
Umeå University, Sweden

A Short Introduction
to SHACL for Logicians
Magdalena Ortiz
magdalena.ortiz@umu.se

July 13, 2023



1 What is SHACL and why do we need it?

2 SHACL as a Logic

3 SHACL vs. Description Logics

4 Semantics of Recursive SHACL

5 Explanations for non-validation

6 Conclusions and Outlook

Contents

2/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



On the web, data is stored as RDF graphs

triples (subject, predicate, object)

@prefix : <http://example.com/> .
:cervantes :authorOf :elQuixote .

Cervantes Don_Quixote
authorOf

DBPedia hundreds of millions Wikipedia facts
https://dbpedia.org/

Yago high-quality knowledge graph (people, countries,
organizations, . . . ) > 2 billion facts, 50 million nodes
https://yago-knowledge.org/

Data on the Web

3/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians

https://dbpedia.org/
https://yago-knowledge.org/


On the web, data is stored as RDF graphs

triples (subject, predicate, object)

@prefix : <http://example.com/> .
:cervantes :authorOf :elQuixote .

Cervantes Don_Quixote
authorOf

DBPedia hundreds of millions Wikipedia facts
https://dbpedia.org/

Yago high-quality knowledge graph (people, countries,
organizations, . . . ) > 2 billion facts, 50 million nodes
https://yago-knowledge.org/

Data on the Web

3/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians

https://dbpedia.org/
https://yago-knowledge.org/


edge-labeled graphs
set of node names N
set of property names P

Cervantes Don_Quixote
authorOf

Ann 860504-9876
hasPersonnnumer

Knowledge Graphs

4/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Querying Knowledge graphs

Dedicated query language called SPARQL, access via
endpoints

PREFIX : <http://example.com/>

SELECT ?author
WHERE {

?author :authorOf ?book .
?book :hasTitle "El Quixote" .

}

But what can I query for?

Data on the Web

5/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Querying Knowledge graphs

Dedicated query language called SPARQL, access via
endpoints

PREFIX : <http://example.com/>

SELECT ?author
WHERE {

?author :authorOf ?book .
?book :hasTitle "El Quixote" .

}

But what can I query for?

Data on the Web

5/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



OWL, Web Ontology Languages since 2009
Sharable knowledge to infer implicit facts

SHACL, Shapes Constraint Language since 2017
Validate constraints on the graph

Ann Person

Person ⊑ ∃hasNumber.PersNumber

In OWL, we infer that Ann has a PersonNumber

PersonShape ≡ ∃hasNumber.PersNumber

In SHACL, Ann does not validate the PersonShape

Formalisms for Describing RDF Graphs

6/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



OWL, Web Ontology Languages since 2009
Sharable knowledge to infer implicit facts

SHACL, Shapes Constraint Language since 2017
Validate constraints on the graph

Ann Person

Person ⊑ ∃hasNumber.PersNumber

In OWL, we infer that Ann has a PersonNumber

PersonShape ≡ ∃hasNumber.PersNumber

In SHACL, Ann does not validate the PersonShape

Formalisms for Describing RDF Graphs

6/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



OWL, Web Ontology Languages since 2009
Sharable knowledge to infer implicit facts

SHACL, Shapes Constraint Language since 2017
Validate constraints on the graph

Ann Person

Person ⊑ ∃hasNumber.PersNumber

In OWL, we infer that Ann has a PersonNumber

PersonShape ≡ ∃hasNumber.PersNumber

In SHACL, Ann does not validate the PersonShape

Formalisms for Describing RDF Graphs

6/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



The logics behind

OWL is based on Description Logics

What about SHACL? https://www.w3.org/TR/shacl/

• Corman, Reuter & Slavkovic (2018) converted the ‘core’ of
the standard into an abstract, logic-like syntax

• Others have built on it

Logics for Knowledge Graphs

7/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians

https://www.w3.org/TR/shacl/


Recall: set of property names P, set of node names N.
We also have a set of shape names S.

We write shape constraints of the form

𝑠 ≡ 𝜑

using shape expressions 𝜑 and path expressions 𝐸

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≥𝑛 𝐸.𝜑 | 𝐸 = 𝐸

𝐸 ::= 𝑝 | 𝑝− | 𝐸 ∪ 𝐸 | 𝐸 ◦ 𝐸 | 𝐸∗

where 𝑠 ∈ S, 𝑎 ∈ N, 𝑝 ∈ P, and 𝑛 ≥ 0.

We can express

𝜑1 ∨ 𝜑2 ∃𝐸.𝜑 ∀𝐸.𝜑 ≤𝑛−1 𝐸.𝜑

Syntax of SHACL

8/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



a sh:NodeShape ;
sh:property [

sh:path pizza:hasTopping ;
sh:minCount 2 ] .

Pizza ≡ ≥2 hasTopping.⊤,
VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}

SHACL Constraints

9/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



A shapes specification is a pair

(C, 𝑇)

• C is a set of shape constraints
(usually, one constraint 𝑠 ≡ 𝜑 for each 𝑠)

• 𝑇 is a set of target atoms 𝑠(𝑎) with 𝑠 ∈ S and 𝑎 ∈ N

C = { Pizza ≡ ≥2 hasTopping.⊤,
VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke} }

𝑇 = {Pizza (capricciosa),VeggiePizza (margherita)}

Syntax of SHACL (cont.)

10/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



We consider I = (Δ, ·I) with a non-empty domain Δ ⊆ N
and an interpretation function ·I that assigns
to node names 𝑎 ∈ N, an element 𝑎I ∈ Δ,
to shape names 𝑠 ∈ S, a set 𝑠I ⊆ Δ,
to property names 𝑝 ∈ P, a set of pairs 𝑝I ⊆ Δ × Δ

·I is extended to complex expressions as expected:
• path expressions 𝐸 are binary relations 𝐸I over Δ
• shape expressions 𝜑 interpreted as sets 𝜑I ⊆ Δ

{𝑎}I = {𝑎} ⊤I = Δ (¬𝜑)I = Δ \ 𝜑I

(𝜑1 ∧ 𝜑2)I = 𝜑1
I ∩ 𝜑2

I

(≥𝑛 𝐸.𝜑)I = {𝑑 ∈ Δ | there exist distinct 𝑑1, . . . , 𝑑𝑛

with (𝑑, 𝑑𝑖) ∈ 𝐸I land 𝑑𝑖 ∈ 𝜑I for each 1 ≤ 𝑖 ≤ 𝑛}

(𝐸 = 𝐸 ′)I = {𝑑 ∈ Δ | for all 𝑐 ∈ Δ : (𝑐, 𝑑) ∈ 𝐸I iff (𝑐, 𝑑) ∈ 𝐸 ′I }

Interpretations

11/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



We consider I = (Δ, ·I) with a non-empty domain Δ ⊆ N
and an interpretation function ·I that assigns
to node names 𝑎 ∈ N, an element 𝑎I ∈ Δ,
to shape names 𝑠 ∈ S, a set 𝑠I ⊆ Δ,
to property names 𝑝 ∈ P, a set of pairs 𝑝I ⊆ Δ × Δ

·I is extended to complex expressions as expected:
• path expressions 𝐸 are binary relations 𝐸I over Δ

• shape expressions 𝜑 interpreted as sets 𝜑I ⊆ Δ

{𝑎}I = {𝑎} ⊤I = Δ (¬𝜑)I = Δ \ 𝜑I

(𝜑1 ∧ 𝜑2)I = 𝜑1
I ∩ 𝜑2

I

(≥𝑛 𝐸.𝜑)I = {𝑑 ∈ Δ | there exist distinct 𝑑1, . . . , 𝑑𝑛

with (𝑑, 𝑑𝑖) ∈ 𝐸I land 𝑑𝑖 ∈ 𝜑I for each 1 ≤ 𝑖 ≤ 𝑛}

(𝐸 = 𝐸 ′)I = {𝑑 ∈ Δ | for all 𝑐 ∈ Δ : (𝑐, 𝑑) ∈ 𝐸I iff (𝑐, 𝑑) ∈ 𝐸 ′I }

Interpretations

11/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



We consider I = (Δ, ·I) with a non-empty domain Δ ⊆ N
and an interpretation function ·I that assigns
to node names 𝑎 ∈ N, an element 𝑎I ∈ Δ,
to shape names 𝑠 ∈ S, a set 𝑠I ⊆ Δ,
to property names 𝑝 ∈ P, a set of pairs 𝑝I ⊆ Δ × Δ

·I is extended to complex expressions as expected:
• path expressions 𝐸 are binary relations 𝐸I over Δ
• shape expressions 𝜑 interpreted as sets 𝜑I ⊆ Δ

{𝑎}I = {𝑎} ⊤I = Δ (¬𝜑)I = Δ \ 𝜑I

(𝜑1 ∧ 𝜑2)I = 𝜑1
I ∩ 𝜑2

I

(≥𝑛 𝐸.𝜑)I = {𝑑 ∈ Δ | there exist distinct 𝑑1, . . . , 𝑑𝑛

with (𝑑, 𝑑𝑖) ∈ 𝐸I land 𝑑𝑖 ∈ 𝜑I for each 1 ≤ 𝑖 ≤ 𝑛}

(𝐸 = 𝐸 ′)I = {𝑑 ∈ Δ | for all 𝑐 ∈ Δ : (𝑐, 𝑑) ∈ 𝐸I iff (𝑐, 𝑑) ∈ 𝐸 ′I }

Interpretations

11/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



In SHACL, the graph itself is an interpretation that we can
adorn with the shape names

Let 𝐺 = (𝑁, 𝐸, ℓ) be a data graph

An shape adorment of of 𝐺 is an I with
𝑝I = {(𝑎, 𝑏) ∈ 𝐸 | 𝑝 ∈ ℓ(𝑎, 𝑏)} for each property 𝑝.

I satisfies a constraint 𝑠 ≡ 𝜑 if 𝑠I = 𝜑I

𝐺 validates (C, 𝑇) if there is an adorment satisfies all
constraints in C and has 𝑎 ∈ 𝑠I for every 𝑠(𝑎) ∈ 𝑇 .

SHACL Semantics 1.0

12/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Definition (SHACL validation)

The SHACL validation problem consists on deciding, for a
given 𝐺 and (C, 𝑇), whether G validates (C, 𝑇).

C = { Pizza ≡ ≥2 hasTopping.⊤,
VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke} }

𝑇 = {Pizza (pizza_capricciosa)} 𝑇 ′ = {VeggiePizza (pizza_capricciosa)}

pizza_capricciosa

mozzarella prosciutto artichoke
hasTopping hasTopping hasTopping

SHACL Validation

13/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Definition (SHACL validation)

The SHACL validation problem consists on deciding, for a
given 𝐺 and (C, 𝑇), whether G validates (C, 𝑇).

C = { Pizza ≡ ≥2 hasTopping.⊤,
VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke} }

𝑇 = {Pizza (pizza_capricciosa)} 𝑇 ′ = {VeggiePizza (pizza_capricciosa)}

pizza_capricciosa

mozzarella prosciutto artichoke
hasTopping hasTopping hasTopping

SHACL Validation

13/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



If we call S concept names, then the same syntax defines
concept expressions in the description logic ALCOIQ=

reg .

An

ALCOIQ=
reg ontology is a set of concept inclusions

𝜑1 ⊑ 𝜑2

In the special case of terminologieswe have definitions

𝑠 ≡ 𝜑

Semantics of concept expressions in I as for SHACL
• I satisfies an inclusion 𝜑1 ⊑ 𝜑2 if 𝜑I

2 = 𝜑I
2

• I is amodel of an ontology O if it satisfies all inclusions.

Relaxed definition of model: I is a model of 𝐺 if it contains 𝐺
• 𝐺 is consistent with O if there exists a model of 𝐺 and O
• 𝐺 and O entail a fact 𝛼 if it’s true in every model of 𝐺 and O

OWL and Description Logics

14/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



If we call S concept names, then the same syntax defines
concept expressions in the description logic ALCOIQ=

reg . An

ALCOIQ=
reg ontology is a set of concept inclusions

𝜑1 ⊑ 𝜑2

In the special case of terminologieswe have definitions

𝑠 ≡ 𝜑

Semantics of concept expressions in I as for SHACL
• I satisfies an inclusion 𝜑1 ⊑ 𝜑2 if 𝜑I

2 = 𝜑I
2

• I is amodel of an ontology O if it satisfies all inclusions.

Relaxed definition of model: I is a model of 𝐺 if it contains 𝐺
• 𝐺 is consistent with O if there exists a model of 𝐺 and O
• 𝐺 and O entail a fact 𝛼 if it’s true in every model of 𝐺 and O

OWL and Description Logics

14/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



If we call S concept names, then the same syntax defines
concept expressions in the description logic ALCOIQ=

reg . An

ALCOIQ=
reg ontology is a set of concept inclusions

𝜑1 ⊑ 𝜑2

In the special case of terminologieswe have definitions

𝑠 ≡ 𝜑

Semantics of concept expressions in I as for SHACL
• I satisfies an inclusion 𝜑1 ⊑ 𝜑2 if 𝜑I

2 = 𝜑I
2

• I is amodel of an ontology O if it satisfies all inclusions.

Relaxed definition of model: I is a model of 𝐺 if it contains 𝐺
• 𝐺 is consistent with O if there exists a model of 𝐺 and O
• 𝐺 and O entail a fact 𝛼 if it’s true in every model of 𝐺 and O

OWL and Description Logics

14/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



If we call S concept names, then the same syntax defines
concept expressions in the description logic ALCOIQ=

reg . An

ALCOIQ=
reg ontology is a set of concept inclusions

𝜑1 ⊑ 𝜑2

In the special case of terminologieswe have definitions

𝑠 ≡ 𝜑

Semantics of concept expressions in I as for SHACL
• I satisfies an inclusion 𝜑1 ⊑ 𝜑2 if 𝜑I

2 = 𝜑I
2

• I is amodel of an ontology O if it satisfies all inclusions.

Relaxed definition of model: I is a model of 𝐺 if it contains 𝐺
• 𝐺 is consistent with O if there exists a model of 𝐺 and O
• 𝐺 and O entail a fact 𝛼 if it’s true in every model of 𝐺 and O

OWL and Description Logics

14/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



pizza_margherita

mozzarella tomato basil
hasTopping hasTopping hasTopping

C′
Pizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}

𝐺Pizza validates VeggiePizza (pizza_margherita)

Assuming that VeggieTopping and VeggiePizza are concept
names, consider the ontology:

OPizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}

OPizza, 𝐺Pizza does not entail VeggiePizza (pizza_margherita)

SHACL validation vs. DL entailment

15/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



pizza_margherita

mozzarella tomato basil
hasTopping hasTopping hasTopping

C′
Pizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}

𝐺Pizza validates VeggiePizza (pizza_margherita)

Assuming that VeggieTopping and VeggiePizza are concept
names, consider the ontology:

OPizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,
VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}

OPizza, 𝐺Pizza does not entail VeggiePizza (pizza_margherita)

SHACL validation vs. DL entailment

15/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



In DLs, complexity of consistency and entailment known

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≤𝑛 𝐸.𝜑 | 𝐸 = 𝐸

𝐸 ::= 𝑝 | 𝑝− | 𝐸 ∪ 𝐸 | 𝐸 ◦ 𝐸 | 𝐸∗

• In ALCOIQ they are NExpTime complete

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≥𝑛 𝑝.𝜑

OWL is an extension of this DL called SHOIQ
• In ALCOIQreg they are long-standing open problems

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≤𝑛 𝑝.𝜑 | ∃𝐸.𝜑

Extensions with ≥1 𝑝.𝜑 and 𝜇ALCOIQ are undecidable

SHACL satisfiability and containment are undecidable

DL resoning and SHACL satisfiability

16/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



In DLs, complexity of consistency and entailment known

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≤𝑛 𝐸.𝜑 | 𝐸 = 𝐸

𝐸 ::= 𝑝 | 𝑝− | 𝐸 ∪ 𝐸 | 𝐸 ◦ 𝐸 | 𝐸∗

• In ALCOIQ they are NExpTime complete

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≥𝑛 𝑝.𝜑

OWL is an extension of this DL called SHOIQ
• In ALCOIQreg they are long-standing open problems

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≤𝑛 𝑝.𝜑 | ∃𝐸.𝜑

Extensions with ≥1 𝑝.𝜑 and 𝜇ALCOIQ are undecidable

SHACL satisfiability and containment are undecidable

DL resoning and SHACL satisfiability

16/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



In DLs, complexity of consistency and entailment known

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≤𝑛 𝐸.𝜑 | 𝐸 = 𝐸

𝐸 ::= 𝑝 | 𝑝− | 𝐸 ∪ 𝐸 | 𝐸 ◦ 𝐸 | 𝐸∗

• In ALCOIQ they are NExpTime complete

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≥𝑛 𝑝.𝜑

OWL is an extension of this DL called SHOIQ
• In ALCOIQreg they are long-standing open problems

𝜑 ::= 𝑠 | ⊤ | {𝑎} | ¬𝜑 | 𝜑 ∧ 𝜑 |≤𝑛 𝑝.𝜑 | ∃𝐸.𝜑

Extensions with ≥1 𝑝.𝜑 and 𝜇ALCOIQ are undecidable

SHACL satisfiability and containment are undecidable

DL resoning and SHACL satisfiability

16/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Director ≡ ∃creatorOf .Movie

Movie ≡ ∃creatorOf− .Director

Shakespeare Macbeth
creatorOf

We can validate Director (Shakespaere) !?!

Validation of Recursive SHACL

17/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Director ≡ ∃creatorOf .Movie

Movie ≡ ∃creatorOf− .Director

Shakespeare Macbeth
creatorOf

We can validate Director (Shakespaere) !?!

Validation of Recursive SHACL

17/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Director ≡ ∃creatorOf .Movie

Movie ≡ ∃creatorOf− .Director

Shakespeare Macbeth
creatorOf

We can validate Director (Shakespaere) !?!

Validation of Recursive SHACL

17/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



certifiedNode ≡ ∃hasCertificate.Certificate ∨ ∃approvedBy.certifiedNode

node_1 node_2

approvedBy

approvedBy

We can validate certifiedNode (node_1)

Validation of Recursive SHACL 2

18/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



certifiedNode ≡ ∃hasCertificate.Certificate ∨ ∃approvedBy.certifiedNode

node_1 node_2

approvedBy

approvedBy

We can validate certifiedNode (node_1)

Validation of Recursive SHACL 2

18/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



certifiedNode ≡ ∃hasCertificate.Certificate ∨ ∃approvedBy.certifiedNode

node_1 node_2

approvedBy

approvedBy

We can validate certifiedNode (node_1)

Validation of Recursive SHACL 2

18/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



“The validation with recursive shapes is not defined
in SHACL and is left to SHACL processor implementa-
tions. For example, SHACL processors may support
recursion scenarios or produce a failure when they
detect recursion.”

SHACL Recommendation, §3.4.3

Semantics of Recursive SHACL

19/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Two robust semantics that avoid dubious validations
Stable model semantics minimal models of the

Gelfond-Lifschitz reduct
Can be defined using levels
NP-complete

Well-founded semantics 3-valued
approximation of stable models
P-complete

Not only intuitive, also computationally more manageable

For stratified constraints (only positive recursion cycles)
• Perfect model = stable model = well-founded model
• P-complete validation
• In contrast, supported validation is NP-complete

KR to the rescue

20/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Two robust semantics that avoid dubious validations
Stable model semantics minimal models of the

Gelfond-Lifschitz reduct
Can be defined using levels
NP-complete

Well-founded semantics 3-valued
approximation of stable models
P-complete

Not only intuitive, also computationally more manageable

For stratified constraints (only positive recursion cycles)
• Perfect model = stable model = well-founded model
• P-complete validation
• In contrast, supported validation is NP-complete

KR to the rescue

20/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Two robust semantics that avoid dubious validations
Stable model semantics minimal models of the

Gelfond-Lifschitz reduct
Can be defined using levels
NP-complete

Well-founded semantics 3-valued
approximation of stable models
P-complete

Not only intuitive, also computationally more manageable

For stratified constraints (only positive recursion cycles)
• Perfect model = stable model = well-founded model
• P-complete validation

• In contrast, supported validation is NP-complete

KR to the rescue

20/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Two robust semantics that avoid dubious validations
Stable model semantics minimal models of the

Gelfond-Lifschitz reduct
Can be defined using levels
NP-complete

Well-founded semantics 3-valued
approximation of stable models
P-complete

Not only intuitive, also computationally more manageable

For stratified constraints (only positive recursion cycles)
• Perfect model = stable model = well-founded model
• P-complete validation
• In contrast, supported validation is NP-complete

KR to the rescue

20/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Ideas from Logic (Programming) also for:
• validating large graphs

• Magic sets
• combines advantages of bottom-up and top-down
validation

• only ’relevant’ neighbourhood of potentially huge graphs
• inconsistency tolerant validation

• disregard inconsistencies that are relevant to my targets

Sowing more logic benefits

21/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



SHACL specification describes validation reports
• explain the outcome of validating an RDF graph against
a shapes graph

• explaining why the input graph does not satisfy the
constraints is challenging.

The standard leaves it open how to provide such
explanations to the users!

Explanations

22/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



SHACL specification describes validation reports
• explain the outcome of validating an RDF graph against
a shapes graph

• explaining why the input graph does not satisfy the
constraints is challenging.

The standard leaves it open how to provide such
explanations to the users!

Explanations

22/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



We propose a notion of explanations based on logic-based
abduction and database repairs!

Definition

Let 𝐺 be a graph, (𝐶,𝑇) a SHACL specification, and the set of
hypotheses 𝐻 a graph disjoint from 𝐺.
Then Ψ= (𝐺,𝐶,𝑇, 𝐻) is a SHACL Explanation Problem (SEP).
An explanation for Ψ is a pair (𝐴, 𝐷), such that 𝐷 ⊆ 𝐺, 𝐴 ⊆ 𝐻,
and (𝐺 \ 𝐷) ∪ 𝐴 validates (𝐶,𝑇).

We consider 2 typical preference orders over explanations:
• Subset-minimal explanations (⊆)
• Cardinality-minimal explanations (≤)

Abductive Explanations for SHACL

23/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Example

Consider a SEP Ψ = (𝐺,𝐶,𝑇, 𝐻), where:

𝐺 ={enrolledIn (𝐵𝑒𝑛, 𝐶1)}

𝐶 ={Student ↔ ∃enrolledIn .Course}

𝑇 ={Student(𝐵𝑒𝑛)}

𝐻 ={Course (𝐶1),Course (𝐶2)}

24/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Example

Consider a SEP Ψ = (𝐺,𝐶,𝑇, 𝐻), where:

𝐺 ={enrolledIn (𝐵𝑒𝑛, 𝐶1)}

𝐶 ={Student ↔ ∃enrolledIn .Course}

𝑇 ={Student(𝐵𝑒𝑛)}

𝐻 ={Course (𝐶1),Course (𝐶2)}

𝐺 does not validate (𝐶,𝑇).

Explanation (𝐴, 𝐷), where 𝐴 = {Course (C1 )} and 𝐷 = ∅.

25/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Example

Consider a SEP Ψ = (𝐺,𝐶,𝑇, 𝐻), where:

𝐺 ={enrolledIn (𝐵𝑒𝑛, 𝐶1)}

𝐶 ={Student ↔ ∃enrolledIn .Course}

𝑇 ={Student(𝐵𝑒𝑛)}

𝐻 ={Course (𝐶1),Course (𝐶2)}

𝐺 does not validate (𝐶,𝑇).

Explanation (𝐴, 𝐷), where 𝐴 = {Course (C1 )} and 𝐷 = ∅.

25/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Example

Consider a SEP Ψ = (𝐺,𝐶,𝑇, 𝐻), where:

𝐶 ={Student ↔ ∃enrolledIn .Course ∧ =1 hasID}

𝑇 ={Student(𝐵𝑒𝑛)}

𝐺 ={enrolledIn (𝐵𝑒𝑛, 𝐶1), hasID (𝐵𝑒𝑛, 𝑖𝑑1), hasID (𝐵𝑒𝑛, 𝑖𝑑2)}
𝐻 ={Course (𝐶1),Course (𝐶2), enrolledIn (𝐵𝑒𝑛, 𝐶2)}

There are 2 ⪯-explanations for Ψ:

𝐴1 ={Course (𝐶1)}, 𝐷1 = {hasID (𝐵𝑒𝑛, 𝑖𝑑1)}.
𝐴2 ={Course (𝐶1)}, 𝐷2 = {hasID (𝐵𝑒𝑛, 𝑖𝑑2)}.

26/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Let Ψ = (𝐺,𝐶,𝑇, 𝐻) be a SEP, let 𝐴, 𝐷 be data graphs, let 𝛼 be an atom
in 𝐺 ∪ 𝐻, and let ⪯ be a (possibly empty) preorder.

1 ⪯-IsExpl: is (𝐴, 𝐷) a ⪯-explanation for Ψ?

2 ⪯-Exist: does there exist a ⪯-explanation for Ψ?

3 ⪯-NecAdd: is 𝛼 a ⪯-necessary addition for Ψ, that is does 𝛼

occur in 𝐴 in every ⪯-explanation (𝐴, 𝐷) for Ψ?

4 ⪯-NecDel: is 𝛼 a ⪯-necessary deletion for Ψ, that is does 𝛼 occur
in 𝐷 in every ⪯-explanation (𝐴, 𝐷) for Ψ?

5 ⪯-RelAdd: is 𝛼 a ⪯-relevant addition for Ψ, that is does 𝛼 occur
in 𝐴 in some ⪯-explanation (𝐴, 𝐷) for Ψ?

6 ⪯-RelDel: is 𝛼 a ⪯-relevant deletion for Ψ, that is does 𝛼 occur in
𝐷 in some ⪯-explanation (𝐴, 𝐷) for Ψ?

Reasoning Tasks

27/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



∅ ⊆ ≤

IsExpl NP-c DP-c DP-c

Exist NP-c NP-c NP-c

NecAdd coNP-c coNP-c 𝑃∥NP-c

NecDel coNP-c coNP-c 𝑃∥NP-c

RelAdd NP-c Σ𝑃
2 -c 𝑃∥NP-c

RelDel NP-c Σ𝑃
2 -c 𝑃∥NP-c

All these results hold in data and combined complexity

Complexity Results

28/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



We have also studied
• the non-recursive case same complexity
• a more general setting with explanation signatures

• we can specify predicates that are
read-only add-only delete-only

• fine-grianed filtering of explanations
• all the results hold also for this setting

Using ASP to explain non-validation

Simple prototype for providing explanations using Answer
Set Programming (ASP)

Other Results

29/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Some of our ongoing efforts:
• validation in the presence of ontologies
• validation when the graph is subjected to updates
• better and more useful explanations for validation
reports

Many open problems for logicians to tackle!

SHACL is a relatively young field that can use insights from
well-established areas of logic

Thanks to all collaborators!
In particular: Mantas Šimkus, Shqiponja Ahmetaj, Medina Andresel,
Bianca Löhnert, Anouk Oudshoorn, Juan Reutter, Julien Corman.

This work was partially supported by the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation and

the Austrian Science Fund (FWF) projects P30360 and P30873.

Conclusions and Outlook

30/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians



Some of our ongoing efforts:
• validation in the presence of ontologies
• validation when the graph is subjected to updates
• better and more useful explanations for validation
reports

Many open problems for logicians to tackle!

SHACL is a relatively young field that can use insights from
well-established areas of logic

Thanks to all collaborators!
In particular: Mantas Šimkus, Shqiponja Ahmetaj, Medina Andresel,
Bianca Löhnert, Anouk Oudshoorn, Juan Reutter, Julien Corman.

This work was partially supported by the Wallenberg AI, Autonomous Systems and

Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation and

the Austrian Science Fund (FWF) projects P30360 and P30873.

Conclusions and Outlook

30/30 Magdalena Ortiz A Short Introduction to SHACL for Logicians


	What is SHACL and why do we need it?
	SHACL as a Logic
	SHACL vs. Description Logics
	Semantics of Recursive SHACL
	Explanations for non-validation
	Conclusions and Outlook

