Description Logics and other Decidable Logics for Graphs

Magdalena Ortiz
Umeå University, Sweden

WoLLIC 2023, July 11-14, Halifax, Canada

Graph-shaped Data

Graph-shaped data is ubiquitous:

- Web data:

RDF data linked open data
knowledge graphs

- Networks of all kinds
social biological transport interactions
- Graph databases eg., Neo4j

Graph data

Logics for graph data

Graph-structured Data

- edge- and node-labelled graphs
- sets of ground facts over unary and binary predicates

Logic languages for implicit facts (background knowledge), constraints, queries over graphs, data quality, data evolution, ...

- Expressiveness suitable for applications
- Decidable, and keeping the complexity in check

Logics for graph data

Graph-structured Data

- edge- and node-labelled graphs
- sets of ground facts over unary and binary predicates

Logic languages for implicit facts (background knowledge), constraints, queries over graphs, data quality, data evolution, ...

Desiderata

- Expressiveness suitable for applications
- Decidable, and keeping the complexity in check

FOL for Graphs

We want decidable fragments of First-Order Logic

- FO^{2}, the two variable fragment of FOL
- Small model property (exponential size)
- Satisfiability is NExpTime-complete
- A popular restriction: guarded quantification

$$
\exists y \cdot p(x, y) \wedge \varphi(y) \quad \forall y \cdot p(x, y) \rightarrow \varphi(y)
$$

\mathcal{G}^{2}, the modal fragment of FO^{2}

- a form of locality: tree/forest like structures
- satisfiability is in ExpTime
- More robust under extensions

Description Logics (DLs)

- mostly decidable fragments of FOL
- only unary and binary predicates
- classical FO-semantics
- closely related to $\mathrm{FO}^{2}, \mathcal{G}^{2}$ and modal logics
- special KR-oriented syntax with no explicit variables
- support application-specific choice of language
- focus on expressiveness vs. complexity of reasoning

Description Logics (DLs)

- mostly decidable fragments of FOL
- only unary and binary predicates
- classical FO-semantics
- closely related to $\mathrm{FO}^{2}, \mathcal{G}^{2}$ and modal logics
- special KR-oriented syntax with no explicit variables

DLs as a toolbox

- different DLs with different expressiveness
- support application-specific choice of language
- focus on expressiveness vs. complexity of reasoning

$\mathcal{A} \mathcal{L C}$, the basic DL

- FOL vocabulary with three alphabets:
- unary predicates C : concept names, for labelling nodes
- binary predicates \mathbf{R} : role names, for labelling edges
- constants I: individuals, node names
- We write 'unary' formulas called concepts $\quad A \in \mathbf{C}, \quad r \in \mathbf{R}$

Syntactic variant of multi-dimensional modal logic
We use $S T_{x}(C)$ to denote the usual FOL translation of C with x free

$\mathcal{A} \mathcal{L C}$, the basic DL

- FOL vocabulary with three alphabets:
- unary predicates C : concept names, for labelling nodes
- binary predicates \mathbf{R} : role names, for labelling edges
- constants I: individuals, node names
- We write 'unary' formulas called concepts $\quad A \in \mathbf{C}, \quad r \in \mathbf{R}$

$$
C::=A|\neg C| C \sqcap C|C \sqcup C| \forall r . C \mid \exists r . C
$$

Syntactic variant of multi-dimensional modal logic
We use $S T_{x}(C)$ to denote the usual FOL translation of C with x free

$\mathcal{A} \mathcal{L C}$, the basic DL

- FOL vocabulary with three alphabets:
- unary predicates C : concept names, for labelling nodes
- binary predicates \mathbf{R} : role names, for labelling edges
- constants I: individuals, node names
- We write 'unary' formulas called concepts $\quad A \in \mathbf{C}, \quad r \in \mathbf{R}$

$$
C::=A|\neg C| C \sqcap C|C \sqcup C| \forall r . C \mid \exists r . C
$$

Syntactic variant of multi-dimensional modal logic
We use $S T_{x}(C)$ to denote the usual FOL translation of C with x free

Knowledge Bases

In DLs, we consider knowledge bases with two parts:

- ABox, Data: facts, a graph
- TBox, Ontology: knowledge, universally quantified implications between unary formulas

$$
C \sqsubseteq D \quad \forall x S T_{x}(C) x \rightarrow S T_{x}(D) x
$$

FO interpretations \mathcal{I} (multi-dimensional Kripke structures, edge- and node-labeled graphs)

Knowledge Bases

In DLs, we consider knowledge bases with two parts:

- ABox, Data: facts, a graph
- TBox, Ontology: knowledge, universally quantified implications between unary formulas

$$
C \sqsubseteq D \quad \forall x S T_{x}(C) x \rightarrow S T_{x}(D) x
$$

Models

FO interpretations \mathcal{I} (multi-dimensional Kripke structures, edge- and node-labeled graphs)
An interpretation is a model if it satisfies the ABox and the TBox
\square

Knowledge Bases

In DLs, we consider knowledge bases with two parts:

- ABox, Data: facts, a graph
- TBox, Ontology: knowledge, universally quantified implications between unary formulas

$$
C \sqsubseteq D \quad \forall x S T_{x}(C) x \rightarrow S T_{x}(D) x
$$

Models

FO interpretations \mathcal{I} (multi-dimensional Kripke structures, edge- and node-labeled graphs)
An interpretation is a model if it satisfies the ABox and the TBox

Complexity

Satisfiability of a KB is ExpTime-complete

What are we missing? 1 : Inverses

Inverse roles \mathcal{I}, i.e., converse modalities

$$
\text { Valve } \sqcap \exists \text { hasPart }^{-} \text {.Heart } \sqsubseteq \text { HeartValve }
$$

- Still in \mathcal{G}^{2}
- No significant effect on the complexity of expressive DLs

What else do we need? 2: Counting \mathcal{Q}

Counting \mathcal{Q}, i.e., graded modalities

$$
\text { HumanHeart } \sqsubseteq \geq 4 \text { hasPart.Valve }
$$

Not possible with bounded variables!

- \mathcal{C}^{2} and $\mathcal{G C}^{2}$ extend FO^{2} and \mathcal{G}^{2} with counting quantifiers
- Same complexity as non-counting fragments

Functionality \mathcal{F} : simplest form of counting
func(hasSocSecNumber)

What else do we need? 2: Counting \mathcal{Q}

Counting \mathcal{Q}, i.e., graded modalities

$$
\text { HumanHeart } \sqsubseteq \geq 4 \text { hasPart.Valve }
$$

Not possible with bounded variables!

- \mathcal{C}^{2} and $\mathcal{G C}^{2}$ extend FO^{2} and \mathcal{G}^{2} with counting quantifiers
- Same complexity as non-counting fragments

Functionality \mathcal{F} : simplest form of counting
func(hasSocSecNumber)

Infinity axioms

$\mathcal{A L C I F}$ does not have the finite model property

$$
A(c), B(c) \quad A \sqsubseteq \exists r . A \quad \exists r^{-} . \top \sqsubseteq \neg B \quad \top \sqsubseteq \leq_{1} r^{-}
$$

Nominals \mathcal{O}

aka one-of

Builds a concept from a set of individuals $\left\{a_{1}, \ldots, a_{n}\right\}$
EU_Country $\sqsubseteq\{$ Austria, Belgium, ... , Sweden $\}$

PrimordialGods $\sqsubseteq\{$ Gaia, Chaos, Chronos, Ananke $\}$

- Brings us to Hybrid Logic
- Introduces equality to the FO translation

With $\mathcal{O}+\mathcal{I}+\mathcal{F} / \mathcal{Q}$ we can enforce an exponentially large grid

Nominals \mathcal{O}

aka one-of

Builds a concept from a set of individuals $\left\{a_{1}, \ldots, a_{n}\right\}$
EU_Country $\sqsubseteq\{$ Austria, Belgium, ..., Sweden $\}$

PrimordialGods $\sqsubseteq\{$ Gaia, Chaos, Chronos, Ananke $\}$

- Brings us to Hybrid Logic
- Introduces equality to the FO translation With $\mathcal{O}+\mathcal{I}+\mathcal{F} / \mathcal{Q}$ we can enforce an exponentially large grid

Nominals \mathcal{O}

aka one-of

Builds a concept from a set of individuals $\left\{a_{1}, \ldots, a_{n}\right\}$

$$
\text { EU_Country } \sqsubseteq\{\text { Austria, Belgium, . . . , Sweden }\}
$$

PrimordialGods $\sqsubseteq\{$ Gaia, Chaos, Chronos, Ananke $\}$

- Brings us to Hybrid Logic
- Introduces equality to the FO translation

Nominals \mathcal{O}

aka one-of

Builds a concept from a set of individuals $\left\{a_{1}, \ldots, a_{n}\right\}$
EU_Country $\sqsubseteq\{$ Austria, Belgium, ..., Sweden $\}$

$$
\text { PrimordialGods } \sqsubseteq\{\text { Gaia, Chaos, Chronos, Ananke }\}
$$

- Brings us to Hybrid Logic
- Introduces equality to the FO translation

$\mathcal{A L C O I F}$ is hard for NExpTime
 With $\mathcal{O}+\mathcal{I}+\mathcal{F} / \mathcal{Q}$ we can enforce an exponentially large grid

What else do we need?

Transitive relations:
partOf nextState ancestors
Two main solutions ${ }^{\dagger}$:
(1) transitive roles (\mathcal{S}), usually with role inclusions $(\mathcal{S H})$ trans(partOf) hasParent \sqsubset hasAncestor. trans(hasAncestor)
FOL expressible (with three variables)
(2) allow Kleene star * (or even regular expressions reg)

$$
\forall(\text { partOf })^{*} . \text { Heart } \sqsubseteq \text { CardiacStructure }
$$

No type of transitivity in counting concepts!

We are now in the world of hybrid PDL (and outside FOL!)
We can also go further: hybrid μ calculus, $\mu \mathcal{A L C I O}$,

The first option is easier to implement efficiently

What else do we need?

Transitive relations: partOf nextState ancestors

Two main solutions ${ }^{\dagger}$:
(1) transitive roles (\mathcal{S}), usually with role inclusions $(\mathcal{S H})$ trans(partOf) hasParent $\sqsubseteq h a s A n c e s t o r$, trans(hasAncestor)
FOL expressible (with three variables)(or even regular expressions reg)

No type of transitivity in counting concepts!

What else do we need?

Transitive relations: partOf nextState ancestors
Two main solutions ${ }^{\dagger}$:
© transitive roles (\mathcal{S}), usually with role inclusions $(\mathcal{S H})$
trans(partOf) hasParent \sqsubseteq hasAncestor, trans (hasAncestor)
FOL expressible (with three variables)
(3) allow Kleene star * (or even regular expressions reg)

$$
\forall(\text { partOf })^{*} \text {.Heart } \sqsubseteq \text { CardiacStructure }
$$

No type of transitivity in counting concepts!

What else do we need?

Transitive relations: partOf nextState ancestors
Two main solutions ${ }^{\dagger}$:
© transitive roles (\mathcal{S}), usually with role inclusions $(\mathcal{S H})$
trans(partOf) hasParent \sqsubseteq hasAncestor, trans(hasAncestor)
FOL expressible (with three variables)
(3) allow Kleene star * (or even regular expressions reg)

$$
\forall(\text { partOf })^{*} \text {.Heart } \sqsubseteq \text { CardiacStructure }
$$

No type of transitivity in counting concepts!
Wait, this also looks familiar.
We are now in the world of hybrid PDL (and outside FOL!) We can also go further: hybrid μ calculus, $\mu \mathcal{A L C \mathcal { L } \mathcal { O }}, \ldots$

What else do we need?

Transitive relations: partOf nextState ancestors
Two main solutions ${ }^{\dagger}$:
(1) transitive roles (\mathcal{S}), usually with role inclusions $(\mathcal{S H})$
trans(partOf) hasParent \sqsubseteq hasAncestor, trans (hasAncestor)
FOL expressible (with three variables)
(3) allow Kleene star * (or even regular expressions reg)

$$
\forall(\text { partOf })^{*} \text {.Heart } \sqsubseteq \text { CardiacStructure }
$$

No type of transitivity in counting concepts!
Wait, this also looks familiar.
We are now in the world of hybrid PDL (and outside FOL!)
We can also go further: hybrid μ calculus, $\mu \mathcal{A L C \mathcal { L } \mathcal { O }}, \ldots$
\dagger The first option is easier to implement efficiently

Complexity and Decidability

- With any 2 of $\mathcal{O}+\mathcal{I}+\mathcal{F} / \mathcal{Q}$, remains decidable in ExpTime $\mathcal{S H I Q} \quad \mathcal{A L C H I Q} \quad \mathcal{A L C H I} Q_{\text {reg }} \quad \mu \mathcal{A L C H I Q}$ $\mathcal{S H O Q} \quad \mathcal{A L C H O Q}{ }^{*} \quad \mathcal{A L C H O Q}{ }_{\text {reg }} \quad \mu \mathcal{A L C H O Q}$ $\mathcal{S H O I} \quad \mathcal{A L C H O} \mathcal{I}^{*} \quad \mathcal{A L C H O I}{ }_{\text {reg }} \quad \mu \mathcal{A L C H O I}$
- Moreover, we have good reasoners (for $\mathcal{S}, \mathcal{S H}, \mathcal{S R})$
- But with all three $\mathcal{O}+\mathcal{I}+\mathcal{F} / \mathcal{Q}$:
- $\mathcal{S H O I Q}$ is NExpTime complete
- $\mu \mathcal{A L C H O I F}$ is undecidable!
- $\mathcal{A L C H O I F}{ }^{*}$ is a long standing open problem!

Some things I didn't mention

- Lightweight DLs are a huge area
- Query languages for graphs
- DLs / guarded formalisms very poor as query languages
- Orthogonal formalisms for the data and the query
- Exciting and evolving area!
- Property graphs
- Adding data values to the logics
- Concrete domains
- Here, only classical semantics
- Minimal model reasoning
- Non-monotonic DLs
- paraconsistent, probabilistic, ...

Want to know more?

There is a quite accessible textbook, as well as many papers and tutorial notes.

If you want to read also about query languages for graphs:

- M. Bienvenu, M. Ortiz: Ontology-Mediated Query Answering with Data-Tractable Description Logics. Reasoning Web 2015: 218-307
- N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens, F. Murlak, L. Peterfreund, A. Rogova, D. Vrgoc: A Researcher's Digest of GQL (Invited Talk). ICDT 2023: 1:1-1:22

