Conditional Obligations in Justification Logic

F. Faroldi, A. Rohani and T. Studer

Logic and Theory Group University of Bern, Switzerland

WoLLIC 2023

F. Faroldi, A. Rohani and T. Studer (University of Bern) Conditional Obligations in Justification Logic

July 2023 1/36

イロト イポト イヨト イヨン

Presention outline

Standard Deontic Logic

イロン イボン イヨン イヨン

What is deontic logic?

- the word "deontic" is given from Greek expression "*deon*", means what is binding or proper
- logic of normative concepts, norm systems and normative reasoning
- normative concepts: obligation, permission, prohibition

イロト イポト イヨト イヨト

Justification Logic

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Standard Deontic Logic (SDL)

Axiom schemas and rule schemas	
$\vdash A$ where A is a propositional tautology	(CL)
$\bigcirc (A \to B) \to \bigcirc A \to \bigcirc B$	(○ -K)
$\bigcirc A \rightarrow \neg \bigcirc \neg A$	(<u></u>)-D)
if $\vdash A$ and $\vdash A \rightarrow B$ then $\vdash B$	(MP)
if $\vdash A$ then $\vdash \bigcirc A$	(()-Nec)

Semantics

Relational model $\mathcal{M} = (W, R, V)$, where *R* is serial, i.e.,

 $(\forall w \in W) (\exists v \in W) (wRv)$

Chisholm's Puzzle

- Thomas should take the math exam. (primary obligation)
- If he takes the math exam, he should register for it. (ATD:university rule)
- If he does not take the math exam, he should not register for the math exam. (CTD)
- Ite does not take the math exam.

$$\begin{array}{ll} (1.1) \bigcirc E & (2.1) \bigcirc E \\ (1.2)E \to \bigcirc R & (2.2) \bigcirc (E \to R) \\ (1.3) \bigcirc (\neg E \to \neg R) & (2.3) \neg E \to \bigcirc \neg R \\ (1.4) \neg E & (2.4) \neg E \end{array}$$

 $\begin{array}{ll} (3.1) \bigcirc E & (4.1) \bigcirc E \\ (3.2) \bigcirc (E \to R) & (4.2)E \to \bigcirc R \\ (3.3) \bigcirc (\neg E \to \neg R) & (4.3) \neg E \to \bigcirc \neg R \\ (3.4) \neg E & (4.4) \neg E \end{array}$

Presention outline

Standard Deontic Logic

- Dyadic Deontic Logic
- Justification Logic
- Dyadic deontic system in Justification Logic
- Soundness and Completeness of JE_{CS}

イロン イボン イヨン イヨン

Justification Logic

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Dyadic Deontic Logic (DDL)

Dyadic conditional

 $\bigcirc (B/A)$ weaker than $A \to \bigcirc B$

 \bigcirc (B/A) is read as B (consequent) is obligatory, given A (antecedent)

Formulas

$$F ::= P_i \mid \neg F \mid F \to F \mid \Box F \mid \bigcirc (F/F).$$

 $\Box F$ F is setteled as true $\bigcirc (G/F)$ G is obligatory, given FP(G/F)G is permitted, given F $\bigcirc F$ F is unconditionally obligatoryPFF is unconditionally permitted $\Diamond F$ short for

 $\neg \bigcirc (\neg G/F)$ $\bigcirc (F/\top)$ $P(F/\top)$ $\neg \Box \neg F$

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Proof Systems for Alethic-Deontic Logic

System E

Axioms of classical propositional logic	CL
S5-scheme axioms for \Box	
$\bigcirc (B/A) \rightarrow \Box \bigcirc (B/A)$	(Abs)
$\Box A \to \bigcirc (A/B)$	(Nec)
$\Box(A \leftrightarrow B) \to (\bigcirc(C/A) \leftrightarrow \bigcirc(C/B)$	(Ext)
$\bigcirc (A/A)$	(Id)
$\bigcirc (C/A \land B) \to \bigcirc (B \to C/A)$	(Sh)
$\bigcirc (B \to C/A) \to (\bigcirc (B/A) \to \bigcirc (C/A))$	(COK)

$$\frac{A \quad A \to B}{B} \quad (MP) \qquad \qquad \frac{A}{\Box A} \quad (Nec)$$

S5 axioms:

- (K): $\Box(A \to B) \to (\Box A \to \Box B)$
- (T): $\Box A \to A$
- (5): $\Diamond A \to \Box \Diamond A$

Semantics

Preference Model

A *preference model* is a triple $\mathcal{M} = \langle W, \preceq, v \rangle$ where:

- *W* is a non-empty set of worlds;
- $\leq \subseteq W \times W$, such that: $w_1 \leq w_2$: world w_2 is at least as good as world w_1 .

• $v: P_i \to \mathscr{P}(W)$

Truth under Preference Model

Given $\mathcal{M} = \langle W, \preceq, v \rangle$, and $w \in W$

- $\mathcal{M}, w \Vdash P_i$ iff $w \in v(P_i)$
- $\mathcal{M}, w \Vdash \neg A$ iff $\mathcal{M}, w \nvDash A$
- $\mathcal{M}, w \Vdash A \to B$ iff $\mathcal{M}, w \Vdash \neg A$ or $\mathcal{M}, w \Vdash B$
- $\mathcal{M}, w \Vdash \Box A$ iff $\forall v \in W, \mathcal{M}, v \Vdash A$
- $\mathcal{M}, w \Vdash \bigcirc (B/A)$ iff $\text{best}_{\preceq} ||A||^{\mathcal{M}} \subseteq ||B||^{\mathcal{M}}$

イロト イポト イヨト イヨト

Dyadic Deontic Logic		

Truth Set

Let $\mathcal{M} = \langle W, \preceq, v \rangle$ be a preference model. The *truth set* of $F \in \mathsf{Fm}$ is :

$$|F|| = \{w \in W \mid \mathscr{M}, w \Vdash F\}$$

best $\leq ||F||$: best worlds in which *F* is true, according to \leq .

Two notions of "best"

There are two ways to formalize the notion of "best world" respecting optimality and maximality:

• best||A|| under opt rule:

$$opt_{\preceq}(\|A\|) = \{ w \in \|A\| \ s.t. \ \forall v(\mathcal{M}, v \Vdash A \to v \preceq w) \}$$

• best||A|| under max rule:

$$max_{\preceq}(\|A\|) = \{ w \in \|A\| \ s.t. \ \forall v((\mathscr{M}, w \Vdash A \land w \preceq v) \to v \preceq w) \}$$

イロン イボン イヨン イヨン

Justification Logi

Oyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Properties of \leq

We consider following properties on the relation \leq , which can hold in a model:

- reflexivity: for all $w \in W, w \preceq w$;
- limitedness: if $||A|| \neq \emptyset$ then $best(||A||) \neq \emptyset$
- transitivity: for all $w, v, u \in W$, if $v \leq w$ and $u \leq v$, then $u \leq w$.
- totalness: for all $w, v \in W, v \preceq w$ or $w \preceq v$.

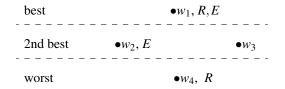
Lemma

 $max_{\preceq}(||A||) = opt_{\preceq}(||A||)$ iff \preceq is total.

Chisholm's Set Revisited

- **O** Thomas should take the math exam. (Primary obligation)
- If he takes the math exam, he should register for it. (ATD)
- If he does not take the math exam, he should not register for it. (CTD)
- He does not take the math exam.

$$\Gamma := \{\bigcirc E, \bigcirc (R/E), \bigcirc (\neg R/\neg E), \neg E\}$$



Justification Logi

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Factual detachment (FD) and strong factual detachment (SFD)

Factual Detachment (FD)

 $(\bigcirc (A/B) \land B) \to \bigcirc A$

is not valid in DDL. strong factual detachment (SFD)

 $(\bigcirc (A/B) \land \Box B) \to \bigcirc A$

is valid in DDL.

Example

- It's obligatory to pay fine in case someone doesn't pay the tax. $(\bigcirc (F/\neg T))$
- **②** The deadline for paying taxes is over and someone didn't pay the tax. $(\Box \neg T)$
- If from (1) and (2) and SFD we conclude that it's obligatory for this person to pay the fine. (○F)

イロト イロト イヨト イヨト

Presention outline

Justification Logic

イロン イボン イヨン イヨン

		Justification Logic		
Justification 1	logic			
			justification	
	$\Box A$		\rightarrow $t:A$	
	A is known		ustifies the agent's knowle	
F	A is obligatory		A is obligatory for reason	n t

- Logic of Proofs: Artemov: a classical provability semantics for S4 (and thus also for intuitionistic logic).
- combining justifications with traditional possible world models: epistemic and deontic contexts.
- Why justification logic is a proper candidate for deontic context? Hyperintensional by nature, consistency of obligations,...

イロト イポト イヨト イヨト

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Axioms schema for Logic of Proofs

Definition

 $\begin{array}{ll} Axioms \ of \ Classical \ Propositional \ Logic & \mathsf{CL} \\ \lambda: (F \to G) \to (\kappa: F \to \lambda \cdot \kappa: G) & \mathsf{j} \\ (\lambda: F \lor \kappa: F) \to (\lambda + \kappa): F & \mathsf{j} + \\ \lambda: F \to F & \mathsf{jt} \\ \lambda: F \to !\lambda: \lambda: F & \mathsf{j4} \end{array}$

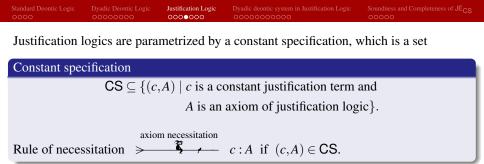
The set of *proof terms*:

$$\lambda ::= lpha_i \mid \xi_i \mid (\lambda + \lambda) \mid (\lambda \cdot \lambda) \mid !\lambda$$

Formulas are inductively defined as follows:

$$F ::= P_i \mid (F \to F) \mid \lambda : F ,$$

F. Faroldi, A. Rohani and T. Studer (University of Bern) Condi



A constant specification CS is called *axiomatically appropriate* if for each axiom A there is a constant c such that $(c,A) \in CS$.

In epistemic settings, we can calibrate the reasoning power of the agents by adapting the constant specification.

Standard Deontic Logic	Dyadic Deontic Logic	Justification Logic	Dyadic deontic system in Justification Logic	Soundness and Completene	ss of JE _{CS}
Ross' Parado	v				
		ou ought to	mail the letter. $(\Box A)$		(1)
implies					
	You ought to	o mail the le	tter or burn it. $(\Box(A \lor B))$) ****	(2)
It is a classic	al validity that				
you	mail the letter	implies you	mail the letter or burn it.	$(A \rightarrow A \lor B)$	(3)

By the monotonicity rule we find that (1) implies (2).

Fardoli and Protopopescu avoid this paradox by restricting the constant specification such that although (3) is a logical validity, there will no justification term for it. Thus the rule of monotonicity cannot be derived and there is no paradox.

Hyperintensionality

Faroldi claims that deontic modalities are *hyperintensional*, i.e. they can distinguish between logically equivalent formulas.

Example

Consider the following sentences:

You ought to drive.
$$(\Box A)$$
 (4)

You ought to drive or to drive and drink. $(\Box(A \lor (A \land B)))$ (5)

Intuitively sentences (4) and (5) are not equivalent, yet their formalizations in modal logic are so.

 $A \leftrightarrow A \lor (A \land B)$ by propositional reasoning and $\Box A \leftrightarrow \Box (A \lor (A \land B))$ by the rule of equivalence we infer. However, hyperintensionlity is one of the distinguishing features of justification logics:

they are hyperintensional by design.

Justification logic

if $A \leftrightarrow B$ then $t: A \not\rightarrow t: B$

Think of the Logic of Proofs, where the terms represent proofs in a formal system (like Peano arithmetic).

Let A and B be logically equivalent formulas.

In general, a proof of A will not also be a proof of B.

In order to obtain a proof of B we have to extend the proof of A with a proof of $A \rightarrow B$ and an application of modus ponens.

Thus in justification logic, terms do distinguish between equivalent formulas

Presention outline

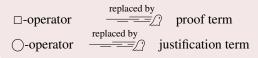
- Standard Deontic Logic
- 2 Dyadic Deontic Logic
- 3 Justification Logic
- Oyadic deontic system in Justification Logic

Justification Logic

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Justification Version of System E



proof terms (PTm) and justification terms (JTm)

$$\lambda ::= lpha_i \mid \xi_i \mid riangle t \mid (\lambda + \lambda) \mid (\lambda \cdot \lambda) \mid !\lambda \mid ?\lambda$$

 $t ::= \mathsf{i} \mid x_i \mid t \cdot t \mid \nabla t \mid \mathsf{e}(t, \lambda) \mid \mathsf{n}(\lambda)$

Formulas (Fm)

$$F ::= P_i \mid \neg F \mid (F \to F) \mid \lambda : F \mid [t](F/F)$$

where $P_i \in \mathsf{Prop}, \lambda \in \mathsf{PTm}$, and $t \in \mathsf{JTm}$. [t]F is an abbreviation for $[t](F/\top)$.

Dyadic deontic system in Justification Logic 0000000000

Axiom Schemas of JE

Axioms of Classical Propositional Logic	CL
$\lambda: (F \to G) \to (\kappa: F \to \lambda \cdot \kappa: G)$	j
$(\lambda: F \lor \kappa: F) \to (\lambda + \kappa): F$	j+
$\lambda:F ightarrow F$	jt
$\lambda:F ightarrow !\lambda:\lambda:F$	j4
$ eg \lambda : A \to ?\lambda : (\neg \lambda : A)$	j5

$[t](B/A) \to \triangle t : [t](B/A)$	(Abs)
$\lambda: B \to [n(\lambda)](B/A)$	(Nec)
$\lambda : (A \leftrightarrow B) \rightarrow ([t](C/A) \rightarrow [\mathbf{e}(t,\lambda)](C/B)$	(Ext)
$[\mathbf{i}](A/A)$	(<i>Id</i>)
$[t](C/A \wedge B) \to [\nabla t](B \to C/A)$	(Sh)
$[t](B \to C/A) \to ([s](B/A) \to [t \cdot s](C/A))$	(COK)

ヘロト ヘアト ヘビト ヘビト

Soundness and Completeness of JE_{CS}

Constant Specification

A constant specification CS is any subset:

 $\mathsf{CS} \subseteq \{(\alpha, A) \mid \alpha \text{ is a proof constant and } A \text{ is an axiom of } \mathsf{JE}\}.$

A constant specification CS is called *axiomatically appropriate* if for each axiom A of JE, there is a constant α with $(\alpha, A) \in CS$.

System JE_{CS}

For a constant specification CS, the system JE_{CS} is defined by a Hilbert-style system with the axioms of JE and the following inference rules:

$$\frac{A \quad A \to B}{B} \quad (\text{MP}) \quad \frac{}{\alpha : A} \quad \text{AN}_{\text{CS}} \text{ where } (\alpha : A) \in \text{CS}$$

yadic Deontic Logic

Justification Logi

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Internalization for proof terms

Let CS be an axiomatically appropriate constant specification. For any formula *A* with $JE_{CS} \vdash A$, there exists a proof term λ such that $JE_{CS} \vdash \lambda : A$.

Example

The explicit version of

$$\bigcirc (A/B) \land \Box B) \to \bigcirc A$$
 (SFD)

strong factual detachment is derivable in JE_{CS} as follows for an axiomatically appropriate CS and a suitable term γ :

$[t](A/B)\wedge\lambda:B$	
$\gamma: ((B \wedge \top) \leftrightarrow B)$	Tautology and internalization
$[t](A/B) \rightarrow [\mathbf{e}(t,\gamma)](A/B \wedge \top)$	(Ext)
$[e(t,\gamma)](A/B\wedge op)$	(MP)
$[\nabla \mathbf{e}(t, \gamma)](B \to A/\top)$	(Sh)
$[n(\lambda)](B/ op)$	(Nec)
$[abla { extsf{e}}(t, \gamma) \cdot { extsf{n}}(\lambda)](A/ op)$	(COK)
	< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

F. Faroldi, A. Rohani and T. Studer (University of Bern)

		Dyadic deontic system in Justification Logic	
Semantic	S		

Let *X*, *Y* be sets of formulas, *U*, *V* be sets of pairs of formulas, and λ be a proof term. We define the following operations:

$$\begin{split} \lambda : X &:= \{\lambda : F \mid F \in X\};\\ X \cdot Y &:= \{F \mid G \to F \in X \text{ for some } G \in Y\};\\ U \ominus V &:= \{(F,G) \mid (H \to F,G) \in U \text{ for some } (H,G) \in V\};\\ X \odot V &:= \{(F,G) \mid (G \leftrightarrow H) \in X \text{ for some } (F,H) \in V\};\\ \mathsf{n}(X) &:= \{(F,G) \mid F \in X, G \in \mathsf{Fm}\};\\ \nabla X &:= \{(F \to G,H) \mid (G, (H \land F)) \in X\}. \end{split}$$

イロン イボン イヨン イヨン

Basic Evaluation

A *basic evaluation* for JE_{CS} is a function ε that

• maps atomic propositions to 0 and 1:

 $\varepsilon(P_i) \in \{0,1\}, \text{ for } P_i \in \mathsf{Prop}$

• maps proof terms to sets of formulas:

 $\epsilon\colon \mathsf{PTm}\to \mathscr{P}(\mathsf{Fm})$

such that for arbitrary $\lambda, \kappa \in \mathsf{PTm}$:

(i)
$$\varepsilon(\lambda) \cdot \varepsilon(\kappa) \subseteq \varepsilon(\lambda \cdot \kappa)$$

(ii) $\varepsilon(\lambda) \cup \varepsilon(\kappa) \subseteq \varepsilon(\lambda + \kappa)$
(iii) $F \in \varepsilon(\alpha)$ if $(\alpha, F) \in CS$
(iv) $\lambda : \varepsilon(\lambda) \subseteq \varepsilon(!\lambda)$
(v) $F \notin \varepsilon(\lambda)$ implies $\neg \lambda : F \in \varepsilon(?\lambda)$

• maps justification terms to sets of pairs of formulas:

$$\varepsilon \colon \mathsf{JTm} \to \{(A,B) \mid A, B \in \mathsf{Fm}\}$$

such that for any proof term λ and justification terms *t*, *s*:

$$\begin{aligned} & \varepsilon(t) \ominus \varepsilon(s) \subseteq \varepsilon(t \cdot s) \\ & \bullet (\lambda) \odot \varepsilon(t) \subseteq \varepsilon(e(t,\lambda)) \\ & \bullet (\varepsilon(\lambda)) \subseteq \varepsilon(n(\lambda)) \\ & \bullet (\varepsilon(\lambda)) \subseteq \varepsilon(\nabla t) \\ & \bullet (\Delta t) = \{ [t](A/B) \mid (A,B) \in \varepsilon(t) \} \\ & \bullet (i) = \{ (A,A) \mid A \in \mathsf{Fm} \}. \end{aligned}$$

イロン イボン イヨン イヨン

Truth Under a Basic Evaluation

We define truth of a formula *F* under a basic evaluation ε inductively as follows:

- $\varepsilon \Vdash P$ iff $\varepsilon(P) = 1$ for $P \in \mathsf{Prop}$;
- $e \Vdash F \to G \text{ iff } \varepsilon \nvDash F \text{ or } \varepsilon \Vdash G;$

- **③** $ε \Vdash [t](F/G)$ iff (F,G) ∈ ε(t).

Definition

Factive Basic Evaluation A basic evaluation ε is called *factive* if for any formula $\lambda : F$ we have $\varepsilon \Vdash \lambda : F$ implies $\varepsilon \Vdash F$.

Definition

Basic Model Given an arbitrary CS, a *basic model* for JE_{CS} is a basic evaluation that is *factive*.

F. Faroldi, A. Rohani and T. Studer (University of Bern)

イロト イポト イヨト イヨト

Preference Models for JE_{CS}

Quasi-model

A quasi-model for $\mathsf{JE}_{\mathsf{CS}}$ is a triple $\mathscr{M} = \langle W, \preceq, \varepsilon \rangle$ where:

- $W \neq \emptyset$;
- $\preceq \subseteq W \times W$
- ε is an evaluation function that asigns a basic evaluation ε_w to each world w.

Truth in Quasi-model

●
$$\mathcal{M}, w \Vdash P$$
 iff $\varepsilon_w(P) = 1$, for $P \in \mathsf{Prop}$

$$M, w \Vdash \neg F \text{ iff } \mathcal{M}, w \nvDash F$$

$$M, w \Vdash \lambda : F \text{ iff } F \in \mathcal{E}_w(\lambda)$$

③
$$\mathcal{M}, w \Vdash [t](F/G)$$
 iff $(F,G) \in \varepsilon_w(t)$.

We will write $\mathcal{M} \Vdash F$ if $\mathcal{M}, w \Vdash F$ for all $w \in W$.

< ロ > < 部 > < 注 > < 注 >

yadic Deontic Logic

Justification Logi

Dyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Locality of Truth in Quasi-models

For a quasi-model $\mathscr{M} = \langle W, \preceq, \varepsilon \rangle$ and $w \in W$, we have for any $F \in \mathsf{Fm}$:

 $\mathcal{M}, w \Vdash F$ iff $\mathcal{E}_w \Vdash F$.

Preference Model

A *preference model* is a quasi-model where ε_w is factive and satisfies the following condition:

for any $t \in \mathsf{Tm}$ and $w \in W$,

 $(A,B) \in \varepsilon(t)$ implies best $||B|| \subseteq ||A||$ (JYB)

in other words, all best *B*-worlds are *A*-worlds. This condition is called *justification yields belief*.

イロト イポト イヨト イヨト

Presention outline

- Standard Deontic Logic
- 2 Dyadic Deontic Logic
- 3 Justification Logic
- Dyadic deontic system in Justification Logic

Soundness and Completeness of $\mathsf{JE}_{\mathsf{CS}}$

イロン イボン イヨン イヨン

Justification Log

Oyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Theorem

System JE_{CS} is sound and complete with respect to the class of all basic models.

Soundness and Completeness w.r.t. Preference Models

System JE_{CS} is sound and complete with respect to the class of all preference models under opt rule.

Justification Logi

Oyadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Theorem

For every preference model $\mathscr{M} = \langle W, \preceq, \varepsilon \rangle$ under opt rule, there is an equivalent preference model $\mathscr{M}' = \langle W', \preceq', \varepsilon' \rangle$, such that \preceq' is total.

Corollary

System JE_{CS} is sound and complete with respect to preference models with a total betterness relation.

Corollary

System JE_{CS} is sound and complete with respect to preference models under max rule.

• justification logic for preference models where the betterness relation satisfies the limitedness condition. The modal axiom that corresponds to this is $\Diamond A \rightarrow (\bigcirc (B/A) \rightarrow \mathsf{P}(B/A));$

Standard Deontic Logic

Justification Logi

yadic deontic system in Justification Logic

Soundness and Completeness of JE_{CS}

Thanks for your attention (:)

F. Faroldi, A. Rohani and T. Studer (University of Bern) Conditional Obligations in Justification Logic

July 2023 36/36