Description Logics and other Decidable Logics for Graphs

Magdalena Ortiz

Umeå University, Sweden

WoLLIC 2023, July 11-14, Halifax, Canada

Graph-shaped data is ubiquitous:

- Web data:
 RDF data linked open data knowledge graphs
- Networks of all kinds
 - social biological transport interactions

• Graph databases eg., Neo4j

Graph data

Logics for graph data

Graph-structured Data

- edge- and node-labelled graphs
- sets of ground facts over unary and binary predicates

Logic languages for implicit facts (background knowledge), constraints, queries over graphs, data quality, data evolution, ...

Desiderata

- Expressiveness suitable for applications
- Decidable, and keeping the complexity in check

Logics for graph data

Graph-structured Data

- edge- and node-labelled graphs
- sets of ground facts over unary and binary predicates

Logic languages for implicit facts (background knowledge), constraints, queries over graphs, data quality, data evolution, ...

Desiderata

- Expressiveness suitable for applications
- Decidable, and keeping the complexity in check

FOL for Graphs

We want **decidable** fragments of First-Order Logic

- FO², the two variable fragment of FOL
 - Small model property (exponential size)
 - Satisfiability is NExpTime-complete
- A popular restriction: guarded quantification

$$\exists y. p(x,y) \land \varphi(y) \qquad \forall y. p(x,y) \to \varphi(y)$$

 \mathcal{G}^2 , the modal fragment of FO²

- a form of *locality*: tree/forest like structures
- satisfiability is in ExpTime
- More robust under extensions

Description Logics (DLs)

- mostly decidable fragments of FOL
- only unary and binary predicates
- classical FO-semantics
- \bullet closely related to FO², \mathcal{G}^2 and modal logics
- special KR-oriented syntax with no explicit variables

DLs as a toolbox

- different DLs with different expressiveness
- support **application-specific** choice of language
- focus on expressiveness vs. complexity of reasoning

Description Logics (DLs)

- mostly decidable fragments of FOL
- only unary and binary predicates
- classical FO-semantics
- \bullet closely related to FO², \mathcal{G}^2 and modal logics
- special KR-oriented syntax with no explicit variables

DLs as a toolbox

- different DLs with different expressiveness
- support application-specific choice of language
- focus on expressiveness vs. complexity of reasoning

$\mathcal{ALC},$ the basic DL

• FOL vocabulary with three alphabets:

- \bullet unary predicates C: concept names, for labelling nodes
- \bullet binary predicates $\mathbf{R}:$ role names, for labelling edges
- constants I: individuals, node names

• We write 'unary' formulas called concepts $A \in \mathbf{C}$, $r \in \mathbf{R}$

 $C \quad ::= \quad A \quad | \quad \neg C \quad | \quad C \sqcap C \quad | \quad C \sqcup C \quad | \quad \forall r.C \quad | \quad \exists r.C$

Syntactic variant of multi-dimensional modal logic

We use $ST_x(C)$ to denote the usual FOL translation of C with x free

$\mathcal{ALC},$ the basic DL

• FOL vocabulary with three alphabets:

- unary predicates C: concept names, for labelling nodes
- \bullet binary predicates R: role names, for labelling edges
- constants I: individuals, node names
- We write 'unary' formulas called concepts $A \in \mathbf{C}$, $r \in \mathbf{R}$

 $C \quad ::= \quad A \quad | \quad \neg C \quad | \quad C \sqcap C \quad | \quad C \sqcup C \quad | \quad \forall r.C \quad | \quad \exists r.C$

Syntactic variant of multi-dimensional modal logic

We use $ST_x(C)$ to denote the usual FOL translation of C with x free

$\mathcal{ALC},$ the basic DL

• FOL vocabulary with three alphabets:

- \bullet unary predicates C: concept names, for labelling nodes
- \bullet binary predicates R: role names, for labelling edges
- constants I: individuals, node names
- We write 'unary' formulas called concepts $A \in \mathbf{C}$, $r \in \mathbf{R}$

$$C \quad ::= \quad A \quad | \quad \neg C \quad | \quad C \sqcap C \quad | \quad C \sqcup C \quad | \quad \forall r.C \quad | \quad \exists r.C$$

Syntactic variant of multi-dimensional modal logic

We use $ST_x(C)$ to denote the usual FOL translation of C with x free

Knowledge Bases

In DLs, we consider knowledge bases with two parts:

- ABox, Data: facts, a graph
- **TBox, Ontology**: knowledge, universally quantified implications between unary formulas

$$C \sqsubseteq D \qquad \forall x \ ST_x(C) \ x \to ST_x(D) \ x$$

Models

FO interpretations \mathcal{I} (multi-dimensional Kripke structures, edge- and node-labeled graphs)

An interpretation is a model if it satisfies the ABox and the TBox

Complexity

Satisfiability of a KB is ExpTime-complete

M. Ortiz (Umeå University, Sweden)

Knowledge Bases

In DLs, we consider knowledge bases with two parts:

- ABox, Data: facts, a graph
- **TBox, Ontology**: knowledge, universally quantified implications between unary formulas

$$C \sqsubseteq D \qquad \forall x \ ST_x(C) \ x \to ST_x(D) \ x$$

Models

FO interpretations \mathcal{I} (multi-dimensional Kripke structures, edge- and node-labeled graphs)

An interpretation is a model if it satisfies the ABox and the TBox

Complexity Satisfiability of a KB is ExpTime-complete

M. Ortiz (Umeå University, Sweden)

Knowledge Bases

In DLs, we consider knowledge bases with two parts:

- ABox, Data: facts, a graph
- **TBox, Ontology**: knowledge, universally quantified implications between unary formulas

$$C \sqsubseteq D \qquad \forall x \ ST_x(C) \ x \to ST_x(D) \ x$$

Models

FO interpretations \mathcal{I} (multi-dimensional Kripke structures, edge- and node-labeled graphs)

An interpretation is a model if it satisfies the ABox and the TBox

Complexity

Satisfiability of a KB is ExpTime-complete

M. Ortiz (Umeå University, Sweden)

Inverse roles \mathcal{I} , i.e., converse modalities

```
\mathsf{Valve} \sqcap \exists \mathsf{hasPart}^-.\mathsf{Heart} \sqsubseteq \mathsf{HeartValve}
```

- Still in \mathcal{G}^2
- No significant effect on the complexity of expressive DLs

What else do we need? 2: Counting Q

Counting \mathcal{Q} , i.e., graded modalities

 $\mathsf{HumanHeart} \sqsubseteq \geq 4 \mathsf{ hasPart.Valve}$

Not possible with bounded variables!

- C^2 and $\mathcal{G}C^2$ extend FO² and \mathcal{G}^2 with counting quantifiers
- Same complexity as non-counting fragments

Functionality \mathcal{F} : simplest form of counting

```
func(hasSocSecNumber)
```


What else do we need? 2: Counting Q

Counting \mathcal{Q} , i.e., graded modalities

 $\mathsf{HumanHeart} \sqsubseteq \geq 4 \mathsf{ hasPart.Valve}$

Not possible with bounded variables!

- C^2 and $\mathcal{G}C^2$ extend FO² and \mathcal{G}^2 with counting quantifiers
- Same complexity as non-counting fragments

Functionality \mathcal{F} : simplest form of counting

func(hasSocSecNumber)

 $\mathsf{EU}_{-}\mathsf{Country} \sqsubseteq \{ \mathrm{Austria}, \mathrm{Belgium}, \dots, \mathrm{Sweden} \}$

 $\mathsf{PrimordialGods} \sqsubseteq \{ \mathsf{Gaia}, \mathsf{Chaos}, \mathsf{Chronos}, \mathsf{Ananke} \}$

- Brings us to Hybrid Logic
- Introduces equality to the FO translation

 \mathcal{ALCOIF} is hard for NExpTime With $\mathcal{O} + \mathcal{I} + \mathcal{F}/\mathcal{Q}$ we can enforce an exponentially large grid

 $\mathsf{EU}_{-}\mathsf{Country} \sqsubseteq \{ \mathrm{Austria}, \mathrm{Belgium}, \dots, \mathrm{Sweden} \}$

 $\mathsf{PrimordialGods} \sqsubseteq \{ \mathrm{Gaia}, \mathrm{Chaos}, \mathrm{Chronos}, \mathrm{Ananke} \}$

- Brings us to Hybrid Logic
- Introduces equality to the FO translation

 \mathcal{ALCOIF} is hard for NExpTime With $\mathcal{O} + \mathcal{I} + \mathcal{F}/\mathcal{Q}$ we can enforce an exponentially large grid

 $\mathsf{EU}_{-}\mathsf{Country} \sqsubseteq \{ \mathrm{Austria}, \mathrm{Belgium}, \dots, \mathrm{Sweden} \}$

 $\mathsf{PrimordialGods} \sqsubseteq \{ \mathrm{Gaia}, \mathrm{Chaos}, \mathrm{Chronos}, \mathrm{Ananke} \}$

• Brings us to Hybrid Logic

• Introduces equality to the FO translation

\mathcal{ALCOIF} is hard for NExpTime With $\mathcal{O} + \mathcal{I} + \mathcal{F}/\mathcal{Q}$ we can enforce an exponentially large gr

 $\mathsf{EU}_{-}\mathsf{Country} \sqsubseteq \{ \mathrm{Austria}, \mathrm{Belgium}, \dots, \mathrm{Sweden} \}$

 $\mathsf{PrimordialGods} \sqsubseteq \{ \mathrm{Gaia}, \mathrm{Chaos}, \mathrm{Chronos}, \mathrm{Ananke} \}$

• Brings us to Hybrid Logic

• Introduces equality to the FO translation

 \mathcal{ALCOIF} is hard for NExpTime

With $\mathcal{O}+\mathcal{I}+\mathcal{F}/\mathcal{Q}$ we can enforce an exponentially large grid

Transitive relations: partOf nextState ancestors

Two main solutions[†]:

 ${ullet}$ transitive roles (${\mathcal S}$), usually with role inclusions (${\mathcal {SH}})$

trans(partOf) has Parent \sqsubseteq has Ancestor, trans(has Ancestor)

FOL expressible (with three variables)

allow Kleene star * (or even *regular expressions reg*)
 ∀(partOf)*.Heart □ CardiacStructure

No type of transitivity in counting concepts!

Wait, this also looks familiar...We are now in the world of hybrid PDL(and outside FOL!We can also go further: hybrid μ calculus, $\mu ALCIO$, ...

† The first option is easier to implement efficiently

M. Ortiz (Umeå University, Sweden)

 Transitive relations: partOf nextState ancestors
 Two main solutions[†]:
 transitive roles (S), usually with role inclusions (SH) trans(partOf) hasParent⊑hasAncestor, trans(hasAncestor)
 FOL expressible (with three variables)

Solution State State (or even regular expressions reg) $∀(partOf)^*.Heart \sqsubseteq CardiacStructure$

No type of transitivity in counting concepts!

Wait, this also looks familiar... We are now in the world of **hybrid PDL** (and outside FC) We can also go further: **hybrid** μ **calculus**, $\mu ALCIO$, ...

† The first option is easier to implement efficiently

M. Ortiz (Umeå University, Sweden)

Transitive relations:partOfnextStateancestorsTwo main solutions†:

transitive roles (S), usually with role inclusions (SH)
 trans(partOf) hasParent⊑hasAncestor, trans(hasAncestor)
 FOL expressible (with three variables)

② allow Kleene star * (or even regular expressions reg) ∀(partOf)*.Heart ⊆ CardiacStructure

No type of transitivity in counting concepts!

Wait, this also looks familiar...We are now in the world of hybrid PDL(and outside FOL!)We can also go further: hybrid μ calculus, $\mu ALCIO$, ...

† The first option is easier to implement efficiently

M. Ortiz (Umeå University, Sweden)

Transitive relations:partOfnextStateancestorsTwo main solutions†:

transitive roles (S), usually with role inclusions (SH)
 trans(partOf) hasParent⊑hasAncestor, trans(hasAncestor)
 FOL expressible (with three variables)

allow Kleene star * (or even *regular expressions reg*)
 ∀(partOf)*.Heart ⊑ CardiacStructure

No type of transitivity in counting concepts!

Wait, this also looks familiar...We are now in the world of hybrid PDL(and outside FOL!)We can also go further: hybrid μ calculus, $\mu ALCIO$, ...

† The first option is easier to implement efficiently

 Transitive relations:
 partOf
 nextState
 ancestors

 Two main solutions[†]:
 (21)

transitive roles (S), usually with role inclusions (SH)
 trans(partOf) hasParent⊑hasAncestor, trans(hasAncestor)
 FOL expressible (with three variables)

allow Kleene star * (or even *regular expressions reg*)
 ∀(partOf)*.Heart □ CardiacStructure

No type of transitivity in counting concepts!

Wait, this also looks familiar... We are now in the world of hybrid PDL (and outside FOL!) We can also go further: hybrid μ calculus, $\mu ALCIO$, ...

† The first option is easier to implement efficiently

Complexity and Decidability

 \bullet With any 2 of $\mathcal{O}+\mathcal{I}+\mathcal{F}/\mathcal{Q},$ remains decidable in <code>ExpTime</code>

SHIQ	${\cal ALCHIQ}^*$	\mathcal{ALCHIQ}_{reg}	$\mu \mathcal{ALCHIQ}$
SHOQ	\mathcal{ALCHOQ}^*	\mathcal{ALCHOQ}_{reg}	$\mu \mathcal{ALCHOQ}$
\mathcal{SHOI}	\mathcal{ALCHOI}^*	\mathcal{ALCHOI}_{reg}	$\mu ALCHOI$

- Moreover, we have good reasoners (for S, SH, SR)
- But with all three $\mathcal{O} + \mathcal{I} + \mathcal{F}/\mathcal{Q}$:
 - SHOIQ is NExpTime complete
 - $\mu ALCHOIF$ is undecidable!
 - *ALCHOIF** is a long standing open problem!

Some things I didn't mention

- Lightweight DLs are a huge area
- Query languages for graphs
 - DLs / guarded formalisms very poor as query languages
 - Orthogonal formalisms for the data and the query
 - Exciting and evolving area!
- Property graphs
 - Adding data values to the logics
 - Concrete domains
- Here, only classical semantics
 - Minimal model reasoning
 - Non-monotonic DLs
 - paraconsistent, probabilistic, ...

Want to know more?

There is a quite accessible textbook, as well as many papers and tutorial notes.

If you want to read also about query languages for graphs:

- M. Bienvenu, M. Ortiz: Ontology-Mediated Query Answering with Data-Tractable Description Logics. Reasoning Web 2015: 218-307
- N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens, F. Murlak, L. Peterfreund, A. Rogova, D. Vrgoc: A Researcher's Digest of GQL (Invited Talk). ICDT 2023: 1:1-1:22

M. Ortiz (Umeå University, Sweden)