3. As in the original formu-
lation by Andreoli [3], the (multi-)focused calculus describes, in a declarative
fashion, a root-first proof search strategy in the original sequent calculus.

In this calculus, sequents can take four forms, corresponding to four distinct
phases of proof search:

S | Γ ⇑ A asynchronous (or invertible)
S | Γ ⇓ A synchronous (or focusing)
S | Γ ⇓lf Q left synchronous
T | Γ ⇓rf A right synchronous
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Proof search starts in asynchronous phase S | Γ ⇑ A. In this phase, invertible
rules are repeatedly applied until both the stoup formula (when present) and
the succedent formula become irreducible. We have fixed an order on invertible
rules and decided to apply (R before IL/⊗R, which is enforced by asking the
succedent formula in the left invertible rules to be positive or atomic (so we use
our notation Q).

Proof search then progresses to the synchronous phase via the rule foc. At
this point we can choose to focus on the stoup or succedent position.

If we pick the first option, the irreducible stoup T is brought under focus with
an application of rule focL. The context is split in two parts Γ and ∆ and the
left focusing phase initiates in the first premise. A proof of T | Γ ⇓lf Q consists
of repeated application of left synchronous rules pass and (L on stoup T and
context Γ , until the stoup formula becomes the positive or atomic formula Q, at
which point the left focus is “blurred” by the rule blurL. In synchronous phase,
blurred formulae are surrounded by a dashed box A . We use notation A

b
, with

b a Boolean value, to denote a formula which is possibly blurred: A
1

= A and

A
0

= A. Blurred formulae are used to remember that a certain left or right
synchronous phase has been performed.

If we pick the second option, proof search proceeds by bringing the succedent
formula Q under focus with an application of rule focR. The context is split in two
parts Γ and ∆ and the right focusing phase initiates in the second premise. The
right focusing phase consists of repeated applications of the right synchronous
rule ⊗R. The optional formula T in sequent T | ∆ ⇓rf Q indicates whether the
right focusing phase terminates when the succedent formula becomes negative
or atomic (in which case T = M) or it terminates with an application of IR (in
which case T = −). In the first case, the succedent formula M is blurred by the

rule blurR. The notation S
b
| Γ ⇓ T is an abbreviation for: S

b
| Γ ⇓ M ,

when T = M , while its set of proofs is a singleton if T = −. In other words, focR
does not have a first premise in case the proof of the second premise ends with
IR.

A couple of observations on left- and right-focusing. A peculiarity of the
sequent calculus in Figure 3, when compared with other (multi-)focused calculi
appearing in the literature, e.g. the one in [6], is that, during the application of
non-invertible rules in the focusing phase, one of the premises always releases the
focus. In rule ⊗R, the right premise releases the focus on the succedent formula,
and similarly for the first premise in rule(L. Without the loss of focus in these
premises, the multi-focused sequent calculus would not be complete wrt. the
calculus in Figure 1, e.g. the sequent X | Y ⊗ Z ⇑ X ⊗ (Y ⊗ Z) would not
admit a derivation. This behaviour was already present in the focused sequent
calculi for the ⊗- and (I,⊗)-fragments of the sequent calculus, originally studied
by Zeilberger et al. [20,17].

The design of rule focL, with a whole left-focusing phase compressed in a
proof of T | Γ ⇓lf Q, is chosen specifically for the purpose of maximal multi-
focusing, where we will be interested in whether a certain left-focusing phase has
happened rather than the specific left synchronous rules that have been applied.
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Notice also that in the first premise T | Γ ⇓lf Q of focL there is no need to keep
track of the succedent formula A since it is not affected by left synchronous rules,
and similarly for the context ∆ of the second premise. Analogous observations
apply to the second premise of focR.

When the (left-) right-focusing phase terminates, one can subsequently choose
to focus on the (succedent) stoup formula. If the execution of both left- and right-
focusing lead to a valid derivation, they can be performed in any order, first left
then right, or vice versa. When no formula is under focus anymore, we unfocus
and continue proof search in asynchronous phase. In order to unfocus, formulae
that were previously under focus, which are now blurred, must have switched
their polarity, which is reflected in the side condition UT(b, c, S,A) of rule unfoc
(UT stands for “unfocusing table”):

b c UT(b, c, S,A)
0 0 0
0 1 A = N
1 0 S = P
1 1 S = P ∨ (S = X ∧A = N)

The stoup formula must be positive if it was under focus (b = 1) but the succe-
dent was not (c = 0). Dually, the succedent formula must be negative is it was
under focus (c = 1) and the stoup formula was not (b = 0). If both formulae
were under focus (b = 1 ∧ c = 1), one of them must have changed its polarity:
either the stoup formula has become positive or, if it had become (or stayed)
atomic, the succedent formula has become negative. Unfocusing also requires
that at least one formula was previously under focus, hence the condition b ∨ c
must be true.

For a sequent with atomic stoup and positive succedent X | Γ ⇑ P (or,
dually, negative stoup and atomic succedent), one can choose whether to focus
on the stoup formula or not, and both choices may lead to a valid proof. For an
example, consider the valid sequent X | ⇑ (Y ( (X ⊗ Y ))⊗ I. This situation
was also present in the multi-focused calculus for classical linear logic [6], where
in similar circumstances one was given the choice of focusing on negated atoms
or not.

Invertible rules are easily proved to be admissible in the ⇑ phase (with a
general formula as succedent), and similarly IR and ax.

Proposition 1. The following rules are admissible:

A | B,Γ ⇑ C
A⊗B | Γ ⇑ C

⊗L⇑
− | Γ ⇑ C
I | Γ ⇑ C

IL⇑ − | ⇑ I
IR⇑

X | ⇑ X
ax⇑

Rule ⊗R of Figure 1, with ` replaced everywhere by ⇑, is also admissible,
but showing this requires more work. We prove the admissibility of a macro
inference rule corresponding to multiple application of ⊗R. To this end, given a
formula A and a list of formulae Γ = B1, . . . , Bn, define A⊗∗ Γ = (((A⊗B1)⊗
B2)⊗ . . . )⊗Bn, which is simply A when Γ is empty. If Γ is non-empty, we write
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A⊗+ Γ . Define also Γ (∗ A = B1( (B2( (. . .( (Bn( A))) and similarly
Γ (+ A when Γ is non-empty.

Proposition 2. Let
−→
∆ = ∆1, . . . ,∆n be a list of contexts and

−→
B = B1, . . . , Bn

a list of formulae, both non-empty. The following rule is admissible:

S | Γ ⇑ A {− | ∆i ⇑ Bi}i
S | Γ,

−→
∆ ⇑ A⊗+ −→B

⊗R+
⇑

where {− | ∆i ⇑ Bi}i is a collection of premises − | ∆i ⇑ Bi for each 1 ≤ i ≤ n.

Proof. The proof proceeds by inspecting the polarity of formula A and then by
induction on the structure of the derivation f : S | Γ ⇑ A. When A is negative,
we need to strengthen the statement for the induction on f to succeed. So we
prove the admissibility of the more general rule:

S | Γ,Λ ⇑ A {− | ∆i ⇑ Bi}i
S | Γ,

−→
∆ ⇑ (Λ(+ A)⊗+ −→B

⊗R+
⇑N

The context Λ serves as an accumulator for dealing with the case f =(R(f ′):

f ′

S | Γ,Λ,A′ ⇑ B′

S | Γ,Λ ⇑ A′(B′
(R {− | ∆i ⇑ Bi}i

S | Γ,
−→
∆ ⇑ (Λ(+(A′(B′))⊗+ −→B

⊗R+
⇑N

=

f ′

S | Γ,Λ,A′ ⇑ B′ {− | ∆i ⇑ Bi}i
S | Γ,

−→
∆ ⇑ ((Λ,A′)(+B′)⊗+ −→B

⊗R+
⇑N

which type checks since Λ(+(A′(B′) = (Λ,A′)(+B′. Another representative
case is f = foc(f ′), where right-focusing can immediately be executed:

f ′

T | Γ,Λ ⇓ Q
T | Γ,Λ ⇑ Q foc

T | Γ ⇑ Λ(+Q
(R+

T | Γ ⇓ Λ(+Q
unfoc

Λ(+Q | ⇓rf Λ(+Q
blurR {− | ∆i ⇑ Bi}i

Λ(+Q |
−→
∆ ⇓rf (Λ(+Q)⊗+−→B

⊗R+

T | Γ,
−→
∆ ⇓ (Λ(+Q)⊗+−→B

focR

T | Γ,
−→
∆ ⇑ (Λ(+Q)⊗+−→B

foc

(1)

We now move to the admissibility of left-synchronous rules. To this end, we
introduce an inductive ternary (proof-relevant) relation A li S | Γ which holds
when the antecedent S | Γ is obtained by repeated applications of left-invertible
rules on the antecedent A | , where A is in the stoup and the context is empty:

A li I | Γ
A li − | Γ IL−1

A li A
′ ⊗B′ | Γ

A li A
′ | B′, Γ ⊗L−1

A li A |
ε
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Given a proof ` : A  li S | Γ , we can turn a derivation f : S | Γ,∆ ⇑ C into a
derivation invli(f, `) : A | ∆ ⇑ C:

invli(f, `) =

f
S | Γ,∆ ⇑ C

.... (left rules obtained by inverting `)

A | ∆ ⇑ C

(2)

Proposition 3. The following rules are admissible:

A | Γ ⇑ C
− | A,Γ ⇑ C

pass⇑
{− | Γi ⇑ Ai}i B | ∆ ⇑ C
−→
A (+ B |

−→
Γ ,∆ ⇑ C

(L+⇑

Proof. We only discuss (L+. Proving its admissibility proceeds by inspecting
the polarity of formula B and then by induction on the structure of the derivation
g : B | ∆ ⇑ C. When B is positive, we need to strengthen the statement for the
induction to succeed. We prove the admissibility of the more general rule:

{− | Γi ⇑ Ai}i B  li S | Λ S | Λ,∆ ⇑ C
−→
A (+ B |

−→
Γ ,∆ ⇑ C

(L+⇑P

The additional assumption ` : B  li S | Λ serves as an accumulator for dealing
with the cases when g is a left-invertible rule and it allows to state that the
proof of the third premise is a subderivation of sequent B | ∆ ⇑ C in the sense
depicted in (2). A representative case is g = foc(g), where we can immediately
execute left-focusing, obtaining a derivation dual to the one in (1).

The multi-focused sequent calculus in Figure 3 is sound and complete wrt.
the sequent calculus in Figure 1. In the upcoming theorem and in the rest of
the paper, we also write S | Γ ` A and S | Γ ⇑ A for the sets of proofs of the
corresponding sequents.

Theorem 1. There exist functions focus : S | Γ ` A → S | Γ ⇑ A and
emb : S | Γ ⇑ A → S | Γ ` A, turning sequent calculus derivations into
multi-focused derivations, and vice versa.

Proof. Function emb is obtained by erasing all phase-shifting rules and dashed
boxes around blurred formulae. Function focus is defined by induction on the
structure of the input derivation, noticing that each rule in Figure 1 has an
admissible counterpart in the multi-focused sequent calculus, which follows from
Propositions 1, 2 and 3.

Multi-focused proofs are not canonical wrt. to the equational theory in Fig-
ure 2. When the stoup formula is negative and the succedent is positive, we have
the choice of whether left-focusing and subsequently unfocus, right-focusing and
subsequently unfocus, or performing both left- and right-focusing before unfo-
cusing, and the latter can also be achieved in two distinct ways. For example,
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there exist four distinct proofs of X ( I | X,Y ⇑ (Z ( Z)⊗Y which correspond
to four $-related derivations in the unfocused sequent calculus. As discussed be-
fore, in general we also have the choice of whether focusing on atomic formulae
or not, which further increases the amount of non-determinism.

It is possible to fully capture this remaining non-determinism in a congruence
relation $⇑ on derivations of sequents S | Γ ⇑ A. This is inductively specified si-
multaneously with congruences $⇓, $lf and $rf . The generators of this collection
of relations are exhibited in Figure 4. Notice that all these generators belong to
the relation $⇓. This means that $⇑ is the smallest equivalence relation which
rules (R, IL and ⊗L respect (in the sense that they send $⇑-related premises
to $⇑-related conclusions), and moreover f $⇓ g implies foc(f) $⇑ foc(g).

We can show that functions focus and emb respect congruences $ and $⇑,
and moreover define an equivalence between sets of proofs in the different sequent
calculi, strengthening the statement of Theorem 1.

Theorem 2. Functions focus and emb underlie an isomorphism between the set
of proofs of a sequent S | Γ ` A quotiented by the equivalence relation $ and the
set of proofs of S | Γ ⇑ A quotiented by the equivalence relation $⇑.

Details about the proof can be found in our Agda formalization.

4 Maximal Multi-Focusing Using Tags

In order to design a calculus of permutative-canonical derivations, we have to
answer the following question: in which situation does a right-focusing phase
need to be performed strictly before a left-focusing phase? And dually, when
must left-focusing be done before right-focusing? Consider the valid sequent
X ( Y | Z ⇓ (X ( Y ) ⊗ Z. Attempting to focus on the stoup formula would
fail, because no splitting of the context, consisting of the singleton formula Z,
leads to a valid derivation. We would be able to appropriately split the context
only after performing right-focusing, specifically after an application of ⊗R, and
a subsequent application of (R. This is because the formula X, that we would
like to send to the first premise during left-focusing, is not initially in context,
it becomes available only after right-focusing.

Dually, consider the valid sequent X ( (Y ⊗ Z) | X ⇓ Y ⊗ Z. It is not
hard to see that any attempt to focus on the succedent formula would fail. But
after left-focusing and an application of ⊗L, right-focusing becomes possible and
leads to a valid proof. This is because the formula Z, which should be sent to the
second premise by focR, appears in context only after executing the left-focusing
phase. Another simple example is given by the valid sequent − | X⊗Y ⇓ X⊗Y .
Again left-focusing, specifically pass, must happen before right-focusing, since
the formula Y is not in context and cannot otherwise be sent to the second
premise during right-focusing.

We need a mechanism for keeping track of new formulae appearing in context
from applications of invertible rules ⊗L and (R. In proof search, when we
choose to perform left-focusing but we decide to postpone right-focusing, after
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Fig. 4. Equivalence of derivations in the multi-focused sequent calculus.
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releasing the focus we have to justify this decision by showing that the subsequent
application of focR splits the context in-between new formulae that appeared in
context only after the termination of the left-focusing phase. And dually if right-
focusing strictly precedes left-focusing.

We employ a mechanism from the recent work of Uustalu et al. [16] which was
inspired by Scherer and Rémy’s saturation for intuitionistic logic [14]. Formulae
appearing in a sequent will now be decorated with a superscript Boolean value,
which we call a tag : A0 or A1. Stoups are also tagged: S0 or S1. Tagged contexts
consist of tagged formulae. Sequents in the maximally multi-focused sequent
calculus also take four forms:

S | Γ ⇑m A asynchronous
S | Γ ⇓m A synchronous
S | Γ ⇓lfm Q left synchronous
T | Γ ⇓rfm A right synchronous

The above are all triples consisting of a tagged stoup S (or an irreducible tagged
stoup T in the last case), a tagged context Γ and a tagged formula A (or an
irreducible tagged formula Q in the third case). If in a sequent we do not want
to specify the tag of a tagged formula, we simply write it without superscript.
Given a tagged formula A, we also write A0 when we want to replace the tag of
A by 0 and A1 when the tag is replaced by 1. These conventions also apply to
tagged stoups and contexts in a sequent.

Tags serve two purposes:

1. They are used to remember which (if any) among left- or right-focusing was
not performed during the preceding focusing phase. If the stoup is S1, only
right-focusing was previously executed. Dually, if the succedent formula is
A1, only left-focusing took place.

2. In case one (and only one) among the stoup and the succedent has tag 1,
new formulae moved to context via the application of invertible rules are
also assigned tag 1. So tags are used to remember which formulae in context
are new.

Inference rules for the maximally multi-focused sequent calculus are displayed
in Figure 5. In the premise of rule (R, the stoup S and the formula A must
have the same tag t: if the stoup is S1 in the conclusion, so left-focusing did not
happen in the previous synchronous phase, we track the new formula A moving
to the right-most end of the context by assigning it tag 1. Similarly for tagged
formulae At and Qt in the premise of rule ⊗L.

Proof search starts again in asynchronous phase, where initially the sequent
is S0 | Γ 0 ⇑m A0. At this point of the search, this phase is analogous to the
one in the multi-focused calculus of Figure 3. Tag 1 may start to appear with
an application of unfoc. If left-focusing was not performed, so b = 0, then the
stoup is given tag 1, which in the rule is denoted S¬b. If right-focusing was not
executed, so c = 0, then the succedent has given tag 1, so it becomes A¬c. If
either the stoup or the succedent has tag 1, new formulae moved to the context
via applications of (R and ⊗L are also assigned tag 1.



Maximally Multi-Focused Proofs for Skew Non-Commutative MILL 13

Asynchronous Phase

St | Γ,At ⇑m B
St | Γ ⇑m A( B

(R
A | Bt, Γ ⇑m Qt

A⊗B | Γ ⇑m Qt ⊗L
− | Γ ⇑m Q
I | Γ ⇑m Q

IL
T | Γ ⇓m Q
T | Γ ⇑m Q

foc

Synchronous Phase

T 0 | Γ 0 ⇓lfm Q0 Q0 | ∆ ⇓m A 1 ∈ Γ

T 1 | Γ,∆ ⇓m A
foc1L

S
b
| Γ ⇓m T 0 T 0 | ∆0 ⇓rfm Q0 T = M ⊃ 1 ∈ ∆

S
b
| Γ,∆ ⇓m Q1

foc1R

T 0 | Γ 0 ⇓lfm Q0 Q0 | ∆ ⇓m A

T 0 | Γ,∆ ⇓m A
focL

S
b
| Γ ⇓m T 0 T 0 | ∆0 ⇓rfm Q0

S
b
| Γ,∆ ⇓m Q0

focR

X0 | ⇓m X0
ax

S¬b | Γ 0 ⇑m A¬c UT(b, c, S,A)

S0

b
| Γ ⇓m A0

c

unfoc

Fig. 5. Maximally multi-focused sequent calculus for SkNMILL.

If we want to left-focus, we first inspect the tag of the stoup formula. If it is
T 1, we need to justify why left-focusing was not performed together with right-
focusing in the preceding synchronous phase. This can be done by requiring a
formula tagged with 1 to appear in Γ , which is the meaning of the side condition
1 ∈ Γ in the premise of foc1L. Proof search continues with a stoup formula Q0.
Dually, if we want to right-focus and the succedent is Q1, and moreover T is
non-empty, we require a formula tagged with 1 to appear in ∆ when applying
foc1R. When T is empty, so the right-focusing phase terminates with IR, there is
no need to check whether ∆ contains formulae tagged with 1, since right-focusing
could not have happened together with the preceding left-focusing phase. Phases
⇓lfm and ⇓rfm are omitted in Figure 5, since they are the same as ⇓lf and ⇓rf in
Figure 3 but with all formulae in sequents having tag 0, and ⇑ replaced by ⇑m
in the premises of (L and ⊗R.

When releasing the focus via unfoc, stoup and succedent must have tag 0,
meaning that all the reasons for “not maximally focus” in a preceding focusing
phase must have been successfully justified. Apart from tags, there are a couple
of differences with the multi-focused system in Figure 3.

1. In synchronous phase, we have the choice of first applying focL and then
applying focR, i.e. we remove non-determinism in the choice of left- or right-
focusing when both are executable. In Figure 5 this can be observed in focL,
where succedents cannot be blurred.

2. Another difference lays in the treatment of atomic formulae. The axiom rule
ax requires the atomic formula to have tag 0 and to be blurred in both
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positions. More generally, each derivation of X | Γ ⇓m A necessarily focuses
on the stoup and each derivation of S | Γ ⇓m X necessarily focuses on the
succedent.

All tags from a maximally multi-focused derivation can be removed to obtain
a proof in the non-maximally multi-focused sequent calculus. More interestingly,
each multi-focused derivation can be normalized to a maximally multi-focused
one.

Theorem 3. There exist functions

max� : S | Γ �A → S0 | Γ 0 �m A
0

untag� : S0 | Γ 0 �m A
0 → S | Γ �A

for all � ∈ {⇑,⇓,⇓lf ,⇓rf}, turning multi-focused proofs into maximally multi-
focused ones, and vice versa.

Proof. We only sketch the construction of max⇓, which is the most challeng-
ing function to define. We refer the interested reader to the associated Agda
formalization for the complete proof. The input derivation can either be: (i) an
application of focR followed by ax or unfoc; (ii) an application of focL followed by
ax or unfoc; (iii) an application of both focL and focR. In case (iii), we can safely
apply both focL and focR in the maximally multi-focused calculus. The most in-
teresting cases are (i) and (ii) when the focus is subsequently released. We only
look at case (i) when the input derivation is of the form f = focR(unfoc(f ′), r)
for some f ′ : S | Γ ⇑ M and r : M | ∆ ⇓rf Q. To deal with this case, we prove
the following rule admissible:

S0 | Γ 0 ⇑m M0 M0 | ∆0 ⇓rfm Q0

S0 | Γ 0, ∆0 ⇑m Q0
focR⇑m

The proof proceeds by checking whether M is atomic or negative. In the latter
case we further need to generalize the statement and prove the admissibility of

T 0 | Γ 0, Λ0 ⇑m A0 Λ0(+ A0 | ∆0 ⇓rfm Q0

T 0 | Γ 0, ∆0 ⇑m Q0
focR⇑mN

We proceed by induction on the structure of the proof of the first premise
g : T 0 | Γ 0, Λ0 ⇑m A0. We look at the case g = foc(focL(l, unfoc(h))) for some
l : T 0 | Ω0 ⇓lfm P 0 and h : P 0 | Ξ0 ⇑m A1. In this case, we have the equality of
contexts Ω,Ξ = Γ,Λ and we check whether Λ is split between Ω and Ξ, or it is
fully contained in Ξ.
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1. If Λ = Φ,Ξ and Ω = Γ,Φ for some non-empty Φ, then multi-focusing on
both stoup and succedent is not possible. We return:

l
T 0 | Ω0 ⇓lfm P 0

T 0 | Γ 0, Φ0 ⇓lfm P 0

h
P 0 | Ξ0 ⇑m A1

P 0 | Ξ1 ⇓m A0
unfoc

T 1 | Γ 0, Φ1, Ξ1 ⇓m A0 foc1L

T 1 | Γ 0, Φ1, Ξ1 ⇑m A0 foc

T 1 | Γ 0, Λ1 ⇑m A0

T 1 | Γ 0 ⇑m Λ0(+A0 (R+

T 0 | Γ 0 ⇓m Λ0(+A0
unfoc

Λ0(+A0 | ∆0 ⇓rfm Q0

T 0 | Γ 0,∆0 ⇓m Q0
focR

T 0 | Γ 0,∆0 ⇑m Q0 foc

The double-line rule is the equality rule (we simply rewrite the contexts).
2. If Γ = Ω,Φ and Ξ = Φ,Λ, then multi-focusing on both stoup and succedent

is possible. We return:

l
T 0 | Ω0 ⇓lfm P 0

h′

P 0 | Ξ0 ⇑m A0

P 0 | Φ0, Λ0 ⇑m A0

P 0 | Φ0 ⇑m Λ(+A0 (R+

P 0 | Φ0 ⇓m Λ(+A0
unfoc

Λ0(+A0 | ∆0 ⇓rfm Q0

P 0 | Φ0,∆0 ⇓m Q0
focR

T 0 | Ω0, Φ0,∆0 ⇓m Q0
focL

T 0 | Γ 0,∆0 ⇓m Q0

T 0 | Γ 0,∆0 ⇑m Q0 foc

where h′ is obtained from h by turning all applications of rules foc1L and foc1R
in h to focL and focR.

It is possible to show that proofs in the maximally multi-focused calculus are
canonical wrt. the equational theory in Figure 4 on multi-focused derivations.
Therefore, by Theorem 2, they are also canonical wrt. the equational theory in
Figure 2 on unfocused derivations.

Theorem 4. Functions max⇑ and untag⇑ underlie an isomorphism between the
set of proofs of a sequent S | Γ ⇑ A quotiented by the equivalence relation $⇑
and the set of proofs of S0 | Γ 0 ⇑m A0.

We refer the reader to our Agda formalization for details about the proofs.

Corollary 1. Functions max⇑◦focus and emb◦untag⇑ underlie an isomorphism
between the set of proofs of a sequent S | Γ ` A quotiented by the equivalence
relation $ and the set of proofs of S0 | Γ 0 ⇑m A0.

Proof. By Theorems 2 and 4.
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5 Conclusions

SkNMILL is a relatively weak logic, low in the substructural hierarchy and with
a restricted selection of logical connectives. Nevertheless, its simplicity allows to
properly investigate complex proof-theoretic procedure such as maximal multi-
focusing, which can be potentially extended to sequent calculi for richer logics.
Porting the technique to extensions of SkNMILL with other structural laws, such
as full associativity/unitality (recovering the Lambek calculus without left resid-
ual) or exchange (as in the sequent calculus of symmetric skew monoidal cate-
gories [18]), should be relatively straightforward. Extensions with additive con-
nectives will make things more complicated. To this end, it would be interesting
to study semantic approaches to maximal multi-focusing, akin to normalization-
by-evaluation [2,19] or (proof-relevant) semantic cut elimination [11].

Uustalu et al. [16] define a normalization procedure for SkNMILL using tags,
which is also inspired by focusing. Their canonical derivations arise as normal
forms of the confluent and strongly normalizing rewriting system obtained by
orienting the equations in Figure 2 from left to right. This means that, during
root-first proof search, invertible rules are again applied first, but the applica-
tion of non-invertible rules pass and(L is prioritized over ⊗R. Moreover, focus
is released after each application of a non-invertible rule and the asynchronous
phase is immediately resumed. Maximal multi-focusing, on the other hand, is un-
biased with respect to the application of non-invertible rules. We plan to further
investigate the relationship between the normal forms of the two normalization
strategies, for SkNMILL and other substructural logics.
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