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Definition 1. A structure F = ⟨W,E⟩ is an evidence frame iff:

1. W ≠ ∅, and

2. E ∶W → P(P(W )) such that for all x ∈W

(a) ∅ ∉ E(x), and
(b) E(x) ≠ ∅

An evidence model is a structureM= ⟨F, V ⟩ where F is an evidence frame and V ∶At→ P(W ).

These structures provide the semantics for an operator Eφ which says there is a piece of evidence
X ∈ E(x) such that X ⊆ JφK.

Definition 2. A cover of Γ is a collection of consistent sets of sentences Π such that for each γ ∈ Γ,
there is π ∈ Π such that π ⊢ γ. (Notation: C(Γ) = {α ∶ Γ ⊢ α }.) Alternatively, Π is a cover of Γ when
Γ ⊆ ⋃π∈Π C(π) and each π is consistent. Partitions of Γ into consistent sets are a special case and are
referred to as ‘partition covers’. The size of Π is referred to as the width of the cover.

Definition 3. The level of Γ, ℓ(Γ) is determined by the minimum width a set of sets must have in order
to be a cover of Γ, but if there is no such minimum, its level is ∞. Thus:

ℓ(Γ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 Γ ⊆ C(∅)
min{ ∣Π∣ ∶ Π is a cover of Γ} if it exists & Γ /⊆ C(∅)
∞ otherwise

Cf Jennings et al. (2009).

Definition 4. Γ forces α, Γ ⊩ α, iff for each cover Π of Γ of width ℓ(Γ), there is π ∈ Π such that π ⊢ α.

Definition 5. The logic Kn:

CL All theorems of classical propositional logic.

N ⊢Kn ⟨E⟩ ⊺

K◊n ⊢Kn (⟨E⟩p1 ∧ . . . ∧ ⟨E⟩pn+1) → ⟨E⟩⋁1≤i<j≤n+1(pi ∧ pj)

With rules

M

⊢Kn p→ q

⊢Kn ⟨E⟩p→ ⟨E⟩ q

MP Modus Ponens, and

US Uniform Substitution.

Proposition 1. Γ ⊩ α iff ⟨E⟩ [Γ] ⊢Kn ⟨E⟩α where ⟨E⟩ [Γ] = { ⟨E⟩γ ∶ γ ∈ Γ} Apostoli and Brown (1995).

1 The Logic U

We start with the language LU. It is defined by the following BNF:

φ ∶= � ∣ p ∣ ¬φ ∣ Fφ ∣ Eφ ∣ ◻ φ ∣ φ→ φ ∣ U(φ, . . . , φ
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
n−times

;φ) n ∈ Z+

Where p ∈ At the set of atoms. The operators ◊, ⟨F ⟩, and ⟨E⟩ are defined via their duals ¬ ∎ ¬φ for
∎ ∈ {◻, F,E }. Next we have a frame and then a model:
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Definition 6. A frame F = ⟨W,E ,RF ⟩ for the logic U is an evidence frame ⟨W,E⟩ along with a relation
RF on W . The frame is augmented when there is an equivalence relation R◻ ⊆ W ×W as well. An
evidence model for U is a structureM= ⟨F,RF , V ⟩ where F is an evidence frame and V ∶At→ P(W ).

LetM= ⟨F, V ⟩ be an evidence model for U. The semantics for the logic U is:

• M, x ⊧ p iff x ∈ V (p) for all p ∈At

• Boolean cases as usual,

• M, x ⊧ Eφ iff there is X ∈ E(x) such that X ⊆ JφK,

• M, x ⊧ ◻φ iff JφK =W ,

• M, x ⊧ Fφ iff RF (x) ⊆ JφK,

• M, x ⊧ U(φ1, . . . , φn;ψ) iff for all X ∈ E(x), X ⊆ JψK only if for some i ≤ n, JφiK ⊆X

This semantics gives rise to a semantic consequence relation ⊧U, defined in the usual way. This system
is complete with respect to the following axioms, which will give rise to the syntactic system ⊢U. In the
following axioms φ refers to a tuple of formulas φ1, . . . , φn as before, but in cases where it is not the
only argument on the left of the ‘;’ in a U operator it can be empty. n! refers to all permutations of
{1,2, . . . , n} and σ will be a specific permutation in n! where σ(k) is the number that k is permuted to
by the permutation σ. Let p, q, r, s, pi be in At.

CL All theorems of classical propositional logic.

S5 The axioms of S5 for ◻.

KF (Fp ∧ Fq) ←→ F (p ∧ q)

◻F ◻p→ Fp

D ¬E�

N E⊺

E◻ ◻(p→ q) → (Ep→ Eq)

MergeE (Ep ∧ ◻q) → E(p ∧ q)

U� U(�; q)

U! U(p1, . . . , pn; q) → (⋀σ∈n!U(pσ(1), . . . , pσ(n); q))

UE ¬U(p; q) → Eq

U+ U(p; q) → U(p, r; q)

U- U(p, r, r; q) → U(p, r; q)

UV (U(p; q) ∧Eq) → ⋁n
i=1 ◻(pi → q)

U◻R ◻(q → r) → (U(p; r) → U(p; q))

U◻L ◻(q → r) → (U((p/r)i; s) → U((p/q)i; s))

With rules

US Uniform Substitution,

MP Modus Ponens,

Nec ⊢ φ only if ⊢ ◻φ
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UInf
⊢ θ → (◻(p→ ψ) → (⋀n

j=1 ◊(φj ∧ ¬p) → ¬Ep))
⊢ θ → U(φ1, . . . , φn;ψ)

p foreign to φ1, . . . , φn, ψ, θ

The usual definitions for Hilbert-style proof theory are used: Γ ⊢U φ iff there are γ1, . . . , γk ∈ Γ such that
⊢U (γ1 ∧ . . . ∧ γn) → φ. As will be shown in section 6:

Theorem 1. The system ⊢U is sound and complete with respect to ⊧U.

Definition 7. Let X be a set of sets of possible worlds W . A cover of X is a set Y ⊆ P(W ) ∖ {∅} such
that for each X ∈ X , there is Y ∈ Y and Y ⊆X. Again,

ℓ(X) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 when X = {W }
min{ ∣Π∣ ∶ Π is a cover of X } if it exists

∞ otherwise

Definition 8. Let’s call a modelM consistency comprehensive for Γ when for all X ⊆At(Γ), there
is x ∈W such that for all p ∈At(Γ),M, x ⊧ p iff p ∈X, where At(Γ) is the set of atoms mentioned in Γ.

Note: cor(E(x)) = {X ∈ E(x) ∶/∃ Y ∈ E(x), Y ⊊X }, i.e., the set of elements of E(x) for which there is
no proper subset also in E(x). Now we define a relation covF ⊆W ×W as follows:

Definition 9. Let F = ⟨W,E⟩ ,R)F be an frame for U. For all x, y ∈W , covF(x, y) holds iff

1. for all X ∈ E(x) there is Y ∈ E(y) such that Y ⊆X,

2. for all Y ∈ cor(E(y)) there is X ∈ E(x) such that Y ⊆X, and

3. ∣cor(E(y))∣ = ℓ(E(x)).

2 The Logic F

The Logic F, ⊧F is characterized by the class of models such that when E(w) is of finite level and
RF (w,y), then covF(w,y). Using the following abbreviations:

cov(p1, . . . , pn) ∶=
n

⋀
i=1

◊pi ∧U(p1, . . . , pn;⊺)

core(p1, . . . , pn) ∶=
n

⋀
i=1
(Epi ∧U(pi;pi))

totalcore(p1, . . . , pn) ∶=
n

⋀
i=1
(Epi ∧U(pi;pi)) ∧U(p1, . . . , pn;⊺).

We can add the following (infinite and recursive) collection of axioms to the logic U and pick out the
relevant collection of models:

EF Ep→ FEp

Cor totalcore(p1, . . . , pn) → (⟨F ⟩ core(q) → ⋁n
i=1 ◻(q → pi)) where n > 0

UpLev cov(q1, . . . , qk) → (⟨F ⟩ totalcore(p1, . . . , pn) → U(p1, . . . , pn;⊺)) where n > 0

LowLev cov(r1, . . . , rn) → (⟨F ⟩ core(p1, . . . , pk) → (U(q1, . . . , qm;⊺) → ⋁m
i=1 ¬◊qi)) where m < k and n > 0

Theorem 2. Suppose Γ = {γ1, . . . , γm } and φ are purely Boolean.

Γ ⊩ φ⇐⇒ ⊧F [(Eγ1 ∧ . . . ∧Eγm) ∧U(γ1, . . . , γm;⊺) ∧ ◊At(Γ)] → FEφ
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