Structural Completeness and Superintuitionistic Inquisitive Logics

Thomas Ferguson and Vít Punčochář

Institute of Philosophy Czech Academy of Sciences Czech Republic

Structural completeness

- ► A logic *L* is structurally complete iff every *L*-admissible rule is *L*-derivable.
- Classical logic is structurally complete but intuitionistic logic is not.
- We will study structural completeness in the context of logics that are not necessarily closed under uniform substitution.

Structural completeness

- ► A logic L is structurally complete iff every L-admissible rule is L-derivable.
- Classical logic is structurally complete but intuitionistic logic is not.
- ▶ We will study structural completeness in the context of logics that are not necessarily closed under uniform substitution.

Structural completeness

- ► A logic L is structurally complete iff every L-admissible rule is L-derivable.
- Classical logic is structurally complete but intuitionistic logic is not.
- We will study structural completeness in the context of logics that are not necessarily closed under uniform substitution.

• We introduce a generalized notion of superintuitionistic logic.

- We define intuitionistic inquisitive logic as intuitionistic logic extended with a schema Split.
- We show a strong connection between structural completeness and the schema Split.

- We introduce a generalized notion of superintuitionistic logic.
- We define intuitionistic inquisitive logic as intuitionistic logic extended with a schema Split.
- We show a strong connection between structural completeness and the schema Split.

- ▶ We introduce a generalized notion of superintuitionistic logic.
- We define intuitionistic inquisitive logic as intuitionistic logic extended with a schema Split.
- We show a strong connection between structural completeness and the schema Split.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ We introduce a generalized notion of superintuitionistic logic.
- We define intuitionistic inquisitive logic as intuitionistic logic extended with a schema Split.
- We show a strong connection between structural completeness and the schema Split.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\varphi ::= p \mid \bot \mid \varphi \to \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

$$\neg \varphi =_{def} \varphi \to \bot$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 α, β, γ range over \lor -free formulas φ, ψ, χ range over arbitrary formulas

Harrop formulas

In Harrop formulas disjunction can occur only in the antecedent of an implication:

$$(\ldots((\ldots\lor\ldots)\to\ldots)\ldots)$$

Restricted notions of substitution

- A substitution is regarded as a function $s : At \rightarrow Fle$.
- This function is extended to $s : Fle \rightarrow Fle$.

$$s(\perp) = \perp$$
 and $s(\varphi \circ \psi) = s(\varphi) \circ s(\psi)$ for each $\circ \in \{
ightarrow, \land, \lor \}$

Definition

- An *H*-substitution is a substitution that assigns to each atomic formula a Harrop formula.
- A *D*-substitution is a substitution that assigns to each atomic formula a v-free formula.

Generalized superintuitionistic logics

Definition

A gsi-logic (generalized superintuitionistic logic) is any set of formulas L such that

- (a) $IL \subseteq L \subseteq CL$;
- (b) *L* is closed under modus ponens (if $\varphi, \varphi \rightarrow \psi \in L$ then $\psi \in L$);
- (c) *L* is closed under every *D*-substitution (if $\varphi \in L$ then $s(\varphi) \in L$, for each *D*-substitution *s*).

A gsi-logic is standard if it is closed under every substitution.

Notation

$$\begin{array}{cccc} \vdash_L \varphi & \dots & \varphi \in L \\ \varphi \vdash_L \psi & \dots & \vdash_L \varphi \to \psi \\ \varphi \equiv_L \psi & \dots & \varphi \vdash_L \psi \text{ and } \psi \vdash_L \varphi \end{array}$$

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

Inquisitive logics

The schema Split

$$(\alpha \to (\psi \lor \chi)) \to ((\alpha \to \psi) \lor (\alpha \to \chi))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where α ranges over $\lor\mbox{-free}$ formulas

Definition

We say that a gsi-logic L is inquisitive if it

- (a) contains all instances of Split
- (b) has the disjunction property

$$(\varphi \lor \psi \in L \text{ implies } \varphi \in L \text{ or } \psi \in L)$$

Intuitionistic and classical inquisitive logic

Classical inquisitive logic InqCL = IL + Split + RDN (¬¬α → α, for ∨-free α)

Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford University Press (2019)

Intuitionistic inquisitive logic InqlL = IL + Split

Punčochář, V.: A generalization of inquisitive semantics. Journal of Philosophical Logic 45, 399–428 (2016)

Disjunctive normal form

Theorem

For every φ there are \lor -free formulas $\alpha_1, \ldots, \alpha_n$ such that

 $\varphi \equiv_{\mathsf{InqIL}} \alpha_1 \lor \ldots \lor \alpha_n.$

Corollary

Every logic that includes Split is closed under all H-substitutions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

No inquisitive logic is standard

For every inquisitive *L*:

$$(r \rightarrow (p \lor q)) \rightarrow ((r \rightarrow p) \lor (r \rightarrow q)) \in L$$

For every inquisitive *L*:

$$((p \lor q) \to (p \lor q)) \to (((p \lor q) \to p) \lor ((p \lor q) \to q)) \notin L$$

Structural completeness for classical inquisitive logic

Iemhoff, R., Yang, F.: Structural completeness in propositional logics of dependence. Archive for Mathematical Logic 55, 955–975 (2016)

The usual notion of structural completeness

Every admissible rule φ/ψ is derivable in L.

(a) admissibility: for any substitution s, if ⊢_L s(φ) then ⊢_L s(ψ),
(b) derivability: φ ⊢_L ψ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

sub(L) is the set of substitutions under which L is closed Definition

L is SF-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is *SG*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any $s \in sub(L)$, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is SH-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *H*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is *SD*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *D*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

sub(L) is the set of substitutions under which L is closed

Definition

L is *SF*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is *SG*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any $s \in sub(L)$, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is SH-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *H*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is SD-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *D*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

sub(L) is the set of substitutions under which L is closed

Definition

L is *SF*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$. *L* is *SG*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any $s \in sub(L)$, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is SH-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *H*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is SD-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *D*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

sub(L) is the set of substitutions under which L is closed

Definition

L is *SF*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$. *L* is *SG*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any $s \in sub(L)$, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

L is *SH*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *H*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$. *L* is *SD*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *D*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

sub(L) is the set of substitutions under which L is closed

Definition

L is *SF*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$. *L* is *SG*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any $s \in sub(L)$, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$. *L* is *SH*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *H*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$. *L* is *SD*-complete if it holds:

 $\varphi \vdash_L \psi$ iff for any *D*-substitution *s*, if $\vdash_L s(\varphi)$ then $\vdash_L s(\psi)$.

Prucnal trick

Prucnal, T.: On the structural completeness of some pure implicational propositional calculi. *Studia Logica* 32, 45–50 (1973)

Minari, P., Wroński, A. (1988) The property (HD) in intermediate logics. A partial solution of a problem of H. Ono. *Reports on Mathematical Logic* 22, 21–25.

$$s_{\alpha}^{\nu}(p) = egin{cases} lpha extsf{ }
ightarrow p & extsf{if }
u(p) = 1 \
extsf{-}
extsf{-}$$

Theorem (Minari, Wroński)

For every standard gsi-logic L, ever Harrop formula α , every φ, ψ :

if
$$\vdash_L \alpha \rightarrow (\varphi \lor \psi)$$
 then $\vdash_L (\alpha \rightarrow \varphi) \lor (\alpha \rightarrow \psi)$.

The main result

Theorem

For every gsi-logic L the following claims are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (a) L is SH-complete,
- (b) L is SD-complete,
- (c) Split is valid in L.

Relations among the notions of structural completeness

- ML (logic of finite problems) is a counterexample to $SF \Longrightarrow SD(H)$ and $SG \Longrightarrow SD(H)$,
- any inquisitive gsi-logic is a counterexample to $SD(H) \Longrightarrow SF$ and $SG \Longrightarrow SF$.

(ML is the logic of Kripke frames that have the structure of finite Boolean algebras without the top element.)

Some consequences

Corollary

Every SD(H)-complete gsi-logic is hereditarily SD(H)-complete.

Corollary

InqIL is hereditarily SG-complete.

Definition

A gsi-logic is *optimal* if it is *SG*-complete and has the disjunction property.

Corollary

Every inquisitive gsi-logic is optimal.

A property of inquisitive gsi-logics

Proposition

Let L be an inquisitive gsi-logic. Let α be a consistent \vee -free formula ($\nvdash_L \neg \alpha$ and φ, ψ arbitrary formulas. Then (a) $\alpha \nvdash_L \bot$, (b) $\alpha \vdash_L \varphi \rightarrow \psi$ iff for all \vee -free $\beta \vdash_L \alpha$, if $\beta \vdash_L \varphi$ then $\beta \vdash_L \psi$, (c) $\alpha \vdash_L \varphi \land \psi$ iff $\alpha \vdash_L \varphi$ and $\alpha \vdash_L \psi$, (d) $\alpha \vdash_L \varphi \lor \psi$ iff $\alpha \vdash_L \varphi$ or $\alpha \vdash_L \psi$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

A canonical model construction for inquisitive gsi-logics

 $\mathcal{M}_L = \langle S_L, \leqslant_L, V_L \rangle$, where

• S_L is the set of \lor -free, consistent formulas,

- $\alpha \leq_L \beta$ iff $\beta \vdash_L \alpha$,
- $\alpha \in V_L(p)$ iff $\alpha \vdash_L p$.

Theorem

For each φ and each consistent \lor -free α ,

 $\alpha \Vdash \varphi$ in \mathcal{M}_L if and only if $\alpha \vdash_L \varphi$.

As a consequence, $\varphi \in L$ if and only if φ is valid in \mathcal{M}_L .

A property of inquisitive gsi-logics

We write

- ▶ $s > \varphi$ iff $\vdash_L s(\varphi)$, for a fixed inquisitive gsi-logic,
- $s \leq t$ iff there is a *D*-substitution *u* such that $t = u \circ s$.

Proposition

Let s be a D-substitution and φ, ψ arbitrary formulas. Then (a) $s \not\models \bot$, (b) $s > \varphi \rightarrow \psi$ iff for any D-sub. $t \ge s$, if $t > \varphi$ then $t > \psi$, (c) $s > \varphi \land \psi$ iff $s > \varphi$ and $s > \psi$, (d) $s > \varphi \lor \psi$ iff $s > \varphi$ or $s > \psi$.

A canonical model construction for inquisitive gsi-logics

$$\mathcal{M}^{L} = \langle S^{L}, \leqslant^{L}, V^{L}
angle$$
, where

- S^L is the set of all *D*-substitutions,
- ▶ $s \leq ^{L} t$ iff there is a *D*-substitution *u* such that $t = u \circ s$,
- $s \in V^L(p)$ iff s > p.

Theorem

For each φ and each D-substitution s,

$$s \Vdash \varphi$$
 in \mathcal{M}^L if and only if $s > \varphi$.

As a consequence, $\varphi \in L$ if and only if φ is valid in \mathcal{M}^L .

Schematic fragments and schematic closures

For any gsi-logic L we can consider its schematic fragment S(L) and schematic closure C(L).

 $S(L) \subseteq L \subseteq C(L)$

- S(L) is the greatest standard gsi-logic included in L;
- C(L) is the least standard gsi-logic extending L.

Schematic fragments of inquisitive gsi-logics

Theorem Let L be an inquisitive gsi-logic. Then S(L) = ML.

Grilletti, G.: Medvedev logic is the logic of finite distributive lattices without top element. *Advances in Modal Logic* (2022)

Usually, $LC = IL \oplus PreLin$

$$(\varphi \to \psi) \lor (\psi \to \varphi).$$

Equivalently, $LC = IL \oplus FullSplit$

$$(\chi \to (\varphi \lor \psi)) \to ((\chi \to \varphi) \lor (\chi \to \psi)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Gödel-Dummett logic

$\begin{array}{l} \mathsf{Lemma} \\ \varphi \lor \psi \equiv_{\mathsf{LC}} ((\varphi \to \psi) \to \psi) \land ((\psi \to \varphi) \to \varphi). \end{array} \end{array}$

Lemma Every gsi-logic that includes LC is standard.

Theorem LC is hereditarily SF-complete over all gsi-logics.

Schematic closures of inquisitive gsi-logics

The gsi-logics that include LC form a chain:

$$\mathsf{LC} = \mathsf{G}_{\omega} \subseteq \ldots \subseteq \mathsf{G}_5 \subseteq \mathsf{G}_4 \subseteq \mathsf{G}_3 \subseteq \mathsf{G}_2 = \mathsf{CL}.$$

Theorem Let L be an inquisitive gsi-logic. Then

$$C(L) = \mathsf{LC} \oplus L^{df} = \mathsf{G}_n, \text{ for } n = \max\{m \mid L^{df} \subseteq \mathsf{G}_m^{df}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some questions for future research

- Are there any applications of our results to ML?
- Are there any other optimal gsi-logics besides ML and inquisitive gsi-logics?
- Is there any model-theoretic explanation of the equivalence between M_L and M^L?
- Could our approach be adapted to substructural inquisitive logics?