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Naive picture of learning

“Nürnberger Trichter”
(Nurnberg Funnel)
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Alternative: predictive coding theory (Karl Friston et al)

▶ The human mind is constantly active in making predictions
▶ These predictions are compared with what actually happens
▶ Mismatches (prediction errors) lead to updates in the brain

�



�
	

�
�

�
�“The human brain is a Bayesian prediction & correction engine”
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My own (logical) interests/work
▶ There are two update rules, by Judea Pearl (1936) and by Richard

Jeffrey (1926 – 2002)
• They both have clear formulations using channels — see later
• What are the differences? When to use which rule?

▶ Intriguing question: does the human mind use Pearl’s or Jeffrey’s
rule — within predictive coding theory
• cognitive science may provide an answer

▶ Here: what about machine learning algorithms, like Expectation-
Maximisation (EM) and Latent Dirichlet Allocation (LDA)?

▶ BJ, The Mathematics of Changing one’s Mind, via Jeffrey’s or via Pearl’s update
rule, Journ. of AI Research, 2019

▶ BJ, Learning from What’s Right and Learning from What’s Wrong, MFPS’21
▶ BJ & Dario Stein, Pearl’s and Jeffrey’s Update as Modes of Learning in

Probabilistic Programming, MFPS’23
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Example, medical test, part I

▶ Consider a disease with a priori probability (or ‘prevalence’) of 10%

▶ There is a test for the disease with:
• (‘sensitivity’) If someone has the disease, then the test is positive

with probability of 90%
• (‘specificity’) If someone does not have the disease, there is a

95% chance that the test is negative.

▶ Computing the predicted positive test probability yields: 13.5%

▶ The test is performed, under unfavourable circumstances like bad
light, and we are only 80% sure that the test is positive. What is the
disease likelihood?

▶ Updating with

{
Pearl’s rule gives: 26% disease likelihood

Jeffrey’s rule gives: 54%

▶ Jeffrey is more than twice as high as Pearl. Which should a doctor use?
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Example, medical test, part II, with plots

prior disease distribution

predicted test observed test

Pearl-updated disease Jeffrey-updated disease
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Distributions (finite, discrete)

A distribution (or state) over a set X is a formal finite convex sum:∑
i ri | xi ⟩ ∈ D(X ) where

{
ri ∈ [0, 1], with

∑
i ri = 1

xi ∈ X

▶ Distributions can also be described as functions σ : X → [0, 1] with
finite support and

∑
x σ(x) = 1

▶ This D is the distribution monad on Sets

▶ A Kleisli map X → D(Y ) is also called a channel, and written as
X → Y , with special arrow.

▶ For σ ∈ D(X ) and c : X → Y we have Kleisli extension / bind /
state transformation / prediction: c =≪σ ∈ D(Y )

▶ Explicitly, if σ =
∑

i ri | xi ⟩, prediction along channel c is:

c =≪σ :=
∑

i ri · c(xi ) =
∑
y∈Y

(∑
i ri · c(xi )(y)

) ∣∣y 〉.
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The disease-test example: state & channel

▶ Use sets D = {d , d⊥} for disease (or not) and T = {p, n} for
positive and negative test outcomes

▶ The prevalence state / distribution is:

prior = 1
10 | d ⟩+ 9

10 | d
⊥ ⟩.

▶ Testing is done via the channel test : D → D(T ) with:

test(d) = 9
10 | p ⟩+

1
10 | n ⟩ and test(d⊥) = 1

20 | p ⟩+
19
20 | n ⟩.

(Recall: sensitivity is 90% = 9
10 , specificity is 95% = 19

20 )

▶ The predicted test distribution is:

test =≪prior = 27
200 | p ⟩+

173
200 | n ⟩ = 0.135| p ⟩+ 0.865| n ⟩.

This gives the 13.5% likelihood of positive tests.

Page 9 of 27 Jacobs Wollic, Halifax, July. 12, 2023 EM & LDA via Jeffrey
Mathematical background



Multisets (aka. bags)

▶ A multiset is a ‘subset’ in which elements may occur multiple times
• for instance: 3|R ⟩+ 2|G ⟩+ 5|B ⟩
• in general:

∑
i ni | xi ⟩ of elements xi with multiplicity ni ∈ N

▶ Typical examples:
• coloured balls in an urn
• votes per candidate in an election
• solutions of a (polynomial) equation
• data items, like age of study participants (in years)

▶ Frequentist learning turns a (non-empty) multiset into a distribution
via normalisation:

Flrn
(∑

i ni | xi ⟩
)
:=

∑
i

ni
n
| xi ⟩ where n :=

∑
i ni .

▶ e.g. Flrn
(
3|R ⟩+ 2|G ⟩+ 5|B ⟩

)
= 3

10 |R ⟩+ 2
10 |G ⟩+ 5

10 |B ⟩.
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Divergence between distributions/states

For ω, ρ ∈ D(X ) the Kullback-Leibler divergence, or KL-divergence, or
simply divergence, of ω from ρ is:

DKL(ω, ρ) :=
∑
x∈X

ω(x) · log
(
ω(x)

ρ(x)

)
.

It is one standard way to compare distributions

Lemma (Basic divergence properties)
(1) DKL(ω, ρ) ≥ 0, with DKL(ω, ρ) = 0 iff ω = ρ

(2) But: DKL(ω, ρ) ̸= DKL(ρ, ω), in general
(3) Also (but not used): DKL

(
c =≪ω, c =≪ρ

)
≤ DKL(ω, ρ)

(4) And: DKL
(
ω ⊗ ω′, ρ⊗ ρ′

)
= DKL

(
ω, ρ

)
+ DKL

(
ω′, ρ′

)
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Predicates and transformations

A predicate on a set X is a function p : X → [0, 1].
▶ Each subset/event E ⊆ X forms a ‘sharp’ predicate, via the indicator

function 1E : X → [0, 1]
▶ For each x ∈ X write 1x = 1{x} for the point predicate, sending

x ′ ̸= x to 0 and x to 1.

Given a channel c : X → Y and a predicate q on Y , one defines predicate
transformation c ≫= q, as predicate on X .
Explicitly, on x ∈ X ,(

c ≫= q
)
(x) :=

∑
y∈Y

c(x)(y) · q(y).

Note: state tranformation =≪ goes in forward direction, along the
channel, and predicate transformation ≫= goes backward.
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Validity and conditioning

(1) For a state ω on a set X , and a predicate p on X define validity as:

ω |= p :=
∑
x∈X

ω(x) · p(x) ∈ [0, 1]

It describes the expected value of p in ω.

(2) If ω |= p is non-zero, we define the conditional distribution ω|p as:

ω|p(x) :=
ω(x) · p(x)
ω |= p

that is ω|p =
∑
x∈X

ω(x) · p(x)
ω |= p

∣∣x 〉.
It’s the normalised product of ω and p.

Link with traditional notation for E ,D ⊆ X , and ω implicit

P(E ) = ω |= 1E and P(D | E ) = ω|1E
|= 1D .
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Validity and conditioning example

▶ Take X = {1, 2, 3, 4, 5, 6} with state dice ∈ D(X )

• Explicitly: dice = 1
6 | 1 ⟩+

1
6 | 2 ⟩+

1
6 | 3 ⟩+

1
6 | 4 ⟩+

1
6 | 5 ⟩+

1
6 | 6 ⟩

▶ Take the predicate evenish : X → [0, 1]
evenish(1) = 1

5 evenish(3) = 1
10 evenish(5) = 1

10

evenish(2) = 9
10 evenish(4) = 9

10 evenish(6) = 4
5

▶ The validity of evenish for our fair dice is:

dice |= evenish =
∑

x
dice(x) · evenish(x) = 1

2 .

▶ If we take evenish as evidence, we can update our dice state and get:

dice
∣∣
evenish =

∑
x

dice(x)·evenish(x)
dice|=evenish

∣∣x 〉
=

1/6·1/5
1/2

∣∣1〉+ 1/6·9/10
1/2

∣∣2〉+ 1/6·1/10
1/2

∣∣3〉+ 1/6·9/10
1/2

∣∣4〉+ 1/6·1/10
1/2

∣∣5〉+ 1/6·4/5
1/2

∣∣6〉
= 1

15

∣∣1〉+ 3
10

∣∣2〉+ 1
30

∣∣3〉+ 3
10

∣∣4〉+ 1
30

∣∣5〉+ 4
15

∣∣6〉.
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Two basic results about validity |=

Theorem (Validity and transformation)
For channel c : X → Y , state σ on X , predicate q on Y ,

c =≪σ |= q = σ |= c ≫= q

Theorem (Validity increase)
For a state ω and predicate p (on the same set, with non-zero validity),

ω|p |= p ≥ ω |= p

Informally, absorbing evidence p into state ω, makes p more true.
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The “dagger” of a channel: Bayesian inversion

Assume a channel c : X → Y and a state σ ∈ D(X ).
▶ For an element y ∈ Y we can form:

(1) the point predicate 1y on Y
(2) its transformation c ≫= 1y along c , as predicate on X
(3) the updated state σ|c ≫= 1y ∈ D(X ).

▶ This yields an inverted channel, the “dagger”

Y ◦
c†σ // X with c†σ(y) := σ|c ≫= 1y

▶ This forms a dagger functor on a symmetric monoidal category.
• see e.g. Clerc, Dahlqvist, Danos, Garnier in FoSSaCS 2017
• with disintegration: Cho-Jacobs in MSCS’19; Fritz in AIM’20
• such a dagger / inversion is common in quantum theory
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Pearl and Jeffrey, formulated via channels (JAIR’19)

Set-up:
▶ a channel c : X → Y with a (prior) state σ ∈ D(X ) on the domain
▶ evidence on Y , that we wish to use to update σ

▶ Pearl’s update rule
(1) Evidence is a predicate q on Y
(2) Updated state:

σP := σ|c ≫= q

▶ Jeffrey’s update rule
(1) Evidence is state τ on Y
(2) Updated state:

σJ := c†σ =≪τ =
∑
y∈Y

τ(y) ·
(
σ|c ≫= 1y

)
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Back to the running disease-test example

Recall that we had 80% certainty of a positive test.
▶ Pearl’s update rule

(1) Evidence is predicate q = 4
5 · 1p + 1

5 · 1n,
(2) Updated state:

Pearl-posterior := prior|test ≫= q = 74
281 | d ⟩+ 207

281 | d
⊥ ⟩

≈ 0.26| d ⟩+ 0.74| d⊥ ⟩

▶ Jeffrey’s update rule
(1) Evidence is state τ = 4

5 | p ⟩+
1
5 | n ⟩,

(2) Updated state:

Jeffrey-posterior := test†prior =≪τ = 278
519 | d ⟩+ 241

519 | d
⊥ ⟩

≈ 0.54| d ⟩+ 0.46| d⊥ ⟩
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Key results about Pearl & Jeffrey updates

Theorem
Let c : X → Y be a channel, with prior state σ ∈ D(X ).
(1) Pearl increases validity: for a predicate q on Y ,

(c =≪σP) |= q ≥ (c =≪σ) |= q for σP = σ|c ≫= q.

(2) Jeffrey decreases divergence: for a state τ on Y ,

DKL
(
τ, c =≪σJ

)
≤ DKL

(
τ, c =≪σ

)
for σJ = c†σ =≪τ.

▶ Pearl is learning by encouragment, Jeffrey by discouragement
▶ The proof for Pearl is easy, but not for Jeffrey, see MFPS’21 paper
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EM background / set-up

▶ inputs:
• a multiset ψ of data items on a set Y
• a finite set X of classification labels

▶ method: determine
• a mixture ω ∈ D(X ) of labels
• a channel c : X → D(Y ), probabilistically mapping labels to data

▶ goal:
• minimal divergence DKL

(
Flrn(ψ), c =≪ω

)

In practice:
▶ the channel is of a parametrised class, written as c[θ]
▶ the goal is hardly ever made explicit in the literature
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EM, via iterations

▶ Recall, data multiset ψ is given, plus set X of labels.

▶ Initialisation: choose arbitrary ω(0) ∈ D(X ) and parameter θ(0); set
c(0) := c[θ(0)] : X → Y

▶ E-step: use Jeffrey’s update rule in:

ω(n+1) :=
(
c(n)

)†

ω(n)
=≪Flrn(ψ) ∈ D(X )

▶ M-step: find minimal

θ(n+1) := argmin
θ

DKL

(
Flrn(ψ), c[θ] =≪ω(n+1)

)
(via solving a derivative-is-zero situation)
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EM correctness

We get a decrease of divergence with each step:

DKL

(
Flrn(ψ), c[θ(n+1)] =≪ω(n+1)

)
≤ DKL

(
Flrn(ψ), c[θ(n)] =≪ω(n+1)

)
since θ(n+1) is argmin

≤ DKL

(
Flrn(ψ), c[θ(n)] =≪

(
c[θ(n)]†

ω(n) =≪Flrn(ψ)
))

by defn of ω(n+1)

≤ DKL

(
Flrn(ψ), c[θ(n)] =≪ω(n)

)
by Jeffrey!
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EM example

Consider the multiset of data over {0, 1, . . . , 25}.

It consists of N = 1000 samples from the mixture of binomial
distributions:

1
2 · bin[N]

( 1
2

)
+ 1

3 · bin[N]
( 1

8

)
+ 1

6 · bin[N]
( 9

10

)
Aim: rediscover the mixture weights ( 1

2 ,
1
3 ,

1
6 ) and the biases ( 1

2 ,
1
8 ,

9
10 ).
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EM example, continued

round KL-div mixtures ω(n) biases θ(n)

0 0.853 0.477| 1 ⟩+0.354| 2 ⟩+0.169| 3 ⟩ 0.235, 0.389, 0.691

1 0.326 0.353| 1 ⟩+0.35| 2 ⟩+0.297| 3 ⟩ 0.159, 0.46, 0.754

2 0.132 0.321| 1 ⟩+0.454| 2 ⟩+0.225| 3 ⟩ 0.128, 0.478, 0.812

3 0.029 0.311| 1 ⟩+0.515| 2 ⟩+0.174| 3 ⟩ 0.122, 0.488, 0.872

4 0.011 0.309| 1 ⟩+0.535| 2 ⟩+0.156| 3 ⟩ 0.121, 0.493, 0.898

After 5 rounds we get pretty close to the original
▶ weights: 1

2 ,
1
3 ,

1
6

▶ biases 1
2 ,

1
8 ,

9
10

(The order is different, since labels are arbitrary)
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Latent Dirichlet Allocation (LDA)

▶ LDA is a probabilistic algorithm for topic modeling
• input:

– several documents, as multisets of words
– a set of topics

• output: channels
– Doc → D

(
Top

)
– Top → D

(
Wrd

)
▶ The algorithm also works iteratively

• the crucial role of Jeffrey’s rule is identified in the paper
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Concluding remarks

▶ Updating is one of the magical things in probabilistic logic
• it is a pillar of the AI-revolution
• it requires a proper logic, for “XAI” (explainable AI)

▶ The two update rules of Pearl and Jeffrey:
• can give wildly different outcomes — but agree on point evidence
• are not so clearly distinguished in the literature — probably

because fuzzy / soft predicates are not standard
• Pearl increases validity, Jeffrey decreases divergence
• the answers are “exclusive”, see paper: Pearl need not decrease

divergence, and Jeffrey need not increase validity
▶ Jeffrey’s role is made explicit in basic machine learning algorithms

EM and LDA
▶ Overal picture about Pearl versus Jeffrey remains unclear

• impression: in statistics, Jeffrey is used, unless there is a
conjugate prior situation. The fascination remains.
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Thanks for your attention!

For much more info, see my book-in-the-making:

Structured Probabilistic Reasoning

http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf
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