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Skolemization in theorem proving: resolution refutation

I Skolemize the formula,

I transform the Skolemized formula into clause form,

I refute the clause form with the resolution method.

Most prominent method of Skolemization: standard (structural)
Skolemization

We present different Skolemizations that are more effective than standard
Skolemization.
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Standard Skolemization

Example
Consider the formula

∀x(∃yP(y) ∨ ∀u∃v(R(x , u) ∨ Q(x , v)).

Then its standard Skolemization is

∀x(P(f (x)) ∨ ∀u(R(x , u) ∨ Q(x , g(x , u)).

The quantified variable y is replaced by f (x), and the quantified variable
v is replaced by g(x , u), where f and g are fresh Skolem function
symbols.
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Andrews Skolemization
A ... closed first-order formula.

I A does not contain positive existential or negative universal
quantifiers: skA(A) = A.

I A contains positive existential or negative universal quantifiers,
(Qy)B is a subformula of A and (Qy) is the first positive existential
or negative universal quantifier occurring in A:

I (Qy)B has no free variables which are quantified by a negative
existential or positive universal quantifier:

skA(A) = skA(A\(Qy){y ← c}),

c is a constant symbol not occurring in A.
I (Qy)B has n variables x1, . . . , xn which are quantified by a

negative existential or positive universal quantifier from
outside:

skA(A) = skA(A\(Qy){y ← f (x1, . . . , xn)}),

f is a function symbol not occurring in A.
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Example
Consider the formula

∀x(∃yP(y) ∨ ∀u∃v(R(x , u) ∨ Q(x , v)).

Then its Andrews Skolemization is

∀x(P(c) ∨ ∀u(R(x , u) ∨ Q(x , g(x , u)).

Here, the quantified variable y is replaced by the Skolem constant c (as x
does not occur in P(y), and the quantified variable v is replaced by
g(x , u), as x and u occur in R(x , u) ∨ Q(x , v).

Recall its standard Skolemization

∀x(P(f (x)) ∨ ∀u(R(x , u) ∨ Q(x , g(x , u)).
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Theorem
Andrews Skolemization preserves soundness.

Proof.
Assume the innermost still existing quantifier is existential (analogously
for the case of an universal quantifier). Then

A(. . . ∃xB(x , y) . . .) is satisfiable, where the occurrence of ∃xB(x , y) is
positive

⇒ A(. . .F (y) . . .) ∧ ∀y(F (y) ⊃ ∃xB(x , y)) ∧ ∀y(∃xB(x , y) ⊃ F (y)) is
satisfiable

⇒ A(. . .F (y) . . .) ∧ ∀y(F (y) ⊃ B(f (y), y)) ∧ ∀y(B(f (y), y) ⊃ F (y)) is
satisfiable by standard Skolemization with f and instantiation

⇒ A(. . .B(f (y), y) . . .) is satisfiable

⇒ A(. . . ∃xB(x , y) . . .) is satisfiable.
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Theorem (First speed-up result, [B&L22])
There is a sequence of refutable formulas A1,A2, . . . such that the length
of the shortest resolution refutations of their standard clause forms with
standard Skolemization cannot be elementarily bounded in the length of
the shortest resolution refutations of their standard clause forms with
Andrews Skolemization.

Proposition
Standard Skolemization and Andrews Skolemization coincide on prenex
formulas.
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Atomic Skolemization

F ... closed NNF formula with distinct bound variables V (F ). Its atomic
Skolemization AS(F ) is computed by the following steps:

1. L0 = {{γ1, . . . , γn} | {γ1, . . . , γn} ∈ V (F ) (and 6= ∅) which occur
jointly in an atom of F }.

2. σ0 = id (σn will substitute Skolem semi-terms for bound variables).
3. Ln = Ln\{γ1, . . . , γn} if {γ1, . . . , γn} is not maximal in Ln w.r.t.

inclusion.
4. while Ln 6= ∅

6. Let x be the <F -minimal variable in Ln and
∆n+1 = {{γ1, . . . , γn} | {γ1, . . . , γn} in Ln containing x}.
Let x , y all the variables in ∆n+1.

7. If x is existentially quanified:
Ln+1 = Ln\∆n∪{y} if {y} is maximal in Ln\∆n, Ln\∆n otherwise,
σn+1 = σn ∪ {x ← f (y)},where f a new function symbol.

8. If x is universally quantified:
Ln+1 = Ln\∆n∪{y} if {y} is maximal in Ln\∆n, Ln\∆n otherwise.

9. Ln = ∅ ⇒ σ = σn.
10. Let F ′ be F after deletion of ∃. Then AS(F ) = F ′σ.
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Example
Let F be ∀x(∃yP(y) ∨ ∀u∃v(R(x , u) ∨ Q(x , v)).

L0 = {{y}, {x , u}, {x , v}}, with the ordering v <F u <F y <F x .

v : ∃ ⇒ L1 = {L0\{x , v}} ∪ {x}, σ1 = σ0 ∪ {v ← h(x)}.
u : ∀ ⇒ L2 = {L1\{x , u}}, σ2 = σ1 ({x} is already in L1).

y : ∃ ⇒ L3 = L2\{y}, σ3 = σ2 ∪ {y ← c}.
x : ∀ ⇒ L4 = L3\{x} = L3\L3 = ∅, σ4 = σ3.

F ′ is F after deletion of all occurrences of ∃, and F ′σ4 is

∀x(P(c) ∨ ∀u(R(x , u) ∨ Q(x , h(x)))

which is AS(F ).
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Theorem
Atomic Skolemization preserves soundness.

Proof.

Step 4. in the AS-algorithm: Ln 6= 0 and x the <F -minimal variable.

∆n+1 = {{γ1, . . . , γn} | {γ1, . . . , γn} in Ln containing x},

x , y all the bound variables in ∆n. Let ∃xA(x , y) be the corresponding
subformula.

|= ∀y∀z(∃xA(x , y)↔ ∃x

(×)︷ ︸︸ ︷∨
i

(
∧
j

Bi,j(x , y i,j)) ∧ Ci (y , z)),

where y i = ∪j(y i,j), (×) is a suitable CNF where the Bi,j atomic contain
x and the Ci atomic do not.

|= ∀y∀z(∃x(×)↔

(××)︷ ︸︸ ︷∨
i

(∃x
∧
j

Bi,j(x , y i,j)) ∧ Ci (y , z)), y i,j ⊆ y
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|= ∀y∀z((××)→

(×××)︷ ︸︸ ︷∨
i

∧
j

Bi,j(fi (y), y i,j)) ∧ Ci (y , z))

by Andrews Skolemization

|= ∀x∀z((×××)→

(××××)︷ ︸︸ ︷∨
i

(
∧
j

Bi,j(f (y), y)) ∧ Ci (y , z))

as Skolem functions can be combined over disjunctions

|= ∀x∀z((××××)→ ∃x

(×)︷ ︸︸ ︷∨
i

∧
j

Bi,j(x , y) ∧ Ci (y , z))
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Now let ∀xA(x , y) be the corresponding subformula.

|= ∀y∀z(∀xA(x , y)↔ ∀x(

(◦)︷ ︸︸ ︷∧
i

(
∨
j

Bi,j(x , y i,j) ∧ Ci (y , z))),

where y i = ∪j(y i,j), (◦) is a suitable CNF where the Bi,j contain x and
the Ci,j do not.

|= ∀y∀z(∀x(◦)↔
∧
i

(∀x
∨
j

Bi,j(x , y i,j)) ∧ Ci (y , z))).

Now introduce new predicates Fi and add suitable

∀y(F (y i,j)↔ ∀x
∨
j

Bi,j(x , y i,j))

and continue to work with the formula after replacement.

Semi-subformulas containing x disappear from the main formula.
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As an application we obtain:

Collorary
The monadic fragment of classical first-order logic is decidable.

Proof.
For a monadic function-free formula A, AS(A) contains only constants as
Skolem functions, and therefore it is decidable whether a Herbrand
expansion for AS(A) exists.

Proposition
The arity of the Skolem function symbols w.r.t. atomic Skolemization ≤
the arity of the Skolem function symbols w.r.t. Andrews Skolemization ≤
the arity of Skolem function symbols in standard Skolemization. The
number of introduced Skolem function symbols is not increased.

13/21



Speed-up Result for Cut-Free Proofs

τ = {QxA(x)∨QDxA(x) closed | Q quantifier string, QD dual quantifier
sequence, A atomic}.

Theorem
There is a sequence of sequents A1 →,A2 →, . . . ,Ai →, where
A1, . . . ,Ai are in NNF containing universal quantifiers only such that

1. there is a bound for a sequence of cut-free LK-proofs for

∆1,A1 →,∆2,A2 →, . . .

elementary in the complexity of A1 →,A2 →, . . . for suitable
∆i ⊆ τ .

2. there is no elementary bound for any sequence of cut-free proofs for

A1 →,A2 →, . . .

in the complexity of A1 →,A2 →, . . . ,Ai →.

14/21



H(A), where A ∈ τ (A = QxA(x) ∨ QDxA(x)) is the prenex version of A
such that ∀ always stands in front of the dual ∃, and H(∆), where
∆ ⊆ τ , is {H(A) | A ∈ ∆}.

Theorem
There is a sequence of formulas B1,B2 . . . such that

1. there is a bound for a sequence of cut-free proofs for
AS(B1)→,AS(B2)→, . . . elementary in the complexity of
B1,B2 . . ..

2. there is no elementary bound for any sequence of cut-free proofs for
sk(B1)→, sk(B2)→, . . . in the complexity of B1,B2 . . ..

3. there is no elementary bound for any sequence of cut-free proofs for
skA(B1)→, skA(B2)→, . . . in the complexity of B1,B2 . . ..

15/21



Proof.
Standard Skolemization and Andrews Skolemization coincide for prenex
formulas ⇒ we argue only for standard Skolemization.

Bi =
∧

H(∆i )∧Ai
from the last theorem. Assume that there is an

elementary bound for the cut-free proofs of

sk(B1)→, sk(B2)→, . . . .

Therefore, there is an elementary bound for cut-free proofs of

sk(C 1
1 ), . . . sk(C 1

n ), sk(A′1)→, sk(C 2
1 ), . . . sk(C 2

n ), sk(A′2)→, . . . ,

where ∆i is C i
1, . . .C

i
n and A′i is obtained from Ai by shifting the universal

quantifiers outside.

By [B&Leitsch1994] there is an elementary bound for the corresponding
Herbrand sequent.
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Skolem terms always depend on the dual position, w.l.o.g.

D(. . . tj . . .) ∨ ¬D(. . . fi (. . . tj . . .) . . .).

Replace all occurrences of fi (. . . tj . . .) inside-out by tj . The Herbrand
expansion is propositionally valid, and the term is replaced on all
positions by the same term ⇒ the result remains valid.

All Skolem terms disappear, and the original Skolemized formulas in
H(∆) are transformed into formulas of the form Ei ∨ ¬Ei .

The size of the remaining sequents is elementarily bounded and therefore
the cut-free proofs are elementarily bounded.

⇒ Contradiction to the last theorem.
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Now consider AS(B1),AS(B2), . . . .

The bound variables in QxA(x) and QDxA(x) in
QxA(x) ∨ QDxA(x) ∈ ∆i are distinct, which does not change when in
prenex form.
⇒ the atomic Skolemization of

H(QxA(x) ∨ QDxA(x))

is the standard Skolemization of QxA(x) ∨ QDxA(x).

Deskolemization of cut-free proofs is exponential [B&Hetzl&Weller2012]
⇒ the cut-free proofs of

AS(B1)→,AS(B2)→, . . .

are elementarily bounded.
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Cut-free Proofs and Resolution

A ... formula containing only positive existential or negative universal
quantifiers when written on the left side of the sequent sign (analogously
when written on the right side)

An admissible clause form construction consists of sequents A→ C and
C → A elementary in the complexity of A, where

1. C (the clause form) is a conjunction of universally quantified
disjunctions of literals,

2. A→ C and C → A are cut-free elementary derivable in the
complexity A.
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Theorem

1. Let ϕ be a cut-free LK-proof of the sequent
A1, . . . ,An → B1, . . . ,Bm with positive existential or negative
universal quantifiers only. Then there is a resolution refutation of an
admissible clause form of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm

elementary in the complexity of ϕ.

2. Let ϕ′ be a resolution refutation of an admissible clause form of
A1∧ . . .∧An ∧¬B1∧ . . .∧¬Bm. Then there is a cut-free LK-proof of

A1, . . . ,An → B1, . . . ,Bm

with positive existential or negative universal quantifiers only
elementary in the complexity of ϕ′.

Proof
See [B&L2022] or [Eder2013].
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Theorem
There is a sequence of formulas B1,B2 . . . such that

1. there is a bound for a sequence of resolution refutations of standard
clause forms of

AS(B1)→, AS(B2)→, . . .

elementary in the complexity of B1,B2 . . ..

2. there is no elementary bound for any sequence of resolution
refutations of standard clause forms of

sk(B1)→, sk(B2)→, . . .

in the complexity of B1, B2, . . ..

3. there is no elementary bound for any sequence of resolution
refutations of standard clause forms of

skA(B1)→, skA(B2)→, . . .

in the complexity of B1,B2, . . ..
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