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Where we are, so far
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Naive picture of learning

“Nirnberger Trichter”
(Nurnberg Funnel)
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Alternative: predictive coding theory (Karl Friston et al)

» The human mind is constantly active in making predictions
» These predictions are compared with what actually happens
» Mismatches (prediction errors) lead to updates in the brain

[[ “The human brain is a Bayesian prediction & correction engine” B
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My own (logical) interests/work

» There are two update rules, by Judea Pearl (1936) and by Richard
Jeffrey (1926 — 2002)
e They both have clear formulations using channels — see later
e What are the differences? When to use which rule?
» Intriguing question: does the human mind use Pearl's or Jeffrey's
rule — within predictive coding theory
e cognitive science may provide an answer
» Here: what about machine learning algorithms, like Expectation-
Maximisation (EM) and Latent Dirichlet Allocation (LDA)?

» BJ, The Mathematics of Changing one’s Mind, via Jeffrey’s or via Pearl’s update
rule, Journ. of Al Research, 2019

BJ, Learning from What's Right and Learning from What's Wrong, MFPS'21

BJ & Dario Stein, Pearl’s and Jeffrey's Update as Modes of Learning in
Probabilistic Programming, MFPS'23

vy
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Example, medical test, part |

» Consider a disease with a priori probability (or ‘prevalence’) of 10%

» There is a test for the disease with:
e (‘sensitivity’) If someone has the disease, then the test is positive
with probability of 90%
o (‘specificity’) If someone does not have the disease, there is a
95% chance that the test is negative.

» Computing the predicted positive test probability yields: 13.5%

» The test is performed, under unfavourable circumstances like bad
light, and we are only 80% sure that the test is positive. What is the

disease likelihood?
_ . Pearl’s rule gives: 26% disease likelihood
» Updating with
Jeffrey's rule gives: 54%

» Jeffrey is more than twice as high as Pearl. Which should a doctor use?
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Example, medical test, part Il, with plots

prior disease distribution

predicted test observed test

Pearl-updated disease Jeffrey-updated disease
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Where we are, so far

Mathematical background
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Distributions (finite, discrete)

A distribution (or state) over a set X is a formal finite convex sum:
€ [0,1], with =1
S.nlx) € DX)  where { i € [0.1], with D5
xi € X
» Distributions can also be described as functions o: X — [0, 1] with
finite support and >~ o(x) =1
» This D is the distribution monad on Sets

» A Kleisli map X — D(Y) is also called a channel, and written as
X <> Y, with special arrow.

» For 0 € D(X) and ¢: X = Y we have Kleisli extension / bind /
state transformation / prediction: ¢ »=0 € D(Y)

» Explicitly, if o = >, rj| xi ), prediction along channel c is:

cy=o =) nc(x) = Z (Z; fi'C(Xi)(Y)) |y)-

yey
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The disease-test example: state & channel
» Use sets D = {d, d*} for disease (or not) and T = {p, n} for
positive and negative test outcomes
» The prevalence state / distribution is:
prior = 1—10| d)+ 1%| d+).
» Testing is done via the channel test: D — D(T) with:
test(d) = 5| p) + 15/ n) and test(d*) = %|p) + 32| n).
(Recall: sensitivity is 90% = 5, specificity is 95% = 1)
» The predicted test distribution is:
test »= prior = 25| p) + 33| n) = 0.135|p) + 0.865| n).

This gives the 13.5% likelihood of positive tests.
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Multisets (aka. bags)

» A multiset is a ‘subset’ in which elements may occur multiple times
e forinstance: 3|R)+2|G)+5|B)
e in general: >, n;| x;) of elements x; with multiplicity n; € N
» Typical examples:
e coloured balls in an urn
e votes per candidate in an election
e solutions of a (polynomial) equation
e data items, like age of study participants (in years)

» Frequentist learning turns a (non-empty) multiset into a distribution
via normalisation:

Flrn(z,. n,-|x,->) = %|x;) where n = 3" n;.

> eg. F]rn<3|R>+2|G>+5|B>) —3|R)+3|G)+3|B).
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Divergence between distributions/states

For w, p € D(X) the Kullback-Leibler divergence, or KL-divergence, or
simply divergence, of w from p is:

Dxr(w,p) =) w(x)-log (w(x)> :

xeX m

It is one standard way to compare distributions

Lemma (Basic divergence properties)

(1) Dikr(w,p) >0, with Dgr(w,p) =0 iffw=p

(2) But: Dkr(w, p) # Dxkr(p,w), in general

(3) Also (but not used): Dkr(c »= w, ¢ »= p) < Dgr(w, p)
(4) And: Dgr(w®w', p® p') = Dgr(w, p) + Dxr (o', p')
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Predicates and transformations

A predicate on a set X is a function p: X — [0, 1].

» Each subset/event E C X forms a ‘sharp’ predicate, via the indicator
function 1g: X — [0,1]

» For each x € X write 1, = 1,4 for the point predicate, sending
x" # x to 0 and x to 1.

Given a channel ¢: X = Y and a predicate g on Y, one defines predicate
transformation ¢ = ¢, as predicate on X.

Explicitly, on x € X,

(c = q) (x) = > c(x)(¥) - ay)-

yey

Note: state tranformation Y= goes in forward direction, along the
channel, and predicate transformation =¢ goes backward.
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Validity and conditioning

(1) For a state w on a set X, and a predicate p on X define validity as:
wkEp = Z w(x) - p(x) € [0,1]
xeX
It describes the expected value of p in w.

(2) If w [= p is non-zero, we define the conditional distribution w|, as:

that is wlp = Zw(w)o—):pp(x)|x>

w9 p)

wlol) = TP >

It's the normalised product of w and p.

Link with traditional notation for E, D C X, and w implicit

P(E) = w1 and P(D|E) = wh, F 1p.
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Validity and conditioning example

» Take X ={1,2,3,4,5,6} with state dice € D(X)

o Explicitly: dice = 2|1)+2|2)+ 1[3) + :[4) + £|5) + £|6)
» Take the predicate evenish: X — [0, 1]

evenish(1) = 1

5 evenish(3) = 15 evenish(5) =
evenish(2) = % evenish(4) = % evenish(6) =

» The validity of evenish for our fair dice is:

(1F ,_.
o

dice |= evenish = Z dice(x) - evenish(x) = %

» If we take evenish as evidence, we can update our dice state and get:

. _ dice(x)-evenish(x)
dlce‘evenish - x  dicel=evenish >

- % | 1> + 1/5172/10 | 2> + 1/51/12/10 | 3> + 1/51-/92/10 | 4> + 1/61/12/10 } 5> 1/:/:/5 | 6>

= 15/1) + 5012) + 36/3) + 5614) + 30[5) + 556)-
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Two basic results about validity =

Theorem (Validity and transformation)

For channel c: X < Y, state o on X, predicate g on Y,
cy=0kFq = olFcxgq

Theorem (Validity increase)

For a state w and predicate p (on the same set, with non-zero validity),
whlEp = wEp

Informally, absorbing evidence p into state w, makes p more true.
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The “dagger”’ of a channel: Bayesian inversion

Assume a channel ¢: X <> Y and a state o € D(X).

» For an element y € Y we can form:

(1) the point predicate 1, on Y

(2) its transformation ¢ = 1, along ¢, as predicate on X
(3) the updated state o|.«1, € D(X).

» This yields an inverted channel, the “dagger”

t
CO' .

Y —= X with ciy) = olexa,

» This forms a dagger functor on a symmetric monoidal category.
e see e.g. Clerc, Dahlgvist, Danos, Garnier in FoSSaCS 2017
e with disintegration: Cho-Jacobs in MSCS'19; Fritz in AIM’'20
e such a dagger / inversion is common in quantum theory
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Pearl and Jeffrey, formulated via channels (JAIR'19)

Set-up:

» a channel c: X = Y with a (prior) state o € D(X) on the domain
» evidence on Y, that we wish to use to update o

» Pearl’s update rule

(1) Evidence is a predicate g on Y
(2) Updated state:
op = Olcxgq

» Jeffrey’'s update rule
(1) Evidence is state 7 on Y
(2) Updated state:

gy = cly=T = Z m(y)- (U|c:<<1y)

yey
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Back to the running disease-test example

Recall that we had 80% certainty of a positive test.
» Pearl’s update rule

(1) Evidence is predicate g = 2 - 1, +

: 1n,
(2) Updated state:

il

Pearl-posterior := prior|sest~cq = ogr|d) + 22| d*)

0.26/d) +0.74|d* )

Q

» Jeffrey’s update rule
() Ut s oI EI
Jeffrey-posterior = test;mr =1 = Z8|d)+ 21| d*)
~ 0.54|d) + 0.46] d* )
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Key results about Pearl & Jeffrey updates

Let c: X =» Y be a channel, with prior state o € D(X).
(1) Pearl increases validity: for a predicate q on Y,

(c»=0op)lEq > (c»=0)=q for op = 0lcxq.
(2) Jeffrey decreases divergence: for a state T on Y,

Dy, (7‘, c Y= UJ) < Dkr, (7‘, (o= o) for oy = Cj; =T

» Pearl is learning by encouragment, Jeffrey by discouragement
» The proof for Pearl is easy, but not for Jeffrey, see MFPS'21 paper
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Where we are, so far

Expectation Maximisation (EM)
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EM background / set-up

» inputs:
e a multiset 1) of data items on a set Y
e a finite set X of classification labels

» method: determine
e a mixture w € D(X) of labels
e achannel ¢: X — D(Y), probabilistically mapping labels to data

» goal:
e minimal divergence Dk, (Flrn(w), c Y= w)

In practice:
» the channel is of a parametrised class, written as c[d]
» the goal is hardly ever made explicit in the literature
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EM, via iterations

» Recall, data multiset 1) is given, plus set X of labels.

» Initialisation: choose arbitrary w(®) € D(X) and parameter 6(); set
c© = c[0]: X = Y

» E-step: use Jeffrey's update rule in:

n

w(rtl) = (c(")) )= FIrn(y) € D(X)

w(n

» M-step: find minimal

6(n+1) = argmin Dk, (Flrn(¢), clf] »= w(”ﬂ))
0

(via solving a derivative-is-zero situation)
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EM correctness

We get a decrease of divergence with each step:

D ) 6 )
< Dxkr, (F]rn(lﬂ), c[0(M] »= w("+1)> since (1) is argmin

IN

Dkr, (Flrn(z/;), c[o(m] »= (C[G(")]I)(,,) »= F]rn(i/)))) by defn of w("+1)
< Dgkr, (Flrn(@[}), c[o(m] »= w(”)) by Jeffrey!
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EM example

Consider the multiset of data over {0,1,...,25}.

It consists of N = 1000 samples from the mixture of binomial
distributions:

Lo bin[N](%) + L bin[N](3) +

Aim: rediscover the mixture weights (3, 3, §)

bin[N] (%)

4+ 1.
6
and the biases (3, 5, 35)-
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EM example, continued

round H KL-div ‘ mixtures w(" ‘ biases 6("
0 0.853 | 0.477)1)+0.354/2)+0.169|3) | 0.235, 0.389, 0.691
1 0.326 0.3531)+0.35]2)+0.297| 3) 0.159, 0.46, 0.754
2 0.132 | 0.321]1)+0.454/2)+0.225/3) | 0.128, 0.478, 0.812
3 0029 | 0.311/1)+0.515/2)+0.174|3) | 0.122, 0.488, 0.872
4 0011 | 0.309/1)+0.535/2)+0.156/3) | 0.121, 0.493, 0.898

After 5 rounds we get pretty close to the original

» weights: %, %,%

. 11 9
» biases 5,3, 15

(The order is different, since labels are arbitrary)
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Latent Dirichlet Allocation (LDA)

» LDA is a probabilistic algorithm for topic modeling
e input:
— several documents, as multisets of words
— a set of topics
e output: channels
— Doc — ’D(Top)
- Top — ’D(Wrd)

» The algorithm also works iteratively
e the crucial role of Jeffrey's rule is identified in the paper
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Where we are, so far

Conclusions
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Concluding remarks

» Updating is one of the magical things in probabilistic logic
e it is a pillar of the Al-revolution
e it requires a proper logic, for “XAI" (explainable Al)
» The two update rules of Pearl and Jeffrey:
e can give wildly different outcomes — but agree on point evidence
e are not so clearly distinguished in the literature — probably
because fuzzy / soft predicates are not standard
Pearl increases validity, Jeffrey decreases divergence
the answers are “exclusive”, see paper: Pearl need not decrease
divergence, and Jeffrey need not increase validity
» Jeffrey’s role is made explicit in basic machine learning algorithms
EM and LDA
» Overal picture about Pearl versus Jeffrey remains unclear
e impression: in statistics, Jeffrey is used, unless there is a
conjugate prior situation. The fascination remains.
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Thanks for your attention!

For much more info, see my book-in-the-making:

Structured Probabilistic Reasoning

http://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf
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