
Aleatoric Propositions
Reasoning about Coins

Tim French

The University of Western Australia

2023

Overview

▶ Aleatoric propositions replace the True/False atoms of
propositional logic, with aleatoric events, or biased coin flips.

▶ We present some novel operators to give a language for
aleatoric events.

▶ We examine the correspondence between this language,
existing logics, and the set of rational polynomials over (0, 1).

Experiential Logic
The interest in aleatoric logic comes from
an AI course I taught, where probabilistic
agents out performed logical agents.

It occurred to me that many logical ap-
proaches are too brittle for AI applications.

While practical (human) decision processes
are not irrational they are not entirely de-
ductive either.

They are based on experience, assumption
and bias: imagine a Markov decision proce-
dure that is able to simulate the outcomes
of your assumptions.

Propositions and Probabilities

The simulation of a Markov decision process, requires aleatoric
variable, or coin flips.
Once you have a set of (imagined coins) you can arrange them in
coin flipping protocols.

“If I’m thirsty or if I’m tired drink coffee”

Here, thirsty and tired are imagined as biased coins, that are
flipped (Bernoulli tests) when I consider getting a coffee.

▶ We have an intensional language, which describes how coin
flipping protocols are defined.

▶ and we have an extensional language, which describes how
probabilities are associated with the coins.

This paper serves as a foundation for first order and modal
variations of aleatoric propositions.

Propositions as Coins

We consider a propositional atom to represented by a coin, and the
interpretation of that proposition is a coin flip, where the coin
either lands heads () or (#).
From these propositional atoms, we can describe complex
propositions using

▶ negation: replace heads with tails, and tails with heads.

▶ if-then-else: if proposition A is heads, return of the result of
proposition B, otherwise return the result of proposition C .

▶ fixed-point operations: A fixed point operator works as
iteration in the protocol: where the quantified variable is
substituted the quantifier proposition.

A classic example of an aleatoric proposition is von Neumann’s
process to define a fair coin flip, given a coin of any bias.

Example 1: Tennis
Suppose that Venus and
Serena are in a tennis ten-
nis tie break. Venus serves
first, then Serena serves
twice, and then Venus
serves twice, and so on, un-
til one of them is two points
ahead of the other.

We suppose the server has
the advantage, and V is
the probability Venus wins
on her serve, S be the prob-
ability that Serena wins on
her serve.

V : (0, 0)

S : (0, 1) S : (1, 0)

S : (0, 0) # S : (0, 0)

V : (1, 0) V : (0, 1) V : (1, 0) V : (0, 1)

 # #

Syntax

The syntax of aleatoric propositions is given by:

α ::= | A | ¬α | (α?α :α) | FXα

where:

▶ is heads (or true)

▶ A is an atomic proposition.

▶ ¬α is not α.

▶ (α?β :γ) is if α then β else γ.

▶ FXα is for X equal to α.

For α to be well-formed, we require for every subformula FXβ, β
has no subformulas of the type (X?γ1 :γ2).

fairCoin = FX (A?(A?X :) : (A?# :X)).

Semantics

An interpretation for propositional aleatoric logic is a function
I : Atoms −→ (0, 1), and we let I[X : p](Y) = I(Y) if X ̸= Y
and I[X : p] = p.
The interpretation assigns the probability I(α) inductively as
follows:

 I = 1

AI = I(A)
(¬α)I = 1− αI

(α?β :γ)I = αI · βI + (1− αI) · γI

(FXα)I =

1 if αI = 1
0 if αI = 0

x if x is the unique value such that αI[X :x] = x

1/2 if ∀x ∈ (0, 1), αI[X :x] = x

We note the interpretation of FXX is 1/2, so the fixed point
operator is a median fixed point.

If-then-else
The if-then-else operator is relatively
novel in logic, and is one of the main dif-
ferences between a fuzzy product logic
and aleatoric propositions.
Some of the useful abbreviations that can
be defined are:

Abbreviation Expression
¬
G# FXX

α ∧ β (α?β :#)
α ∨ β (α? :β)

α→ β (α?β :)
α↔ β (α?β :¬β)
α

0
m

α
n
0 #

α
n
m (α?α

n−1
m−1 :α

n
m−1)

We typically draw the
proposition (α?β :γ) as a
tree where the right is α
lands and left is α lands
#.

α

βγ

αI · βI+(1 − αI) · γI

The Fixed Point Operator

The semantics of the fixed point operator have a closed form, as
the well-formed requirement means that in interpretation of FXα,
the interpretation of α is always a linear function of the
interpretation of X .

0 1

1

I

x

FXα(X)

FX¬α(¬X)

•

The semantic interpretation of FXα(X), showing how the value of
FXα corresponds to αI[X :x] with respect to x .

Functional Semantics

We can give functional semantics for propositional aleatoric logic
that assigns a value hα ∈ [0, 1] and a value iXα for each
X ∈ bnd(α) as follows:

ψ = : hψ = 1 iXψ = 0

ψ = A ∈ free(alpha) : hψ = I(A) iXψ = 0

ψ = X ∈ bnd(α) : hψ = 0 iXψ = 1

ψ = Y ∈ bnd(α) : hψ = 0 iXψ = 0

ψ = (α?β :γ) : hψ = hα · hβ + (1− hα) · hγ iXψ = hα · iXβ + (1− hα) · iXγ
ψ = ¬α : hψ = 1− hα iXψ = −iXα
ψ = FXα, iXα ̸= 1 : hψ = hα

1−iXα
iXψ = 0

ψ = FXα, iXα = 1 : hψ = 1/2 iXψ = 0

ψ = FYα, iYα ̸= 1 : hψ = hα
1−iYα

iXψ = iXα
1−iYα

ψ = FYα, iYα = 1 : hψ = 1/2 iXψ = 0

Lines 7 and 9 show how the fixed point operator is realised as a
division of polynomials.

Example: Tennis

Then Venus winning the tie break can be
represented as the following aleatoric propo-
sition:

FX (V ?(S?(S?(V ?X :#) : (V ? :X)) :) : (S?# : (S?(V ?X :#) : (V ? :X))))

and applying the functional semantics we
can reduce this to the equation:

VenusWins(V ,S) =
V − S · V

S + V − 2 · S · V
(1)

with the contour plot given to the right.

0.2 0.4 0.6 0.8
V: Venus service win

0.2

0.4

0.6

0.8

S:
 S
er
en

a
se

rv
ice

 w
in

Venus win probability
0.1 0.20.3

0.4

0.5

0.6
0.7

0.8

0.9

Figure: A contour
diagram of the
probability of Venus
winning a tie break.

A Correspondence Result

The question we seek to address is what is the expressivity of
aleatoric propositions, or what kind of functions we can express.

The questions have been examined in the context of “Bernoulli
factories”, which are essentially infinite coin flipping protocols.

Keane and O’Brien (1994) showed that Bernoulli factories can
simulate any continuous polynomial bounded function over (0, 1)

Mossel and Peres (2005) showed in the single variable case coin
flipping protocols correspond to the set of rational functions over
(0, 1), using a result of Pòlya.

The essence of the approach is to show that every aleatoric
proposition has a normal form that corresponds to general type of
rational function over (0, 1).

k-block normal form

A formula of aleatoric proposi-
tional logic is in k-block nor-
mal form if it satisfies the fol-
lowing syntax for γ:

α0
1 ::= | # | X0

α
j+1
i ::= (Ai ?α

j
i :X0) | (Ai ?X0 :α

j
i)

α1
i+1 ::= (Ai+1?α

k
i :X0) | (Ai+1?X0 :α

k
i)

β0 ::= αk
n

βi+1 ::= (G#?βi :βi)
γ ::= FX0βℓ

A representation of (half) a
formula in block form is given
where the original formula is

FX (¬(A ∧ B) → (A ∧ X))

γ FX0

β4 G#

β3 G# . . .

β2 G# G#

β1 G# G# G# G#

α2
2 B B B B B B B B

α1
2 B B B B B B B B

α2
1 A A A A A A A A

α1
1 A A A A A A A A

α0 X0 # X0 X0

Transformations: Negation

We will give a brief overview of the transformations required to
manipulate a formula into k-block normal form.

To move negations to occur only in
the context #, we note:

▶ ¬FXα(X) ≃ FX¬α(¬X);

▶ ¬(α?β :γ) ≃ (α?¬β :¬γ);
▶ (¬α?β :γ) ≃ (α?γ :β);

▶ (α?¬Ai :β) ≃ (α?(Ai?# :) :β). 0 1

1

I

x

FXα(X)

FX¬α(¬X)

•

Transformations: If-then-else
To ensure the internal branching nodes
are only free variables or instances of G#,
we apply the following transformations:

▶ ((α?β1 :β2)?γ1 :γ2) ≃ (α?(β1?γ1 :γ2) : (β2?γ1 :γ2)),
when β1 and β2 are not bound
variables;

▶ ((α?X :β)?γ1 :γ2) ≃ (α?X : (β?γ1 :γ2));

▶ ((α?β :X)?γ1 :γ2) ≃ (α?(β?γ1 :γ2) :X);

▶ (FXα(X)?β :γ) ≃ FX (α?β :γ), under the
assumption that X does not
appear free in β or γ (or is
renamed to a fresh variable if it
does).

α

βγ

δ1δ2

≃

α

β γ

δ1δ2 δ1δ2

Transformations: Fixed Points

The next defect to address is fixed points
appearing anywhere other than the root.
To address this we apply the transforma-
tions:

▶ (α?FXβ :γ) ⇒ FX (α?β :β[,#\γ]);
▶ (α?β :FXγ) ⇒ FX (α?γ[,#\β] :γ).

The idea of this transformation is to
move the fixed point operator to the
root of the conditional statement, so
that when X is encountered (i.e. α was
heads, and the evaluation of β was X),
the entire statement is re-evaluated from
the root, but the γ branch is scaled by
β.

α

FXγ

β

≃

FX

α

ββ

γγ

A Bernoulli Race
The next defect to address is, for all
conditional statements, (α?β :γ), either
α = G# or one of β or γ is X0. To do
this, given α = Ai we can apply the fol-
lowing transformation:

(Ai?β :γ) ⇒ FX0(G#?(Ai?X0 :γ) : (Ai?β :X0)).

This transformation uses a fair coin flip
and fixed point operators to turn the
conditional statement into a series of in-
dependent tests.
A fair coin is flipped to see whether we
test the case where Ai is heads or the
case where Ai is tails, each case is tested
and we re-evaluate if it fails.

α

βγ

≃

FX

G#

α α

β γ

k-Block Normal Form to Rational Functions

We can see that each for-
mula in k-BNF corresponds
to a fraction of homoge-
neous polynomials:

The sum of the products
of paths leading to heads,
divided by the sum of the
products of paths leading
to either heads or tails.

γ FX0

β4 G#

β3 G# . . .

β2 G# G#

β1 G# G# G# G#

α2
2 B B B B B B B B

α1
2 B B B B B B B B

α2
1 A A A A A A A A

α1
1 A A A A A A A A

α0 X0 # X0 X0

The Problem with Rational functions to k-BNF

The aim was to apply Pòlya’s theorem to show that every rational
function could be reduced to a form corresponding to k-BNF.

Given f : [0, 1]Y −→ (0, 1), a homogeneous and positive
polynomial, for sufficiently large n, all the coefficients of
(
∑

y∈Y y)n · f (Y) are positive.

However, the application of Pòlya’s theorem to
f : (0, 1)Y −→ (0, 1) only holds up to 2 variables. This counter
example from Renato Paes Leme shows that we cannot apply the
theorem for more than three variables:

g(x , y , z) = 3xy2 + y3 − 3xyz + 3xz2 + z g : (0, 1)3 −→ (01)

Correspondence Theorem

▶ For every rational function f : (0, 1)2 −→ (0, 1) there is an
aleatoric proposition α where fα = f .

▶ For every rational function f : [0, 1]Y −→ (0, 1) there is an
aleatoric proposition α where fα = f over (0, 1)Y .

▶ The set of aleatoric propositions corresponds to the set of
functions ℓ(Y)/m(Y) where

ℓ(Y) =
∑

a∈ρkY
ℓa

∏
x∈Y xa(x,+) · (1− x)a(x,−)

m(Y) =
∑

a∈ρkY
ma

∏
x∈Y xa(x,+) · (1− x)a(x,−)

such that
ρkY = {a ∈ {0, . . . , k}Y×{+,−} |

∑
x∈Y a(x ,+) + a(x ,−) = k},

and for all a ∈ ρkY , ℓa and ma are integers such that ℓa < ma.

Future work: Axioms and Complexity
We are investigating aleatoric
propositions as a theoretical foun-
dation for reasoning under uncer-
tainty in AI.

To further support this founda-
tion we are interested in be-
ing able to axiomatise intensional
equivalence, and give complexity
bounds for reasoning.

k-BNF may be very useful in both
these cases.

α ≃ α
(α?β :β) ≃ α

(α?(β?γ1 :γ2) : (β?δ1 :δ2))
≃ (β?(α?γ1 :δ1) : (α?γ2 :δ2))

((α?β :γ)?δ1 :δ2)
≃ (α?(β?δ1 :δ2) : (γ?δ1 :δ2))

(?α :β) ≃
(¬α?β :γ) ≃ (α?γ :β)
FXα(X) ≃ α(FXα(X)

Future work: Reasoning about marbles
We are also very interested in first order
extensions of aleatoric propositions, or
aleatoric predicates.
In this case the first order quantifiers
(whether something exists) are replaced
with expectation operators (whether
something is likely).
The analogy or coin flips is replaced by
the analogy of an urn of marbles (the
domain), and rather then asking if there
is some marble in the urn that satisfies
a predicate, we ask how likely it is that
we draw a marble satisfying a predicate.

Conclusion

▶ We have presented a syntax and semantics for aleatoric
propositions, including a novel fixed point operator, and
shown that they are able to generate a large and interesting
subclass of rational functions.

▶ Aleatoric propositions capture a simple experiential logic,
where biases are used to generate simulations.

▶ First order extensions will allow us to investigate how these
biases are formed from observation, and applied in reasoning.

https://xkcd.com/447/ CC BY 2.5

Thank you

	Introduction
	Aleatoric Propositions
	Correspondence
	Conclusion

