Bisimulations between Verbrugge models and Veltman models

Tin Perkov
University of Zagreb

WoLLIC 2023

Interpretability logic

- interpretability logic: a modal logic corresponding to the notion of relative interpretability between first-order arithmetical theories

Interpretability logic

- interpretability logic: a modal logic corresponding to the notion of relative interpretability between first-order arithmetical theories
- syntax: basic modal logic + binary modal operator \triangleright

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$
- if $u S_{w} v$ and $v S_{w} z$ then $u S_{w} z$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$
- if $u S_{w} v$ and $v S_{w} z$ then $u S_{w} z$
- if $w R u R v$ then $u S_{w} v$

Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times R[w]$
- if $w R u$ then $u S_{w} u$
- if $u S_{w} v$ and $v S_{w} z$ then $u S_{w} z$
- if $w R u R v$ then $u S_{w} v$

Satisfaction: $w \Vdash A \triangleright B$ if for all u s.t. $w R u$ and $u \Vdash A$ there is v s.t. $u S_{w} v$ and $v \Vdash B$

Generalized semantics

Verbrugge models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W, S_{w} \subseteq R[w] \times \mathcal{P}(R[w])$
- if $w R u$ then $u S_{w}\{u\}$
- if $u S_{w} V$ and $v S_{w} Z_{v}$ for all $v \in V$ then $u S_{w}\left(\cup Z_{v}\right)$
- if $w R u R v$ then $u S_{w}\{v\}$

Satisfaction: $w \Vdash A \triangleright B$ if for all u s.t. $w R u$ and $u \Vdash A$ there is V s.t. $u S_{w} V$ and $v \Vdash B$ for all $v \in V$

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic.

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic. A bisimulation between Veltman models W and W^{\prime} is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic. A bisimulation between Veltman models W and W^{\prime} is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic. A bisimulation between Veltman models W and W^{\prime} is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic. A bisimulation between Veltman models W and W^{\prime} is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all v s.t. $u S_{w} v$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic. A bisimulation between Veltman models W and W^{\prime} is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all v s.t. $u S_{w} v$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$
Some key properties:

- if $w Z w^{\prime}$, then w and w^{\prime} are modally equivalent

Bisimulation between Veltman models

Bisimulation is the basic equivalence between models in modal logic. A bisimulation between Veltman models W and W^{\prime} is
$Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is v s.t. $u S_{w} v$ and $v Z v^{\prime}$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all v s.t. $u S_{w} v$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$
Some key properties:

- if $w Z w^{\prime}$, then w and w^{\prime} are modally equivalent
- the converse does not hold generally, but it holds in case of image-finite Veltman models (an analogue of Hennessy-Milner theorem)

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?
No! Too restrictive

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?
No! Too restrictive:

- requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is u^{\prime} s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ and for all v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ there is V s.t. $u S_{w} V$ and $v Z v^{\prime}$ for all $v \in V$?
No! Too restrictive:

- requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one
- Hennessy-Milner analogue does not hold

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p (forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all V s.t. $u S_{w} V$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$ for some $v \in V$

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all V s.t. $u S_{w} V$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$ for some $v \in V$

Now, as desired:

- bisimilarity implies modal equivalence

Bisimulation between Verbrugge and Veltman models

Let W be a Verbrugge model and W^{\prime} a Veltman model. A bisimulation is $Z \subseteq W \times W^{\prime}$ s.t.
(at) if $w Z w^{\prime}$, then $w \Vdash p$ iff $w^{\prime} \Vdash p$, for all propositional letters p
(forth) if $w Z w^{\prime}$ and $w R u$, then there is a non-empty $U^{\prime} \subseteq W^{\prime}$ s.t. $w^{\prime} R^{\prime} u^{\prime}$ and $u Z u^{\prime}$ for all $u^{\prime} \in U^{\prime}$ and for all $f: U^{\prime} \rightarrow W^{\prime}$ s.t. $u^{\prime} S_{w^{\prime}}^{\prime} f\left(u^{\prime}\right)$ for all $u^{\prime} \in U^{\prime}$ there is V s.t. $u S_{w} V$ and for all $v \in V$ there is u^{\prime} s.t. $v Z f\left(u^{\prime}\right)$
(back) if $w Z w^{\prime}$ and $w^{\prime} R^{\prime} u^{\prime}$, then there is u s.t. $w R u$ and $u Z u^{\prime}$ and for all V s.t. $u S_{w} V$ there is v^{\prime} s.t. $u^{\prime} S_{w^{\prime}}^{\prime} v^{\prime}$ and $v Z v^{\prime}$ for some $v \in V$

Now, as desired:

- bisimilarity implies modal equivalence
- Hennessy-Milner analogue holds

Example

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved.

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved.
This is the main contribution of the paper, but due to limited time, just several major ideas and points are emphasized here:

- slightly resembles modal unraveling

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved.
This is the main contribution of the paper, but due to limited time, just several major ideas and points are emphasized here:

- slightly resembles modal unraveling
- but unlike unraveling, where copies of worlds are R-paths (i.e. determined by their R-predecessors) with original worlds related to ends of paths

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved.
This is the main contribution of the paper, but due to limited time, just several major ideas and points are emphasized here:

- slightly resembles modal unraveling
- but unlike unraveling, where copies of worlds are R-paths (i.e. determined by their R-predecessors) with original worlds related to ends of paths, here copies of worlds are determined by their S_{w}-successors

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved.
This is the main contribution of the paper, but due to limited time, just several major ideas and points are emphasized here:

- slightly resembles modal unraveling
- but unlike unraveling, where copies of worlds are R-paths (i.e. determined by their R-predecessors) with original worlds related to ends of paths, here copies of worlds are determined by their S_{w}-successors, i.e. a copy of a world is determined by a combination of representatives of the world's S_{w}-successors

Obtaining a bisimilar model

It is straightforward to obtain a bisimilar Verbrugge model from a given Veltman model: we use the same W and R, and define $u S_{w}^{\prime} V$ iff $u S_{w} v$ for some $v \in V$.
The previous example is very simple, but already illustrates that the opposite direction is much more involved.
This is the main contribution of the paper, but due to limited time, just several major ideas and points are emphasized here:

- slightly resembles modal unraveling
- but unlike unraveling, where copies of worlds are R-paths (i.e. determined by their R-predecessors) with original worlds related to ends of paths, here copies of worlds are determined by their S_{w}-successors, i.e. a copy of a world is determined by a combination of representatives of the world's S_{w}-successors
- everything else is a number of technicalities to ensure the obtained model is indeed a Veltman model and that the natural identification between worlds in Verbrugge and Veltman model is indeed a bisimilation

