
Lambek Calculus and its modal extensions

Michael Moortgat, Utrecht University

WoLLIC 2023, Halifax

Plan

Ieri Categorial modalities, then and now.

▶ Soft Linear Logic ! and its subexponential, multimodal refinements

▶ Residuated families ♢i,2i

Oggi Dependency and function-argument structure.

▶ Dependency roles (subj, obj, . . .) demarcating locality domains

▶ Rethinking constituency

Domani The neurosymbolic turn.

▶ Training data for type inference; constructive supertagging

▶ neural proof nets for parsing

A landscape of logics

Lambek calculi Identity A −→ A, composition A −→ C if A −→ B and B −→ C

Residuation: B −→ A\C iff A •B −→ C iff A −→ C/B

Options: • associativity and/or commutativity; multiplicative unit

Substructural, sublinear a hierarchy of type logics reflecting different views on the
structure of the assumptions Γ in sequent judgements Γ ⊢ A.

logic Γ ass comm

LP multiset ✓ ✓
L string ✓ -

NL tree - -

▶ (N)L: syntactic types

NL types assigned to phrases (bracketed strings); L: types assigned to strings

▶ LP (aka unit-free MILL): semantic types aka unit-free MILL

The need for control

▶ languages exhibit phenomena that seem to require some form of

reordering, restructuring, copying

▶ global structural options are problematic

too little (undergeneration), too much (overgeneration)

▶ extended type language with modalities for structural control:

▷ licensing structural reasoning that is lacking by default

▷ blocking structural reasoning that would otherwise be available

Global associativity /
Recall our relative clause example, derivable in L thanks to global associativity.

paper

n

that

(n\n)/(s/np)

Bob

np

rejected

(np\s)/np np ⊢ np

rejected · np ⊢ np\s
/E

Bob · (rejected · np) ⊢ s
\E

(Bob · rejected) · np ⊢ s
Ar

Bob · rejected ⊢ s/np
/I

that · (Bob · rejected) ⊢ n\n
/E

paper · (that · (Bob · rejected)) ⊢ n
\E

▶ not enough restricted to peripheral gaps, but

paper that Bob rejected xx immediately

▶ too much insensitive to island constraints

paper that (Alice reviewed a thesis) and(s\s)/s (B rejected xx)

Vintage

The two views on modal extensions go back to the early 1990ies

▶ (Soft) Linear Logic ! and its subexponential, multimodal refinements

▶ Residuated families ♢i,2i

Morrill, Leslie, Hepple and Barry, 1990, Categorial Deductions and Structural Opera-
tions • MM & Oehrle, 1993, ESSLLI Lisbon Lecture Notes • MM ed 1994, DYANA
Report, Residuation in mixed Lambek systems, Controlling resource management

Modalities I: decomposing !

! Γ ⊢ A
! Γ ⊢ !A

!R
Γ, A ⊢ B

Γ, !A ⊢ B
!L

Γ, An ⊢ B

Γ, !A ⊢ B
M

Γ ⊢ B
Γ, !A ⊢ B

W
Γ, !A, !A ⊢ B

Γ, !A ⊢ B
C

Γ ⊢ B
! Γ ⊢ !B

SP

Exponentials, multimodally Indexed !i for particular structural rules.

Cf Jacobs (1993,94) for syn/sem of !c, !w; fully generalized in Blaisdell et al 2022,23.

(Soft) linear logic ! Lafont 2004 terms: Baillot & Mogbil 2004

▶ Promotion (!R) is replaced by soft promotion (SP) (i.e. !A ̸⊢ ! !A); Dereliction
(!L), Contraction, Weakening are replaced by Multiplexing (M)

▶ Cut elim/normalization: P

▶ Moot/Retoré 2019: SLL enough expressivity to specify lexical lambda terms

▶ SLL for syntax: ingenuity required for compatibility with non-comm, non-ass

Modalities II: residuated pairs

▶ The type language is extended with a pair of unary connectives ♢,2 satisfying

♢A −→ B

A −→ 2B

▶ Logic: ♢,2 form a residuated pair. One easily shows

compositions: ♢2A −→ A (interior) A −→ 2♢A (closure)

monotonicity: from A −→ B infer ♢A −→ ♢B, 2A −→ 2B

▶ Structure: global rules ; ♢ controlled restricted versions, e.g.

Ar
⋄ : (A •B) • ♢C −→ A • (B • ♢C)

Cr
⋄ : (A •B) • ♢C −→ (A • ♢C) •B

Multimodal generalization families {♢i,2i}i∈I for particular structural choices

♢,2 inverse duals �

Relational semantics

Frames (W,R2, R3). Valuation v sends types to subsets of W ,

v(A •B) = {x | ∃yz.Rxyz ∧ y ∈ v(A) ∧ z ∈ v(B)}
v(C/B) = {y | ∀xz.(Rxyz ∧ z ∈ v(B))⇒ x ∈ v(C)}
v(A\C) = {z | ∀xy.(Rxyz ∧ y ∈ v(A))⇒ x ∈ v(C)}

v(♢A) = {x | ∃y.(Rxy ∧ y ∈ v(A)}
v(2A) = {y | ∀x.(Rxy ⇒ x ∈ v(A)}

Soundness/completeness Kurtonina 1995 generalizing Došen 1992 for (N)L(P)

Extensions of NL⋄ with weak Sahlqvist postulates are complete w.r.t. the class of 2/3-
ary frames satisfying the corresponding 1st order constraint effectively computable by
the Sahlqvist-van Benthem algorithm.

Weak Sahlqvist postulates A −→ B such that A is built out of single-use atoms and
connectives •,♢; B also is pure •,♢ frm containing at least one occurrence of • or ♢,
with all atoms of B occurring in A.

Structural communication

Let L′ = L+ P for some structural postulate P (Ass, Comm).

Kurtonina & MM 1997: two types of modal translation to relate L,L′:

▶ L/,•,\ ⊢ A −→ B iff L′
♢,2,/,•,\ ⊢ A♭ −→ B♭

inhibiting ·♭ blocks applicability of structural option P

▶ L′
/,•,\ ⊢ A −→ B iff L♢,2,/,•,\ + P⋄ ⊢ A♯ −→ B♯

licensing ·♯ provides access to a controlled version of P

The ·♯ direction cf obtaining IL within MILL via ! exponential (A→ B = !A ⊸ B).

We illustrate with NL vs L.

Controlling Associativity

One schema serves for the licensing/inhibiting directions:

p♮ = p
(A •B)♮ = ♢(A♮ •B♮)
(A/B)♮ = 2A♮/B♮

(B\A)♮ = B♮\2A♮

▶ expressing NL in L: ♢ blocks applicability of Ass, e.g.

̸⊢ ((a\b) • (b\c))♭ −→ (a\c)♭

▶ expressing L in NL: ♢ provides access to controlled Ass

♢(♢(A •B) • C)←→ ♢(A • ♢(B • C)) (A⋄) = (A)♯

N.D. Proofs and terms: syntactic calculi (N)L/,\

Types, terms p atomic

A,B ::= p | A\B | B/A M,N ::= x | λrx.M | λlx.M | (M ⋉N) | (N ⋊M)

Wansing, 1990, Formulas-as-types for a Hierarchy of Sublogics of Int Prop Logic

Typing rules Axiom x : A ⊢ x : A var Γ,∆ all distinct

Γ · x : A ⊢M : B
Γ ⊢ λrx.M : B/A

I/
x : A · Γ ⊢M : B

Γ ⊢ λlx.M : A\B
I\

Γ ⊢M : B/A ∆ ⊢ N : A

Γ ·∆ ⊢ (M ⋉N) : B
E/

Γ ⊢ N : A ∆ ⊢M : A\B
Γ ·∆ ⊢ (N ⋊M) : B

E\

Compare: LP⊸ L extended with product commutativity, a.k.a. MILL, Multiplicative
Intuitionistic Linear Logic. In MILL, the slashes /, \ collapse to linear implication ⊸.

Γ, x : A ⊢M : B

Γ ⊢ λx.M : A ⊸ B
(⊸ I) Γ ⊢M : A ⊸ B ∆ ⊢ N : A

Γ,∆ ⊢M N : B
(⊸ E)

Control operators: N.D. rules, terms

Structures Unary ⟨⟩ structural counterpart of ♢: Γ,∆ ::= A | ⟨Γ⟩ | Γ ·∆

⟨Γ⟩ ⊢ A

Γ ⊢ 2A
2I

Γ ⊢ 2A
⟨Γ⟩ ⊢ A

2E

Γ ⊢ A
⟨Γ⟩ ⊢ ♢A ♢I

∆ ⊢ ♢A Γ[⟨A⟩] ⊢ B

Γ[∆] ⊢ B
♢E

Γ[⟨A⟩] ⊢ B

Γ[♢A] ⊢ B
♢E′

shorthand (♢E′) if left premise of (♢E) is an axiom

Control operators: terms Terms: M,N ::= x | . . . | ▽M | △M | ▼M | ▲M

⟨Γ⟩ ⊢M : A

Γ ⊢ ▲M : 2A
2I

Γ ⊢M : 2A
⟨Γ⟩ ⊢ ▼M : A

2E

Γ ⊢M : A
⟨Γ⟩ ⊢ △M : ♢A ♢I

∆ ⊢M : ♢A Γ[⟨x : A⟩] ⊢ N : B

Γ[∆] ⊢ N [▽M/x] : B
♢E

♢E officially: case ▽M of x in N

Controlled associativity/commutativity ,
♢2np: ‘moveable’ np; key-and-lock: contract ♢2np to np, once in place.

paper

n

that

(n\n)/(s/♢2np)

Bob

np

rejected

(np\s)/np

2np ⊢ 2np

⟨2np⟩ ⊢ np
2E

rejected · ⟨2np⟩ ⊢ np\s
/E

immediately

(np\s)\(np\s)

(rejected · ⟨2np⟩) · immediately ⊢ np\s
\E

Bob · ((rejected · ⟨2np⟩) · immediately) ⊢ s
\E

Bob · ((rejected · immediately) · ⟨2np⟩) ⊢ s
Cr
⋄

(Bob · (rejected · immediately)) · ⟨2np⟩ ⊢ s
Ar

⋄

(Bob · (rejected · immediately)) · ♢2np ⊢ s
♢E′

Bob · (rejected · immediately) ⊢ s/♢2np
/I

that · (Bob · (rejected · immediately)) ⊢ n\n
/E

paper · (that · (Bob · (rejected · immediately))) ⊢ n
\E

Ar
⋄ : (A •B) • ♢C −→ A • (B • ♢C) Cr

⋄ : (A •B) • ♢C −→ (A • ♢C) •B

Proofs and terms

Adjusted lexical meaning recipe for the relative pronoun, (n\n)/(s/♢2np)

⌈that⌉lex = λvλwλz.((w (▼▽ z)) ∧ (v z))

▶ v of type ⌈s/♢2np⌉lex = ♢2e→ t; w of type ⌈n⌉lex = e→ t

▶ z reusable ♢2e variable distributed over the ∧ conjuncts

Proof term M , derivational ⌈M⌉der and lexical ⌈M⌉lex translations:

M = paper⋊ (that⋉ λrx.(Bob⋊ ((rejected⋉ (▼▽ x)))⋊ immediately)) : n

⌈M⌉der = (⌈that⌉ λx.((⌈immediately⌉ (⌈rejected⌉ (▼▽ x))) ⌈Bob⌉)) ⌈paper⌉ : e ⊸ t

⌈M⌉lex = λz.((paper (▼▽ z)) ∧ ((immediately (rejected (▼▽ z))) bob)) : ♢2e→ t

From postulates to structural rules

Linearity general form of linear structural rules: Moot 2002

Γ[Ξ[∆1, . . . ,∆n]] ⊢ A

Γ[Ξ′[∆π1 , . . . ,∆πn]] ⊢ A
R

▶ Ξ[],Ξ′[] generalized contexts of arity n: C ::= [] | ⟨C⟩ | C · C arity: # holes

▶ Ξ[Γ1, . . . ,Γn] structure obtained by substitution of Γ1, . . . ,Γn in Ξ[] of arity n

Example controlled associativity/commutativity postulates in rule form

Ar
⋄ : (A •B) • ♢C −→ A • (B • ♢C) Cr

⋄ : (A •B) • ♢C −→ (A • ♢C) •B

Γ[∆ · (∆′ · ⟨∆′′⟩)] ⊢ A

Γ[(∆ ·∆′) · ⟨∆′′⟩] ⊢ A
Ar

⋄
Γ[(∆ · ⟨∆′′⟩) ·∆′] ⊢ A

Γ[(∆ ·∆′) · ⟨∆′′⟩] ⊢ A
Cr
⋄

; replace formula vars by structure vars, ♢, • by their structural counterparts

Terms the linear structural rules leave the proof term unchanged

From postulates to structural rules (cont’d)

Γ[Ξ[∆1, . . . ,∆n]] ⊢ A

Γ[Ξ′[∆π1 , . . . ,∆πn]] ⊢ A
R

Linear, non-increasing R is non-increasing if |Ξ′[]| ≤ |Ξ[]|

▶ number of unary ⟨⟩ in conclusion ≤ in number of ⟨⟩ premise

▶ compare: ♢(A •B) −→ ♢A • ♢B ✓; but not ♢A • ♢B −→ ♢(A •B)

Complexity, expressivity (Moot 2002) NL⋄ + linear, non-increasing structural rules:

▶ decidable

▶ PSPACE complete

▶ recognizes the context-sensitive languages

Mildly CS fragments? Moot 2008, simulating TAGs ≃ 2-MCFGwn

Controlling copying: lexicon or syntax?

Parasitic gaps felicitous only in the context of a primary gap, compare c, d

a papers that Bob rejected (immediately) gap
b Bob left the room without closing the window
c ∗window that Bob left the room without closing island
d papers that reviewers rejected without reading (carefully) pg: adjunct
e security breach that a report about in the NYT made public

Reduction to lexical polymorphism MM, Sadrzadeh, Wijnholds 2019

withoutb,c :: 2(X\X)/Z,X = iv, Z = gp (gerund)

withoutd :: 2((X/♢2np)\(X/♢2np))/(Z/♢2np)

Semantically, with ⌈np\s⌉ = ⌈gp⌉ = N∗ ⊗ S, ⌈♢2np⌉ = N, withoutd reduces to
transitive verb coordination, i.e. ⌈rejected⌉ ⊙ ¬⌈reading⌉

(N⊗ S∗ ⊗ N)⊗ (N∗ ⊗ S⊗ N∗)⊗ (N⊗ S∗ ⊗ N)

Alternative: controlled contraction in syntax

Recall the postulates for regular gaps (no copying involved): controlled associativity
A⋄, controlled commutativity C⋄ allowing non-peripheral gaps.

A⋄ : (A •B) • ♢C −→ A • (B • ♢C)

C⋄ : (A •B) • ♢C −→ (A • ♢C) •B

We now add variants of A⋄, C⋄ for the cases of extraction that involve copying:

A!
⋄ : (♢A •B) • ♢C −→ ♢(A • ♢C) • (B • ♢C)

C !
⋄ : (A • ♢B) • ♢C −→ (A • ♢C) • ♢(B • ♢C)

▶ In addition to the principal gap, A!
⋄ and C !

⋄ drop a secondary gap in an island
phrase (♢ marked) that would be inaccessible without the principal gap.

▶ A!
⋄: pg precedes principal gap

▶ C !
⋄: pg follows principal gap

MM, Sadrzadeh & Wijnholds, MOSAIC 2023

Illustration

paper

n

that

(n\n)/(s/♢2np)

bob

np

rejected

(np\s)/np

2np ⊢ 2np

⟨2np⟩ ⊢ np
2E

rejected · ⟨2np⟩ ⊢ np\s
/E

bob · (rejected · ⟨2np⟩) ⊢ s
\E

without

2(s\s)/gp

reading

gp/np

2np ⊢ 2np

⟨2np⟩ ⊢ np
2E

reading · ⟨2np⟩ ⊢ gp
/E

without · (reading · ⟨2np⟩) ⊢ 2(s\s)
/E

⟨without · (reading · ⟨2np⟩)⟩ ⊢ s\s
2E

(bob · (rejected · ⟨2np⟩)) · ⟨without · (reading · ⟨2np⟩)⟩ ⊢ s
\E

((bob · rejected) · ⟨2np⟩) · ⟨(without · reading) · ⟨2np⟩⟩ ⊢ s
A⋄, A⋄

((bob · rejected) · ⟨without · reading⟩) · ⟨2np⟩ ⊢ s
C !

⋄

((bob · rejected) · ⟨without · reading⟩) · 32np ⊢ s
3E,Ax

((bob · rejected) · ⟨without · reading⟩) ⊢ s/32np
/I

that · . . . ⊢ n\n
/E

paper · (that · . . .) ⊢ n
\E

Blocking structural rules

Recall the island violations caused by (global or controlled!) associativity:

paper that (Alice reviewed a thesis) but(s\s)/s (Bob rejected xx)

. . .
s

but
(s\2s)/s

B
np

rejected

(np\s)/np
2np ⊢ 2np

⟨2np⟩ ⊢ np

rejected · ⟨2np⟩ ⊢ np\s
/E

B · (rejected · ⟨2np⟩) ⊢ s
\E

but · (B · (rejected · ⟨2np⟩)) ⊢ s\2s
/E

. . . · (but · (B · (rejected · ⟨2np⟩))) ⊢ 2s
\E〈

. . . · (but · (B · (rejected · ⟨2np⟩)))
〉
⊢ s

2E〈
. . . · (but · (B · rejected))

〉
· ⟨2np⟩ ⊢ s

EEE

♢ as an obstacle a modified type assignment imposes the desired island constraint:

▶ but :: (s\2s)/s Morrill 1994

▶ 2 Elim seals off the conjunction as an island from which ⟨2np⟩ cannot escape

We will generalize this idea to demarcate dependency domains . . .

Comparing RES and BANG

Correspondences Similarities more striking than differences, reading !i as ♢i2i

Simulating !i properties as combinations of ♢,2 logical and structural rules, e.g.

Γ ⊢ B
! Γ ⊢ !B

SP

Γ ⊢ B
⟨2⟩Γ ⊢ B

2L

⟨2Γ⟩ ⊢ B
K

2Γ ⊢ 2B
2R

MM 1996

Differences some features of RES not shared by BANG

▶ licensing and blocking uses of modalities share same logical rules

▶ components ♢ and 2 have individual uses, cf the dependency annotation

Resolution? Multitype approach, Palmigiano c.s., arguing that ! cannot be seen as
primitive, but must be deconstructed in heterogeneous adjoint pair ♢■

Dependency modalities

Heads vs dependents

Dependency roles articulate the linguistic material on the basis of two oppositions:

▶ head - complement relations

▷ verbal domain: subj, (in)direct object, . . .

▷ nominal domain: prepositional object, . . .

▶ adjunct - head relations

▷ verbal domain: (time, manner, . . .) adverbial

▷ nominal domain: adjectival, numeral, determiner, . . .

Compare: fa-structure: function vs argument

Orthogonality The fa and the dependency articulation are in general not aligned.
This asks for a multidimensional type logic.

E.g. Determiner. Semantically, characteristic function of (JNK, JVPK) relation; mor-
phologically, dependent on head noun.

DNL

Bimodal NL Moortgat & Morrill, 1991, Heads and phrases. Type calculus for de-
pendency and constituent structure. Ms UU

A •l B

BA

head dependent

versus

A •r B

BA

dependent head

A −→ C/lB iff A •l B −→ C iff B −→ A\lC
A −→ C/rB iff A •r B −→ C iff B −→ A\rC

▶ left vs right-headed •

▶ heads: C/lB, A\rC; dependents: C/rB, A\lC

▶ models: prosodic prominence, morphosyntactic government/rection, . . .

Defining headed products

Left/right headed • as composition of regular • and modal marking of the dependent:

left headed :=A • ♢B right headed :=♢A •B

Residuation: translation of the slashes recall: ♢A −→ B iff A −→ 2B

A −→ C/♢B

A • ♢B −→ C

♢B −→ A\C

B −→ 2(A\C)

A −→ 2(C/B)

♢A −→ C/B

♢A •B −→ C

B −→ ♢A\C

Multimodal generalization families {♢d,2d}d∈DepLabel

▶ ♢dA\C, C/♢dB head functor assigning dependency role d to its complement

▶ 2d(A\C), 2d(C/B) dependent functor projecting adjunct role d

Dependency structure

Dependency-enhanced types:

swallows

np

⟨swallows⟩su ⊢ ♢sunp
♢I

twitter

♢sunp\s

⟨swallows⟩su · twitter ⊢ s
\E

in

2amod(s\s)/♢pobjnp

the

2det(np/n)

⟨the⟩det ⊢ np/n
2E skies

n

⟨the⟩det · skies ⊢ np
/E

⟨⟨the⟩det · skies⟩pobj ⊢ ♢pobjnp
♢I

in · ⟨⟨the⟩det · skies⟩pobj ⊢ 2amod(s\s)
/E

⟨in · ⟨⟨the⟩det · skies⟩pobj⟩amod ⊢ s\s
2E

(⟨swallows⟩su · twitter) · ⟨in · ⟨⟨the⟩det · skies⟩pobj⟩amod ⊢ s
\E

Induced dependency structure:

swallows twitter in the skies

su det

pobj
amod

; within dependency domain, outgoing arcs from head to (head of) dependents

Extraction revisited

NL Relatives Dutch left-branch extraction via controlled associativity, commutativity

♢xA • (B • C) −→ (♢xA •B) • C ♢xA • (B • C) −→ B • (♢xA • C)

Relative pronoun: die :: (n\n)/(!x np\s) !x A ≜ ♢x2xA

ambiguous between subj/obj relativization: s subordinate clause, head-final

manneni dieijkl vrouwenm hatenlmk

manneni dieijkl vrouwenm hatenmlk

N N∗⊗ N⊗S∗⊗ N N N∗⊗N∗⊗ S

i

k
l

m

i

k l

m

j

j

MM & Wijnholds 2017

Extraction revisited (cont’d)

Dependency refinement derivational ambiguity is traded in for lexical ambiguity, to
be resolved in the supertagging phase.

▶ NL is head-final: transitive verb type:

haten :: ♢obj np\(♢subj np\s)

▶ two relative pronoun types: subject vs object relativization

die :: 2mod(n\n)/♢body(♢subj np\s)
die :: 2mod(n\n)/♢body(♢obj np\s)

Rethinking constituency

Associativity head + ♢d demarcated dependents constitutes dependency domain;
within these domains • associativity freely available.

Down the rabbit hole The above relpro types restrict access to immediate dependents
of the rel clause body. die :: 2mod(n\n)/♢body(!x♢subj |objnp\s) reaches more deeply
embedded hypotheses.

The xleft (derived) inference rule now has Γ[] traversing unary+binary structure:

Γ[A ·∆] ⊢ B

Γ[∆] ⊢ !x A\B
xleft

; requires extra postulate allowing ♢x to commute with dependency modalities ♢d

for (all | some) d ∈ DepLabel :

♢x A • ♢d B −→ ♢d(♢x A •B)

Γ[⟨⟨∆⟩x ·∆′⟩d] ⊢ A

Γ[⟨∆⟩x · ⟨∆′⟩d] ⊢ A
xleft ′

A neurosymbolic perspective

Challenges

Recall we write L(G,B) for the strings of type B recognized by grammar G.

w1 · · ·wn ∈ L(G,B) if the following hold:

- (wi, Ai) ∈ Lex for 1 ≤ i ≤ n;

- Γ[A1,...,An] ⊢ B, for Γ an antecedent structure with yield A1, . . . , An

▶ type ambiguity: what is the right type for wi given its context?

; supertagging

▶ structural ambiguity: what is the proper structure for Γ to derive B

; parsing

Training data: NL types in the wild

Type lexicon + derivations/λ terms extracted from Lassy Small, gold standard treebank
of written Dutch. 68782 samples.

▶ Lassy annotation: DAGs, nodes: categories, edges: dependency relations

▶ Re-entrancy: gaps, coordination, (’understood subjects’ of non-finite verb forms)

▶ traditional dependency roles; can be mapped to UD Bouma & vNoord 2017

Lassy2Æthel extraction

▶ non-directional syntax types: alignment with surface string left to neural parser

▶ modalities: dependency marking; structural control (extraction)

▶ finegrained result — compare CCG: categories 5292/1323, slashes(+♢,2) 29/2

Ref Kogkalidis, MM & Moot, 2020

Æthel: Automatically Extracted Typelogical Derivations for Dutch. LREC.

https://github.com/konstantinosKokos/aethel

https://www.aclweb.org/anthology/2020.lrec-1.647/
https://github.com/konstantinosKokos/aethel

A demand that the British couldn’t possibly grant: Lassy

▶ tree display format, avoiding crossing edges word order: position indices

▶ re-entrancy relpro ’die’ ∼ obj1: gap hypothesis

▶ re-entrancy su ’de Britten’ ∼ su: understood subject infinitive

A demand that the British couldn’t possibly grant

Sample WR-P-E-I-0000015007.p.1.s.51.xml(27) ()

▼mod(die △relcl (λx0.case ▽xx0 of x1 in (konden △vc (▼modonmogelijk (inwilligen ▼xx1)) △su (▼detde Britten)))) (▼deteen eis)

Going neural

PhD project Konstantinos Kogkalidis

▶ Kogkalidis, 2023, Dependency as Modality, Parsing as Permutation.

Phd Thesis, Utrecht University. url

▶ Kogkalidis & MM, 2022, arXiv

Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions

▶ Kogkalidis, MM & Moot, 2020

Neural Proof Nets. CoNLL url

Code: https://github.com/konstantinosKokos/spindle

https://dspace.library.uu.nl/handle/1874/427996
https://doi.org/10.48550/arXiv.2203.12235
https://aclanthology.org/2020.conll-1.3/
https://github.com/konstantinosKokos/spindle

Integrating supertagging and neural parsing

Neural proof nets The parsing method uses LL proof nets. Proof net construction
can be seen as a staged process:

▶ proof frame: forest of formula decomposition trees — supertagging ,

▶ proof structure: p frame plus pairwise linking of in/out atoms

▶ proof net: p structure with successful traversal

MILL♢,2
⊸ lambda term as byproduct of traversal

Key neural methods

▶ supertagging: parallel tree decoding with dynamic graph convolutions

▶ axiom linking: Sinkhorn iterative method to approach double stochastic matrix

▶ verification: Lamarche traversal method Lamarche 2008

Supertag = polarized formula decomposition tree

Example the land where democracy was murdered

Polarities green: given, input; red: to prove, output

Recap: Grammar Proof Nets Going Neural Reality Check

Formula Decomposition: Polarity Induction
subtree polarity (preserved to the right, inverted to the left)

+ we have
- we miss

!

♦relcl

!

!x

!mod

!

ppart ppart

ssub

!mod

!

np np

Proof frame

Recap: Grammar Proof Nets Going Neural Reality Check

Proof Frames

the

!det

!

n np

land

n

where

!

♦relcl

!

!x

!mod

!

ppart ppart

ssub

!mod

!

np np

democracy

np

was

!

♦vc

ppart

!

♦su

np

ssub

murdered

ppart

Proof frame ; proof structure

Recap: Grammar Proof Nets Going Neural Reality Check

Proof Frames Structures

the

!det

!

n np

land

n

where

!

♦relcl

!

!x

!mod

!

ppart ppart

ssub

!mod

!

np np

democracy

np

was

!

♦vc

ppart

!

♦su

np

ssub

murdered

ppart

Proof structure ; proof net

the ESSLLI2022 movie is here

Recap: Grammar Proof Nets Going Neural Reality Check

Proof Frames Structures Nets

the

!det

!

n np

land

n

where

!

♦relcl

!

!x

!mod

!

ppart ppart

ssub

!mod

!

np np

democracy

np

was

!

♦vc

ppart

!

♦su

np

ssub

murdered

ppart

"mod(where #relcl (λx0.(was #vc ("mod$mod"x$xx0 murdered) #su democracy))) ("detthe land)

https://compositioncalculus.sites.uu.nl/wp-content/uploads/sites/821/2022/08/Lecture_Day4_Parsing_with_Graph_Neural_Networks.pdf

Conclusions

Some key themes of the talk:

▶ Logic: a modally enhanced multi-dimensional type logic

▷ dependency structure ⊥ function-argument structure

▷ linear♢,2 lambda terms as general-purpose recipes for meaning composition

▷ where possible, confine non-linearity to lexical meaning recipes

▶ NLP: end-to-end compositionality:

▷ obtain elementary word embeddings from data, and additionally

▷ their types and their internal composition

▷ neural parsing (grounded in/informed by) data-driven word representations

2

References

[1] Guy Barry, Mark Hepple, Neil Leslie, and Glyn Morrill. Proof figures and structural
operators for categorial grammar. In Proceedings of EACL 1995, pages 198–203,
Berlin, 1991.

[2] Eben Blaisdell. Decidable exponentials in nonassociative noncommutative linear
logic. CoRR, abs/2306.12661, 2023.

[3] Eben Blaisdell, Max I. Kanovich, Stepan L. Kuznetsov, Elaine Pimentel, and Andre
Scedrov. Non-associative, non-commutative multi-modal linear logic. In Jasmin
Blanchette, Laura Kovács, and Dirk Pattinson, editors, Automated Reasoning
- 11th International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10,
2022, Proceedings, volume 13385 of Lecture Notes in Computer Science, pages
449–467. Springer, 2022.

[4] Eben Blaisdell, Max I. Kanovich, Stepan L. Kuznetsov, Elaine Pimentel, and
Andre Scedrov. Explorations in subexponential non-associative non-commutative
linear logic. CoRR, abs/2307.03059, 2023.

[5] Paula Czarnowska, Guy Emerson, and Ann Copestake. Words are vectors, de-
pendencies are matrices: Learning word embeddings from dependency graphs.
2019.

[6] Giuseppe Greco and Alessandra Palmigiano. Linear logic properly displayed. ACM
Trans. Comput. Logic, 2022.

[7] Bart Jacobs. Semantics of lambda-i and of other substructure lambda calculi.
In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi and Ap-
plications, International Conference on Typed Lambda Calculi and Applications,
TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993, Proceedings, volume
664 of Lecture Notes in Computer Science, pages 195–208. Springer, 1993.

[8] Bart Jacobs. Semantics of weakening and contraction. Ann. Pure Appl. Log.,
69(1):73–106, 1994.

[9] Konstantinos Kogkalidis and Michael Moortgat. Geometry-aware supertagging
with heterogeneous dynamic convolutions. CoRR, abs/2203.12235, 2022.

[10] Konstantinos Kogkalidis, Michael Moortgat, and Richard Moot. Æthel: Auto-
matically extracted typelogical derivations for Dutch. In Proceedings of The 12th
Language Resources and Evaluation Conference, LREC 2020, Marseille, pages
5257–5266. European Language Resources Association, 2020.

[11] Konstantinos Kogkalidis, Michael Moortgat, and Richard Moot. Neural proof
nets. In CoNLL2020, Proceedings of the 24th Conference on Computational Nat-
ural Language Learning, pages 26–40. Association for Computational Linguistics,
2020.

[12] Natasha Kurtonina. Frames and Labels. A Modal Analysis of Categorial Inference.
PhD thesis, OTS Utrecht, ILLC Amsterdam, 1995.

[13] Natasha Kurtonina and Michael Moortgat. Structural control. In Patrick Black-
burn and Maarten de Rijke, editors, Specifying Syntactic Structures, pages 75–
113. CSLI, Stanford, 1997.

[14] Yves Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci., 318(1-
2):163–180, 2004.

[15] François Lamarche. Proof Nets for Intuitionistic Linear Logic: Essential Nets.
Research report, 2008.

[16] Michael Moortgat. Multimodal linguistic inference. J. Log. Lang. Inf., 5(3/4):349–
385, 1996.

[17] Michael Moortgat, Konstantinos Kogkalidis, and Gijs Wijnholds. Diamonds are
forever. Theoretical and empirical support for a dependency-enhanced type logic.
In R. Loukanova, P. Lumsdaine, and R. Muskens, editors, Logic and Algorithms in
Computational Linguistics 2021, Studies in Computational Intelligence. Springer,
(to appear).

[18] Michael Moortgat and Glyn Morrill. Heads and phrases: Type calculus for depen-
dency and constituent structure. Technical report, Research Institute for Language
and Speech (OTS), Utrecht, 1991.

[19] Michael Moortgat, Mehrnoosh Sadrzadeh, and Gijs Wijnholds. A Frobenius alge-
braic analysis for parasitic gaps. FLAP, 7(5):823–852, 2020.

[20] Richard Moot. Lambek grammars, tree adjoining grammars and hyperedge re-
placement grammars. In Claire Gardent and Anoop Sarkar, editors, Proceedings
of the Ninth International Workshop on Tree Adjoining Grammar and Related
Frameworks, TAG+ 2010 , Tübingen, Germany, June 6-8, 2008, pages 65–72.
Association for Computational Linguistics, 2008.

[21] Richard Moot. Type-logical investigations: proof-theoretic, computational and
linguistic aspects of modern type-logical grammars. Habilitation à diriger des
recherches, Université Montpellier, November 2021.

[22] Richard Moot and Christian Retoré. Natural language semantics and computabil-
ity. J. Log. Lang. Inf., 28(2):287–307, 2019.

[23] Glyn Morrill, N. Leslie, Mark Hepple, and Guy Barry. Categorial deductions and
structural operations. In G. Barry and G Morrill, editors, Studies in Categorial
Grammar, volume 5 of Edinburgh Working Papers in Cognitive Science, pages
1–21. Centre for Cognitive Science, 1990.

[24] Mehrnoosh Sadrzadeh and Reinhard Muskens. Static and dynamic vector seman-
tics for lambda calculus models of natural language. J. Lang. Model., 6(2):319–
351, 2018.

