
Compositionality: categorial variations on a theme

Michael Moortgat, Utrecht University

Tutorial, WoLLIC 2023, Halifax

A tutorial

Target audience logic/computer science background

Aim bird’s eye view of the architecture of ‘categorial’ grammars, and the design
choices for dealing with natural language form and meaning, and the relation between
these two.

More To Explore Some useful general references

▶ Moot & Retoré, 2012, The Logic of Categorial Grammars. A Deductive Account
of Natural Language Syntax and Semantics

▶ Moot, 2021, Type-logical investigations: proof-theoretic, computational and lin-
guistic aspects of modern type-logical grammars

Background: Lambek’s categorial type logics

The original presentation (‘Deductive systems as categories’) considers statements
A −→ B, i.e. derivability is modelled as a relation holding between types.

Pre-order laws

A −→ A

A −→ B B −→ C

A −→ C

Residuation laws

B −→ A\C iff A •B −→ C iff A −→ C/B

Structural laws
A • (B • C)←→ (A •B) • C

A •B −→ B •A
I •A←→ A←→ A • I

Pure residuation logic: NL [L61]; L=NL plus associativity [L58,88];

LP=L+commutativity, Lambek-Van Benthem calculus, a.k.a. MILL

Models: residuated monoids/groupoids

(N)L intended models for the syntactic calculi are the multiplicative systems freely
generated by the words of the language under concatenation.

Types as sets of expressions, i.e. subsets of a groupoid/semigroup/monoid ⟨M, ·⟩ with

A •B = {a · b ∈M | a ∈ A ∧ b ∈ B}
C/B = {a ∈M | ∀b∈B a · b ∈ C}
A\C = {b ∈M | ∀a∈A a · b ∈ C}
I = {1}

▶ groupoid [L61], types assigned to phrases, bracketed strings

▶ semigroup [L58], types assigned to strings, associative multiplication

▶ monoid [L88], multiplicative unit, empty string

LP Calculus of semantic types, abstracting from word order/constituent structure.

Parsing as deduction

Natural Deduction format left of turnstile: words instead of their types

paper

n

that

(n\n)/(s/np)

Bob

np

rejected

(np\s)/np np ⊢ np

rejected · np ⊢ np\s
/E

Bob · (rejected · np) ⊢ s
\E

(Bob · rejected) · np ⊢ s
Ar

Bob · rejected ⊢ s/np
/I

that · (Bob · rejected) ⊢ n\n
/E

paper · (that · (Bob · rejected)) ⊢ n
\E

▶ axiom leaves: lexical type assignments; Ar semi-associativity

▶ /, \E: slash Elim ≃ modus ponens; /, \I: slash Intro ≃ hypothetical reasoning

Alternative formats sequent calculus, display logic, proof nets, . . .

Natural Deduction

Structures, sequents Sequents Γ ⊢ A with A a type, Γ a structure.

Structures: trees with type formulas at the leaves:

Γ,∆ ::= A | Γ ·∆

where 2-place · is the structural counterpart of •.

Axiom, logical rules For the base logic NL, we have the axiom A ⊢ A and as logical
inference rules, for each connective an elimination rule and an introduction rule.

Γ ⊢ A ∆ ⊢ A\B
Γ ·∆ ⊢ B

\E
Γ ⊢ B/A ∆ ⊢ A

Γ ·∆ ⊢ B
/E

A · Γ ⊢ B
Γ ⊢ A\B

\I Γ ·A ⊢ B
Γ ⊢ B/A

/I

Γ ⊢ A ∆ ⊢ B
Γ ·∆ ⊢ A •B •I

∆ ⊢ A •B Γ[A ·B] ⊢ C

Γ[∆] ⊢ C
•E

Notation: Γ[∆] for a structure Γ containing a substructure ∆

N.D.: explicit structural rules

Postulate extensions of the base logic take the form of structural rules.

Formula variables ; structure variables (in context).

Associativity Compare right vs left rotation:

(A •B) • C −→ A • (B • C) ;
Γ[∆ · (∆′ ·∆′′)] ⊢ D

Γ[(∆ ·∆′) ·∆′′] ⊢ D
Ar

A • (B • C) −→ (A •B) • C ;
Γ[(∆ ·∆′) ·∆′′] ⊢ D

Γ[∆ · (∆′ ·∆′′)] ⊢ D Al

Semi-associativity NL + {Al,Ar} = fully associative L, but see

Zeilberger, LMCS 2019: Tamari order on well-bracketed strings/binary trees in terms
of a semi-associative calculus.

Grammars

A categorial grammar consists of a universal and a language-specific component.

▶ universal: a type calculus, (N)L

▶ language specific: a lexicon assigning each word a finite number of types

Language Given a categorial grammar G and a type B we write L(G,B) for the
strings of type B recognized by G. w1 · · ·wn ∈ L(G,B) if the following hold:

▶ (wi, Ai) ∈ Lex for 1 ≤ i ≤ n;

▶ Γ[A1,...,An] ⊢ B, for Γ an antecedent structure with yield A1, . . . , An

Idealization?

Proofs and terms: syntactic calculi (N)L/,\

Types, terms p atomic

A,B ::= p | A\B | B/A M,N ::= x | λrx.M | λlx.M | (M ⋉N) | (N ⋊M)

Wansing, 1990, Formulas-as-types for a Hierarchy of Sublogics of Int Prop Logic

Typing rules Axiom x : A ⊢ x : A var Γ,∆ all distinct

Γ · x : A ⊢M : B
Γ ⊢ λrx.M : B/A

I/
x : A · Γ ⊢M : B

Γ ⊢ λlx.M : A\B
I\

Γ ⊢M : B/A ∆ ⊢ N : A

Γ ·∆ ⊢ (M ⋉N) : B
E/

Γ ⊢ N : A ∆ ⊢M : A\B
Γ ·∆ ⊢ (N ⋊M) : B

E\

Compare: LP⊸ L extended with product commutativity, a.k.a. MILL, Multiplicative
Intuitionistic Linear Logic. In MILL, the slashes /, \ collapse to linear implication ⊸.

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A ⊸ B
(⊸ I) Γ ⊢M : A ⊸ B ∆ ⊢ N : A

Γ,∆ ⊢M N : B
(⊸ E)

Compositionality

Compositional translations

The classical view Homomorphism Montague 1970, Universal Grammar

Source
h−→Target

relating types/proofs of a Source logic to their Target counterparts.

A chained view Interpretation as a two-step process h′′ ◦ h′

Source
h′

−→Targetder
h′′

−→Targetlex

▶ h′ derivational semantics, source constants (words) as black boxes

▶ h′′ lexical semantics, unpacking word-internal semantics

Toy example: (N)L to LP/MILL

Source atoms: s, np, n; target atoms e (entities), t (truth values).

(N)Ls,np,n
/,\

⌈·⌉
−−−−−−→ LP/MILLe,t

⊸

Types ⌈s⌉ = t, ⌈np⌉ = e, ⌈n⌉ = e ⊸ t, ⌈A\B⌉ = ⌈B/A⌉ = ⌈A⌉⊸ ⌈B⌉.

Proofs ⌈x⌉ = x̃ translates Axioms; for Intro/Elim rules:

⌈λlx.M⌉ = ⌈λrx.M⌉ = λx̃.⌈M⌉ ⌈N ⋊M⌉ = ⌈M ⋉N⌉ = ⌈M⌉ ⌈N⌉

Example

M = paper⋊ (that⋉ λrx.(Bob⋊ (rejected⋉ x))) : n

⌈M⌉ = ((⌈that⌉ λx.((⌈rejected⌉ x) ⌈Bob⌉)) ⌈paper⌉) : e ⊸ t

Remark ⌈·⌉ sends source atoms to target types, not necessarily atomic.

Beyond linearity, MILL!
⊸

To express word-internal meaning recipes, we need expressivity beyond simple MILL:

▶ IL? too much, free copying (Contraction), deletion (Weakening)

▶ MILL+exponential for controlled copying/deletion, ILL ! too strong, Soft LL?

Target signature Bobe, rejectede→e→t, papere→t, ∧t→t→t, A→ B = !A ⊸ B

that(n\n)/(s/np)
⌈·⌉−→ λxλyλz.((y z) ∧ (x z))(e→t)→(e→t)→(e→t)

Substituting the lexical translations in ⌈M⌉ and simplifying:

⌈M⌉ = (⌈that⌉ λx.((⌈rejected⌉ x) ⌈Bob⌉)) ⌈paper⌉
= ([λxλyλz.((y z) ∧ (x z))] λx.((rejected x) Bob)) paper

= λx.((paper x) ∧ ((rejected x) Bob)) : e→ t

de Groote & Retoré, 1996, On the Semantic Readings of Proof Nets

Remark ⌈·⌉ sends source constants to target terms, not necessarily atomic.

Chameleon words: lexical polymorphism

Coordination represents another case of ostensible copying:

a (Alice sings)s and (Bob dances)s
b Alice (sings and dances)np\s
c Bob (criticized and rejected)(np\s)/np the paper
d (Alice praised)s/np but (Bob criticized)s/np the paper

Syntactically deriving (b–d) types from initial (s\s)/s goes beyond linearity:

...

(np · np\s) · ((s\s)/s · (np · np\s) ⊢ s

np · (np\s · ((s\s)/s · np\s) ⊢ s
Copy!

(s\s)/s ⊢ ((np\s)\(np\s))/(np\s)
/, \Intro

Generalized coordination

An alternative to copying in the syntax: type-restricted form of polymorphism

Partee & Rooth 1982, Generalized Conjunction and Type Ambiguity

Conjoinable types

▶ s ∈ CType;

▶ A\B,B/A ∈ CType if B ∈ CType, A ∈ Type

Generalized interpretation scheme ⊓X (infix): coordinator of type X → X → X

▶ P ⊓t Q := P ∧Q coordination in type t amounts to boolean conjunction

▶ P ⊓A→B Q := λxA.(P x) ⊓B (Q x) distributing the xA parameter over the
conjuncts

Remark Emms 1994, undecidability of general polymorphic L

Variations

Variations: source

Hybrid Typelogical Grammar (Kubota & Levine 2012,. . .) Layered architecture,
mixing Lambek slashes and linear implication ⊸

A,B ::= p | A\B | A/B A,B ::= A | A⊸ B

with L types: strings/concatenation; MILL⊸ types: functions string → string

see also Abrusci & Ruet, 1999

Abstract Categorial Grammar (De Groote 2001, . . .)

▶ LP/MILL⊸ for abstract syntax, Curry’s ‘tectogrammatical’ structure

▶ surface form, meaning composition, . . . derived from abstract source

▶ refinement of Chomsky hierarchy via type homomorphisms of growing complexity

purely applicative AS source

ACG: from abstract syntax to surface form

▶ Target signature: string as function type ∗⊸ ∗ (abbrev σ). Concat: composi-
tion; empty string: id function. Constants: word forms w :: σ

+ := λsri.s(r(i)) ϵ := λi.i

▶ type homomorphism: ⌈A⌉ = σ, for source atoms A.

▶ translating the abstract source constants:

constant source type ⌈·⌉ target type
paper n paper σ
that (np ⊸ s) ⊸ n ⊸ n λZs.s+ that+ (Z ϵ) (σσ)σσ
Bob np Bob σ
rejected np ⊸ np ⊸ s λsr.r + rejected+ s σσσ

M = ((⌈that⌉ λx.((⌈rejected⌉ x) ⌈Bob⌉)) ⌈paper⌉) : s
⌈M⌉ = paper+ that+ Bob+ rejected : σ

Variations: target

DisCoCat Compositionality, vector-based (Coecke et al 2010, . . .)

CCC A compact closed category (CCC) is monoidal, i.e. it has associative ⊗ with
unit I; and for every object there is a left and a right adjoint satisfying

Al ⊗A
ϵl−→ I

ηl

−→ A⊗Al A⊗Ar ϵr−→ I
ηr

−→ Ar ⊗A

In a symmetric CCC, the tensor moreover is commutative, and we can write A∗ for
the collapsed left and right adjoints.

FVect, linear maps concrete instance of sCCC

▶ unit I: the field R; bases: fixed, so V ∗ ∼= V one can ignore ·∗

▶ ϵ map: inner products; η map: identity tensor (with λ = 1) or multiples

ϵV : V ⊗ V 7→ R given by
∑
ij

vij(e⃗i ⊗ e⃗j) 7→
∑
i

vii

ηV : R 7→ V ⊗ V given by λ 7→
∑
i

λ(e⃗i ⊗ e⃗i)

From (N)L to sCCC

Types assign a vector space to the source atoms: ⌈np⌉ = ⌈n⌉ = N, ⌈s⌉ = S;

⌈A •B⌉ = ⌈A⌉ ⊗ ⌈B⌉ ⌈A/B⌉ = ⌈A⌉ ⊗ ⌈B⌉∗ ⌈A\B⌉ = ⌈A⌉∗ ⊗ ⌈B⌉

Proofs Syntactic derivations f : A −→ B in (N)L are interpreted as linear maps.

We give the translation for a categorical presentation equivalent to (display) sequent
calculus:

▶ axioms A ⊢ A with A atomic

▶ residuation rules

▶ monotonicity rules

Wijnholds & MM 2017, . . .

Interpretation: proofs

Identity, composition ⌈1A⌉ = 1⌈A⌉, ⌈g ◦ f⌉ = ⌈g⌉ ◦ ⌈f⌉

Residuation ⌈
f : A •B −→ C

�f : A −→ C/B

⌉

⌈�f⌉ = ⌈A⌉
1⌈A⌉ ⊗ η⌈B⌉−−−−−−−−−→ ⌈A⌉ ⊗ ⌈B⌉ ⊗ ⌈B⌉∗

⌈f⌉ ⊗ 1⌈B⌉∗−−−−−−−−−→ ⌈C⌉ ⊗ ⌈B⌉∗

⌈
g : A −→ C/B

�−1g : A •B −→ C

⌉

⌈�−1g⌉ = ⌈A⌉ ⊗ ⌈B⌉
⌈g⌉ ⊗ 1⌈B⌉−−−−−−−−→ ⌈C⌉ ⊗ ⌈B⌉∗ ⊗ ⌈B⌉

1⌈C⌉ ⊗ ϵ⌈B⌉−−−−−−−−−→ ⌈C⌉

similarly for �,�−1

Interpreting proofs

Monotonicity The case of parallel composition is immediate: ⌈f • g⌉ = ⌈f⌉ ⊗ ⌈g⌉.

For / we have

⌈
f : A −→ B g : C −→ D

f/g : A/D −→ B/C

⌉

where ⌈f/g⌉ =

⌈A⌉ ⊗ ⌈D⌉∗

⌈B⌉ ⊗ ⌈C⌉∗ ⊗ ⌈C⌉ ⊗ ⌈D⌉∗

⌈B⌉ ⊗ ⌈C⌉∗ ⊗ ⌈D⌉ ⊗ ⌈D⌉∗

⌈B⌉ ⊗ ⌈C⌉∗

⌈f⌉ ⊗ η⌈C⌉ ⊗ 1⌈D⌉∗

1⌈B⌉⊗⌈C⌉∗ ⊗ ⌈g⌉ ⊗ 1⌈D⌉∗

1⌈B⌉⊗⌈C⌉∗ ⊗ ϵ⌈D⌉

similarly for g\f

Example

Derivational semantics axiom links of the proof:

n0 · ((n1\n2)/(s3/np4) · (np5 · (np6\s7)/np8))
0,2,7,4,5
1,9,3,8,6

⊢ n9

Tensor contractions corresponding to the axiom links:

⌈M⌉ = paperi ⊗ thatijkl ⊗ bobm ⊗ rejectedmlk

N N∗ N N S∗ N N∗ S N∗ N∗

= N∗ ∋ δ
n,o,p,q,r

s,t,u,v,w papern ⊗ thatsouq ⊗ bobr ⊗ rejectedwpv

Lexical semantics

Frobenius operations Sadrzadeh c.s.

▶ Duplicate: V → V ⊗ V , embed a vector on diagonal of a matrix

▶ Delete: V → R, sum the elements of a vector

▶ Merge: V ⊗ V → V , retrieve diagonal of a matrix

▶ Insert: R→ V , send scalar λ to all-λ vector

Example
paperi ⊗ thatijkl ⊗ bobm ⊗ rejectedmlk

N N∗ N N S∗ N N∗ S N∗ N∗

Unpacking that to obtain ‘intersective’ ⊙ interpretation:

- rank reduction of bob⊗ rejected ∈ S⊗ N∗ to v ∈ N

- computation of paper⊙ v by contraction with tensor c ∈ N⊗ N⊗ N

with elements cijk = 1 if i = j = k and zero otherwise

Lambdas for Vector Semantics

Muskens & Sadrzadeh 2018

▶ Target signature. I: index set; R: reals R. Vectors: IR, rank n tensors InR
(curried). M := I2R, C := I3R, etc. Defined operations e.g.

⊙ := λvui.vi · ui V V V

×1 := λmvi.
∑
j

mij · vj MV V

×2 := λcvij.
∑
k

cijk · vk CVM

▶ type homomorphism: ⌈A⌉ = V for source atoms A.

▶ translating the constants: ⌈papern⌉ = paperV , ⌈Bobnp⌉ = BobV ,

⌈rejected(np\s)/np⌉ = T V V V options:

▷ T = λuv.((rejectedC ×2 u)×1 v) tensor contraction

▷ T = λuv.(rejectedV ⊙ u⊙ v) multiplicative

Observe low rank target constants are compatible with compositionality.

What’s next

Trouble in paradise

▶ The standard Lambek systems are paragons of mathematical elegance,

but ill equipped to deal with the harsh facts of language

▶ Is there a way of extending these systems that increases their linguistic sophisti-
cation while maintaining pleasant mathematical and computational properties?

Meeting the challenge Lambek Calculus and its modal extensions

