
Parallelism in Realizability Models

Satoshi Nakata 1

Research Institute for Mathematical Sciences,
Kyoto University, Kyoto

WoLLIC 2023
Dalhousie University, Halifax

July 14

1This work is supported by JST Grant Number JPMJFS2123.



Parallel operation in PCA A Predominance and Σ-subset in Ass(A) Characterization theorems

Introduction

Realizability semantics ≈
Interpreting a formal system based on a computational model.

• computational models
Turing machines/Type 2 machines/λ-calculus/· · ·

• formal systems
Arithmetic/Analysis/(Higher-order) Logic/Programming language

The recent realizability theory expresses a computational model by a
simple algebraic structure.
⇝ Partial Combinatory Algebra (PCA)

The interpretation itself has been given a categorical generalization.
⇝ The category of assemblies Ass(A), Realizability topos RT(A)
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Introduction

Realizability theory ≈ Study of such categorical models over PCAs

Question
How is the structure of Ass(A) affected by the choice of PCA A?

Parallel operation in A v.s. Predominance in Ass(A)
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Definition (PCA)

A partial combinatory algebra (PCA) is a set A equipped with a partial
binary operation · : A×A ⇀ A such that ∃ k, s ∈ A satisfying

k · a ↓, (k · a) · b = a

(s · a) · b ↓, ((s · a) · b) · c ∼= (a · c) · (b · c)

for any a, b, c ∈ A.
We often write abc instead of ((a · b) · c).

The closed λ-terms (modulo a λ-theory T ) form a PCA Λ0 by letting

k := λxy. x, s := λxyz. (xz)(yz).

This is the simplest example of a total PCA.

Conversely, every PCA can imitate “untyped λ-terms” by using k and s

(combinatory completeness).
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Examples of non-total PCAs

(i) Kleene’s first algebra K1:
Let [[n]] : N ⇀ N denote the n-th partial computable function.

Underlying set: the set of natural numbers N
Application:

n ·m := [[n]](m)

(ii) Call-by-value λ-term model Λ0
v:

Consider the (lazy) call-by-value reduction strategy.
Underlying set: the set of closed values Λ0

v

Application:

V1 · V2 := W if V1V2 ↠cbv W for some W ∈ Λ0
v

Otherwise, V1 · V2 is undefined.

Comparing K1 and Λ0
v as PCA, Λ0

v excludes Plotkin’s parallel-or function,
whereas K1 includes that.
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Notation (Some useful combinators)

Hereafter, A denotes a PCA.

Identity i := λ∗x. x = skk.

Boolean true := λ∗xy. x, false := λ∗xy. y.

Pairing ⟨x, y⟩ := λ∗z. zxy.

Notation
Given subsets S0, S1 ⊆ A,

S0 × S1 := { ⟨a0, a1⟩ ∈ A | a0 ∈ S0 and a1 ∈ S1 }
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What is Parallelism?

Recall the original parallel-or function porp [Plotkin 77].

porpMN ⇓ true if M ⇓ true or N ⇓ true

porpMN ⇓ false if M ⇓ false and N ⇓ false

porpMN ⇑ otherwise

(M,N are λ-terms and M ⇓ V means that M evaluates to a value V ).
You cannot evaluate M and N one by one because the evaluation may
diverge. Thus they must be evaluated “in parallel”.

In fact, it is known that sequential programming languages do not admit
parallel-or.

• “Parallel-or” cannot be defined in PCF [well-known].

• cf: sequentiality theorem for PCA Λ0/TBT [Berry 78].
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What is Parallelism?

Recall the original parallel-or function porp [Plotkin 77].

porpMN ⇓ true if M ⇓ true or N ⇓ true

porpMN ⇓ false if M ⇓ false and N ⇓ false

porpMN ⇑ otherwise

Let’s now identify false with divergence.

porMN ⇓ iff M ⇓ or N ⇓ .
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Parallel combinators: formal definition

Definition (Parallel combinators relative to Σ)

Let Σ = (T, F ) be a pair of nonempty subsets of A.
An element orΣ ∈ A is called a Σ-or combinator if it satisfies

orΣ(T × T ) ⊆ T, orΣ(T × F ) ⊆ T,

orΣ(F × T ) ⊆ T, orΣ(F × F ) ⊆ F.

Dually, we define a Σ-and combinator andΣ.

These are defined relative to each “abstract truth value” Σ = (T, F ).

In particular, whenever T ∪ F = A,

orΣ · ⟨f, g⟩ ∈ T iff f ∈ T or g ∈ T.

andΣ · ⟨f, g⟩ ∈ T iff f ∈ T and g ∈ T.
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Definition (Mulry 1982)

For a non-total PCA A, define Σsd := (Tsd, Fsd) by

Tsd := { a ∈ A | a · i ↓ }, Fsd := { a ∈ A | a · i ↑ }.

“sd” means semi-decidable.

Then a Σsd-or combinator orΣsd
and a Σsd-and combinator andΣsd

behave as
orΣsd

⟨f, g⟩ · i ↓ iff f · i ↓ or g · i ↓,
andΣsd

⟨f, g⟩ · i ↓ iff f · i ↓ and g · i ↓,
for every f, g ∈ A.
Thus we simply call them parallel-or and parallel-and combinators.

Theorem

1. Every non-total PCA admits parallel-and (andΣsd
).

2. K1 admits parallel-or (orΣsd
).

3. Λ0
v does not admit parallel-or (orΣsd

).
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Another perspective of parallel combinators

Such a parallel operation is also important in elementary recursion theory,
implicitly. Indeed, parallel-or seems to be necessary to prove the following
easy fact:

Consequence of Σsd-or in K1

If U, V ⊆ N are semi-decidable subsets, then so is the union U ∪ V .

Because

• dom(f) := { a ∈ K1 | f · a ↓ }.
• U ⊆ N is semi-decidable ⇐⇒ ∃fU ∈ K1 s.t. U = dom(fU ).

• Let g := λ∗a.(orΣsd
⟨λ∗x.(fUa), λ

∗x.(fV a)⟩ · i).
Then U ∪ V = dom(g), so U ∪ V is also semi-decidable.

Our goal: generalize this phenomenon to other PCAs.
⇝ categorical realizability
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We here focus on the category of assemblies, because it is sufficiently
rich as semantics of many formal systems.

Definition (The category of assemblies Ass(A))

Object: X = (|X|, || · ||X)

where |X| is a set and || · ||X : |X| → P(A) \ { ∅ } (a “coding”
function). We call such a pair X an assembly over A.

Morphism: f : X → Y

where f is a function from |X| to |Y | which has a realizer rf ∈ A

satisfying
∀ a ∈ ||x||X rf · a ∈ ||f(x)||Y .

Its internal logic is precisely equal to realizability interpretation:

Ass(K1) |= φ ⇐⇒ φ : Kleene-realizable.
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Properties of Ass(A)

Theorem

• Ass(A) is a finitely complete and locally cartesian-closed category
with a natural number object.

• Ass(A) does not have a subobject classifier unless A is trivial.

Nevertheless, there is a “restricted subobject classifier” in Ass(A).
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Let C be a finitely complete category.

Definition (Subobject classifier)

A morphism t : 1↣ Σ in C is a subobject classifier if for every subobject
m : U ↣ X there is exactly one morphism χm : X → Σ which gives a
pullback diagram

U 1

X Σ.

!

m t

χm
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Let C be a finitely complete category.

Definition (Predominance, Σ-subset; Rosolini 86)

A morphism t : 1↣ Σ in C is a predominace if for every subobject
m : U ↣ X there is at most one morphism χm : X → Σ which gives a
pullback diagram

U 1

X Σ.

!

m t

χm

A subobject m : U ↣ X is called Σ-subset of X and written U ⊆Σ X if
m arises as a pullback of t : 1↣ Σ.
Let SubΣ(X) denote the set of Σ-subsets of X.

Notice that the Σ-subset relation may not transitive.
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• Every predominance in Ass(A) can be induced by Σ = (T, F )

[Longley 94]:

|Σ| := { t, f } ||t||Σ := T, ||f ||Σ := F.

Thus we call Σ = (T, F ) a predominance on A.

• Considering Σsd := (Tsd, Fsd) in K1, Σsd-subsets of NNO N are in
bijective correspondence with semi-decidable subsets!

SubΣsd
(N) ≃ {U ⊆ N | U is semi-decidable }

• A dominance is a predominance Σ such that ⊆Σ is transitive.
Dominance is one of the necessary pieces to construct a subcategory
of “abstract domains” (Synthetic domain theory).
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Under a natural assumption on predominance Σ,
the parallel operations in our sense and the order structure of Σ-subsets
correspond perfectly.

Definition (Rice partition)

Let a, b be elements of A.

• a ∼= b means that a · x ∼= b · x for every x ∈ A.

• A predominance Σ = (T, F ) is a Rice partition if T is closed under
∼= and F = A \ T .

Σsd = (Tsd, Fsd) is always a Rice partition in any non-total PCA.

Tsd := { a ∈ A | a · i ↓ }, Fsd := { a ∈ A | a · i ↑ }
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Role of Σ-and combinator

Then we obtain the first characterization theorem under this assumption.

Theorem (N.)

Let Σ = (T, F ) be a Rice partition of A. Then the following are
equivalent:

1. A admits Σ-and combinator.

2. Σ is a dominance.

3. (SubΣ(X),⊆Σ) is a poset for every X ∈ Ass(A).

4. (SubΣ(X),⊆Σ,∩) is a meet-semilattice for every X ∈ Ass(A).

(2 ⇐⇒ 3 ⇐⇒ 4 due to [Rosolini 86], [Hyland 91])
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Role of Σ-or combinator

Recall that existence of Σsd-or in K1 implies that the semi-decidable sets
are closed under union.
This fact can be generalized and refined as follows.

Theorem (N.)

Let Σ = (T, F ) be a Rice partition of A. Then the following are
equivalent:

1. A admits Σ-or combinator.

2. SubΣ(X) is closed under union ∪ for every X ∈ Ass(A).

Since the λ-term model Λ0
v does not admit Σsd-or, SubΣsd

(X) is not
closed under ∪ for some X ∈ Ass(Λ0

v).
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Summary

Combining the two characterization theorems, we obtain

Theorem
Suppose that Σ = (T, F ) is a Rice partition of A. Then A admits both
Σ-and and Σ-or if and only if (SubΣ(X),⊆Σ,∩,∪) forms a lattice for
every X ∈ Ass(A).

Corollary

Let A be a non-total PCA. Then A admits parallel-or orΣsd
if and only if

(SubΣsd
(X),⊆Σsd

,∩,∪) forms a lattice for every X ∈ Ass(A).
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Conclusion and Future work

Conclusion:

• We defined Σ-or and Σ-and combinators on PCA. In an appropriate
Σ, Σ-or seems to be parallel-or.

• We have studied the relationship between the existence of parallel
operations in A and the order structure of Σ-subsets in Ass(A).

Future work:

• A new logical model based on SubΣ(X)

• Extension to RT(A): Ass(A) ⊆ RT(A)

• Relationship between models of PCF + por and this work
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