Parallelism in Realizability Models

Satoshi Nakata ¹

Research Institute for Mathematical Sciences, Kyoto University, Kyoto

WoLLIC 2023 Dalhousie University, Halifax July 14

¹This work is supported by JST Grant Number JPMJFS2123.

Introduction

Realizability semantics pprox

Interpreting a formal system based on a computational model.

- computational models Turing machines/Type 2 machines/λ-calculus/····
- formal systems

Arithmetic/Analysis/(Higher-order) Logic/Programming language

The recent realizability theory expresses a computational model by a simple algebraic structure.

→ Partial Combinatory Algebra (PCA)

The interpretation itself has been given a categorical generalization. \rightsquigarrow The category of assemblies Ass(A), Realizability topos RT(A)

Introduction

Realizability theory $\,\approx\,$ Study of such categorical models over PCAs

Question

How is the structure of Ass(A) affected by the choice of PCA A?

Parallel operation in A v.s. Predominance in Ass(A)

Outline

Parallel operation in PCA ${\cal A}$

Predominance and Σ -subset in $\mathbf{Ass}(A)$

Characterization theorems

Characterization theorems

Outline

Parallel operation in PCA \boldsymbol{A}

Predominance and Σ -subset in $\mathbf{Ass}(A)$

Characterization theorems

Characterization theorems

Definition (PCA)

A partial combinatory algebra (PCA) is a set A equipped with a partial binary operation $\cdot : A \times A \rightharpoonup A$ such that $\exists k, s \in A$ satisfying

 $\mathbf{k} \cdot a \downarrow, \quad (\mathbf{k} \cdot a) \cdot b = a$

$$(\mathbf{s}\cdot a)\cdot b\downarrow,\quad ((\mathbf{s}\cdot a)\cdot b)\cdot c\cong (a\cdot c)\cdot (b\cdot c)$$

for any $a, b, c \in A$. We often write abc instead of $((a \cdot b) \cdot c)$.

The closed λ -terms (modulo a λ -theory T) form a PCA Λ^0 by letting

$$\mathbf{k} \coloneqq \lambda xy. x, \qquad \mathbf{s} \coloneqq \lambda xyz. (xz)(yz).$$

This is the simplest example of a total PCA.

Conversely, every PCA can imitate "untyped λ -terms" by using k and s (combinatory completeness).

Characterization theorems

Examples of non-total PCAs

(i) Kleene's first algebra \mathcal{K}_1 : Let $\llbracket n \rrbracket : \mathbb{N} \rightarrow \mathbb{N}$ denote the *n*-th partial computable function. <u>Underlying set</u>: the set of natural numbers \mathbb{N} <u>Application</u>: $n \cdot m := \llbracket n \rrbracket (m)$

ii) **Call-by-value**
$$\lambda$$
-**term model** Λ_v^0 :
Consider the *(lazy) call-by-value reduction strategy.*
Underlying set: the set of closed values Λ_v^0
Application:

$$V_1 \cdot V_2 := W$$
 if $V_1 V_2 \twoheadrightarrow_{cbv} W$ for some $W \in \Lambda_v^0$

Otherwise, $V_1 \cdot V_2$ is undefined.

Comparing \mathcal{K}_1 and Λ_v^0 as PCA, Λ_v^0 excludes Plotkin's parallel-or function, whereas \mathcal{K}_1 includes that.

Characterization theorems

Notation (Some useful combinators)

Hereafter, A denotes a PCA.

Identity $i \coloneqq \lambda^* x. x = skk.$

Boolean true := $\lambda^* xy. x$, false := $\lambda^* xy. y$.

Pairing $\langle x, y \rangle \coloneqq \lambda^* z. zxy.$

Notation

Given subsets $S_0, S_1 \subseteq A$,

 $S_0 \times S_1 \coloneqq \{ \langle a_0, a_1 \rangle \in A \mid a_0 \in S_0 \text{ and } a_1 \in S_1 \}$

What is Parallelism?

Recall the original parallel-or function por^p [Plotkin 77].

$\operatorname{por}^{\operatorname{p}}MN \Downarrow \operatorname{true}$	if $M \Downarrow \text{true}$ or $N \Downarrow \text{true}$
$\operatorname{por}^{\operatorname{p}} MN \Downarrow \operatorname{false}$	if $M \Downarrow \text{false}$ and $N \Downarrow \text{false}$
$\operatorname{por}^{\mathbf{p}}MN$ \Uparrow	otherwise

 $(M, N \text{ are } \lambda \text{-terms and } M \Downarrow V \text{ means that } M \text{ evaluates to a value } V)$. You cannot evaluate M and N one by one because the evaluation may diverge. Thus they must be evaluated "in parallel".

In fact, it is known that sequential programming languages do not admit parallel-or.

- "Parallel-or" cannot be defined in PCF [well-known].
- cf: sequentiality theorem for PCA Λ^0/T_{BT} [Berry 78].

What is Parallelism?

Recall the original parallel-or function por^p [Plotkin 77].

 $por^{p}MN \Downarrow true$ if $M \Downarrow true$ or $N \Downarrow true$ $por^{p}MN \Downarrow false$ if $M \Downarrow false$ and $N \Downarrow false$ $por^{p}MN \Uparrow$ otherwise

Let's now identify false with divergence.

 $\operatorname{por} MN \Downarrow$ iff $M \Downarrow$ or $N \Downarrow$.

Characterization theorems

Parallel combinators: formal definition

Definition (Parallel combinators relative to Σ)

Let $\Sigma = (T, F)$ be a pair of nonempty subsets of A. An element $or_{\Sigma} \in A$ is called a Σ -or combinator if it satisfies

 $\begin{aligned} \operatorname{or}_{\Sigma}(T\times T) &\subseteq T, \quad \operatorname{or}_{\Sigma}(T\times F) &\subseteq T, \\ \operatorname{or}_{\Sigma}(F\times T) &\subseteq T, \quad \operatorname{or}_{\Sigma}(F\times F) &\subseteq F. \end{aligned}$

Dually, we define a Σ -and combinator $\operatorname{and}_{\Sigma}$.

These are defined relative to each "abstract truth value" $\Sigma = (T, F)$.

In particular, whenever $T \cup F = A$,

$$\operatorname{or}_{\Sigma} \cdot \langle f, g \rangle \in T$$
 iff $f \in T$ or $g \in T$.
 $\operatorname{and}_{\Sigma} \cdot \langle f, g \rangle \in T$ iff $f \in T$ and $g \in T$.

Definition (Mulry 1982)

For a non-total PCA A ,define $\Sigma_{\rm sd}\coloneqq (T_{\rm sd},F_{\rm sd})$ by

$$T_{\rm sd} \coloneqq \{ a \in A \mid a \cdot i \downarrow \}, \quad F_{\rm sd} \coloneqq \{ a \in A \mid a \cdot i \uparrow \}.$$

"sd" means semi-decidable.

Then a $\Sigma_{sd}\text{-or combinator }or_{\Sigma_{sd}}$ and a $\Sigma_{sd}\text{-and combinator }and_{\Sigma_{sd}}$ behave as

$$\begin{array}{rcl} \mathrm{or}_{\Sigma_{\mathrm{sd}}}\langle f,g\rangle\cdot\mathrm{i}\downarrow & \text{iff} & f\cdot\mathrm{i}\downarrow \text{ or }g\cdot\mathrm{i}\downarrow,\\ \mathrm{and}_{\Sigma_{\mathrm{sd}}}\langle f,g\rangle\cdot\mathrm{i}\downarrow & \text{iff} & f\cdot\mathrm{i}\downarrow \text{ and }g\cdot\mathrm{i}\downarrow, \end{array}$$

for every $f, g \in A$.

Thus we simply call them parallel-or and parallel-and combinators.

Theorem

- 1. Every non-total PCA admits parallel-and $(and_{\Sigma_{sd}})$.
- 2. \mathcal{K}_1 admits parallel-or $(or_{\Sigma_{sd}})$.
- 3. Λ_v^0 does not admit parallel-or $(or_{\Sigma_{sd}})$.

Another perspective of parallel combinators

Such a parallel operation is also important in elementary recursion theory, implicitly. Indeed, parallel-or seems to be necessary to prove the following easy fact:

Consequence of Σ_{sd} -or in \mathcal{K}_1

If $U, V \subseteq \mathbb{N}$ are semi-decidable subsets, then so is the union $U \cup V$.

Because

- dom $(f) \coloneqq \{ a \in \mathcal{K}_1 \mid f \cdot a \downarrow \}.$
- $U \subseteq \mathbb{N}$ is semi-decidable $\iff \exists f_U \in \mathcal{K}_1 \text{ s.t. } U = \operatorname{dom}(f_U).$
- Let $g \coloneqq \lambda^* a.(\operatorname{or}_{\Sigma_{sd}} \langle \lambda^* x.(f_U a), \lambda^* x.(f_V a) \rangle \cdot i).$ Then $U \cup V = \operatorname{dom}(g)$, so $U \cup V$ is also semi-decidable.

Characterization theorems

Outline

Parallel operation in PCA ${\cal A}$

Predominance and Σ -subset in $\mathbf{Ass}(A)$

Characterization theorems

Characterization theorems

We here focus on the category of assemblies, because it is sufficiently rich as semantics of many formal systems.

Definition (The category of assemblies Ass(A))

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} Object: \ X = (|X|, || \cdot ||_X) \\ \hline where \ |X| \ \text{is a set and} \ || \cdot ||_X : |X| \rightarrow \mathcal{P}(A) \setminus \{ \emptyset \} \ (a \ \text{``coding''} \\ \hline function). \ We \ call \ such \ a \ pair \ X \ an \ assembly \ over \ A. \\ \hline \hline Morphism: \ f : X \rightarrow Y \\ \hline where \ f \ \text{is a function from} \ |X| \ \text{to} \ |Y| \ \text{which has a } realizer \ r_f \in A \\ \hline \text{satisfying} \\ \hline \forall a \in ||x||_X \quad r_f \cdot a \in ||f(x)||_Y. \end{array}$

Its internal logic is precisely equal to realizability interpretation:

 $\mathbf{Ass}(\mathcal{K}_1) \models \varphi \iff \varphi : \mathsf{Kleene-realizable}.$

Parallel operation in PCA A

Predominance and Σ -subset in Ass(A)000000 Characterization theorems

Properties of $\mathbf{Ass}(A)$

Theorem

- Ass(A) is a finitely complete and locally cartesian-closed category with a natural number object.
- $\mathbf{Ass}(A)$ does not have a subobject classifier unless A is trivial.

Nevertheless, there is a "restricted subobject classifier" in Ass(A).

Let $\ensuremath{\mathcal{C}}$ be a finitely complete category.

Definition (Subobject classifier)

A morphism $t: 1 \rightarrow \Sigma$ in C is a *subobject classifier* if for every subobject $m: U \rightarrow X$ there is exactly one morphism $\chi_m: X \rightarrow \Sigma$ which gives a pullback diagram

$$U \xrightarrow{!} 1$$

$$m \downarrow \qquad \downarrow t$$

$$X \xrightarrow{\chi_m} \Sigma.$$

Characterization theorems

Let \mathcal{C} be a finitely complete category.

Definition (Predominance, Σ -subset; Rosolini 86)

A morphism $t: 1 \rightarrow \Sigma$ in C is a *predominace* if for every subobject $m: U \rightarrow X$ there is at most one morphism $\chi_m: X \rightarrow \Sigma$ which gives a pullback diagram

$$U \xrightarrow{!} 1$$

$$m \downarrow \qquad \downarrow t$$

$$X \xrightarrow{\chi_m} \Sigma.$$

A subobject $m: U \rightarrow X$ is called Σ -subset of X and written $U \subseteq_{\Sigma} X$ if m arises as a pullback of $t: 1 \rightarrow \Sigma$. Let $Sub_{\Sigma}(X)$ denote the set of Σ -subsets of X.

Notice that the Σ -subset relation may not transitive.

• Every predominance in $\mathbf{Ass}(A)$ can be induced by $\Sigma = (T, F)$ [Longley 94]:

$$|\Sigma| \coloneqq \{t, f\} \quad ||t||_{\Sigma} \coloneqq T, \quad ||f||_{\Sigma} \coloneqq F.$$

Thus we call $\Sigma = (T, F)$ a predominance on A.

• Considering $\Sigma_{sd} \coloneqq (T_{sd}, F_{sd})$ in \mathcal{K}_1 , Σ_{sd} -subsets of NNO N are in bijective correspondence with semi-decidable subsets!

 $\operatorname{Sub}_{\Sigma_{\operatorname{sd}}}(N) \, \simeq \, \{ \, U \subseteq \mathbb{N} \mid U \text{ is semi-decidable } \, \}$

 A dominance is a predominance Σ such that ⊆_Σ is transitive. Dominance is one of the necessary pieces to construct a subcategory of "abstract domains" (Synthetic domain theory).

Characterization theorems

Outline

Parallel operation in PCA A

Predominance and Σ -subset in $\mathbf{Ass}(A)$

Characterization theorems

Under a natural assumption on predominance Σ , the parallel operations in our sense and the order structure of Σ -subsets correspond perfectly.

Definition (Rice partition)

Let a, b be elements of A.

- $a \cong b$ means that $a \cdot x \cong b \cdot x$ for every $x \in A$.
- A predominance $\Sigma = (T, F)$ is a *Rice partition* if T is closed under \cong and $F = A \setminus T$.

 $\Sigma_{\rm sd} = (T_{\rm sd}, F_{\rm sd})$ is always a Rice partition in any non-total PCA.

$$T_{\rm sd} \coloneqq \{ a \in A \mid a \cdot i \downarrow \}, \quad F_{\rm sd} \coloneqq \{ a \in A \mid a \cdot i \uparrow \}$$

Role of Σ -and combinator

Then we obtain the first characterization theorem under this assumption.

Theorem (N.)

Let $\Sigma = (T,F)$ be a Rice partition of A. Then the following are equivalent:

- 1. A admits Σ -and combinator.
- 2. $\boldsymbol{\Sigma}$ is a dominance.
- 3. $(\operatorname{Sub}_{\Sigma}(X), \subseteq_{\Sigma})$ is a poset for every $X \in \operatorname{Ass}(A)$.
- 4. $(\operatorname{Sub}_{\Sigma}(X), \subseteq_{\Sigma}, \cap)$ is a meet-semilattice for every $X \in \operatorname{Ass}(A)$.

 $(2 \iff 3 \iff 4 \text{ due to [Rosolini 86], [Hyland 91]})$

Role of Σ -or combinator

Recall that existence of $\Sigma_{sd}\text{-}or$ in \mathcal{K}_1 implies that the semi-decidable sets are closed under union.

This fact can be generalized and refined as follows.

Theorem (N.)

Let $\Sigma = (T, F)$ be a Rice partition of A. Then the following are equivalent:

- 1. A admits Σ -or combinator.
- 2. $\operatorname{Sub}_{\Sigma}(X)$ is closed under union \cup for every $X \in \operatorname{Ass}(A)$.

Since the λ -term model Λ_v^0 does not admit Σ_{sd} -or, $Sub_{\Sigma_{sd}}(X)$ is not closed under \cup for some $X \in Ass(\Lambda_v^0)$.

Combining the two characterization theorems, we obtain

Theorem

Suppose that $\Sigma = (T, F)$ is a Rice partition of A. Then A admits both Σ -and and Σ -or if and only if $(\operatorname{Sub}_{\Sigma}(X), \subseteq_{\Sigma}, \cap, \cup)$ forms a lattice for every $X \in \operatorname{Ass}(A)$.

Corollary

Let A be a non-total PCA. Then A admits parallel-or $\operatorname{or}_{\Sigma_{sd}}$ if and only if $(\operatorname{Sub}_{\Sigma_{sd}}(X), \subseteq_{\Sigma_{sd}}, \cap, \cup)$ forms a lattice for every $X \in \operatorname{Ass}(A)$.

Conclusion and Future work

Conclusion:

- We defined Σ -or and Σ -and combinators on PCA. In an appropriate Σ , Σ -or seems to be parallel-or.
- We have studied the relationship between the existence of parallel operations in A and the order structure of Σ-subsets in Ass(A).

Future work:

- A new logical model based on $Sub_{\Sigma}(X)$
- Extension to $\mathbf{RT}(A)$: $\mathbf{Ass}(A) \subseteq \mathbf{RT}(A)$
- $\bullet\,$ Relationship between models of PCF $+\,{\rm por}$ and this work

J. M. E. Hyland. First steps in synthetic domain theory. In <i>Category Theory</i> , LNM, volume 1488, pp. 131–156, 1991.
John R. Longley. <i>Realizability Toposes and Language Semantics</i> . PhD thesis, University of Edinburgh, 1994.
John R. Longley and Alex K. Simpson. A uniform approach to domain theory in realizability models. Mathematical Structures in Computer Science, Vol. 7, No. 5, p. 469–505, 1997.
Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, Vol. 5, No. 3, pp. 223–255, 1977.
Giuseppe Rosolini. <i>Continuity and Effectiveness in Topoi</i> . PhD thesis, University of Oxford, 1986.