Focus-style proofs for the two-way alternation-free μ -calculus

(joint work with Yde Venema)

Jan Rooduijn

ILLC, University of Amsterdam

WoLLIC, 12 July 2023

• The (alternation-free) modal μ -calculus

- Game semantics
- Focus-style proofs for the alternation-free modal μ -calculus
- Completeness
- The two-way alternation-free modal μ -calculus
 - Problems for completeness
 - The solution: trace atoms
- Our results
- Conclusion and future work

The modal μ -calculus

- A set P of propositional variables.
- A set D of actions.

$$\varphi ::= p \mid \overline{p} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu \underline{x} \varphi \mid \nu \underline{x} \varphi$$

where \overline{x} does not occur in φ .

Given a Kripke model $\mathbb{S} = (S, (R_a)_{a \in D}, V)$ and a propositional variable x, a formula φ induces a function

$$\llbracket \varphi \rrbracket_{\mathbf{x}}^{\mathbb{S}} : \mathcal{P}(S) \to \mathcal{P}(S) : X \mapsto \llbracket \varphi \rrbracket^{\mathbb{S}[\mathbf{x} \mapsto X]}$$

 $\llbracket \eta x \varphi \rrbracket^{\mathbb{S}}$ is the least/greatest fixed point of $\llbracket \varphi \rrbracket^{\mathbb{S}}_{\times}$ $(\eta \in \{\mu, \nu\})$.

Roughly: a formula φ is alternation free if there is no entanglement between μ and ν operators.

 $\mu x \mu y (\langle a \rangle (x \lor p) \land \langle b \rangle y) \qquad \mu x \nu y (\langle a \rangle (x \lor p) \land \langle b \rangle y) \\ \mu x (\langle a \rangle (x \lor p) \land \mu y \langle b \rangle y) \qquad \mu x (\langle a \rangle (x \lor p) \land \nu y \langle b \rangle y)$

- The alternation-free variant is strictly less expressive than the full modal μ -calculus. Many of the proof-theoretical difficulties, however, already manifest themselves on the alternation-free level.
- The alternation-free modal μ -calculus subsumes PDL, CKL and many other extensions of modal logic by fixed point operators.

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

 $(\langle a \rangle [b] \mu x (\langle a \rangle x \lor p), s_1)$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \lor p), s_1) \\ \xrightarrow{\exists} ([b] \mu x (\langle a \rangle x \lor p), s_2) \\ \xrightarrow{\forall} (\mu x (\langle a \rangle x \lor p), s_3)$$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \lor p), s_1)$$

$$\stackrel{\exists}{\to} ([b] \mu x (\langle a \rangle x \lor p), s_2)$$

$$\stackrel{\forall}{\to} (\mu x (\langle a \rangle x \lor p), s_3)$$

$$\stackrel{\cdot}{\to} (\langle a \rangle \mu x (\langle a \rangle x \lor p) \lor p, s_3)$$

At position (φ, s) , player \exists wants to show that φ is true s, while player \forall wishes to show that φ is false at s.

$$(\langle a \rangle [b] \mu x (\langle a \rangle x \lor p), s_1) \stackrel{\exists}{\to} ([b] \mu x (\langle a \rangle x \lor p), s_2) \stackrel{\forall}{\to} (\mu x (\langle a \rangle x \lor p), s_3) \stackrel{\vdots}{\to} (\langle a \rangle \mu x (\langle a \rangle x \lor p) \lor p, s_3) \stackrel{\exists}{\to} (p, s_3)$$

The evaluation game (definition)

The game $\mathcal{E}(\xi, \mathbb{S})$ is played on the board $Clos(\xi) \times S$.

Position	Owner	Admissible moves
$(p,s), s \in V(p)$	A	Ø
$(p,s), s \notin V(p)$	Э	Ø
$(\overline{p},s),s \notin V(p)$	\forall	Ø
$(\overline{p},s),s\in V(p)$	Ξ	Ø
$(\varphi \lor \psi, s)$	Ξ	$\{(arphi, \boldsymbol{s}), (\psi, \boldsymbol{s})\}$
$(arphi \wedge \psi, s)$	\forall	$\{(arphi, \boldsymbol{s}), (\psi, \boldsymbol{s})\}$
$(\langle a angle arphi, s)$	Э	$\{arphi\} imes {\sf R}_{\sf a}[{\sf s}]$
$([a]\varphi,s)$	A	$\{arphi\} imes {\sf R}_{\sf a}[{\sf s}]$
$(\eta x \varphi, s)$	—	$\{(\varphi[\eta x \varphi/x], s)\}$

An infinite $\mathcal{E}(\xi, \mathbb{S})$ -match is won by \exists if and only if from some point on, every $\eta x \varphi$ is such that $\eta = \nu$.

Example

 $\mu x(\langle a \rangle x \lor p) \equiv$ "a *p*-state is reachable by an *a*-path"

An annotated proof system (Marti & Venema)

A sequent is a finite set Γ consiting of annotated formulas φ^u with $u \in \{\circ, \bullet\}$.

$$\frac{\varphi^{u},\overline{\varphi^{v}},\Gamma}{\varphi^{u},\Delta} \operatorname{Ax} \qquad \frac{\varphi^{u},\psi^{u},\Gamma}{\varphi\vee\psi^{u},\Gamma} \vee \qquad \frac{\varphi^{u},\Gamma}{\varphi\wedge\psi^{u},\Gamma} \wedge$$

$$\frac{\varphi^{u},\Delta}{[\mathbf{a}]\varphi^{u},\langle\mathbf{a}\rangle\Delta,\Gamma} [\mathbf{a}] \qquad \frac{\varphi[\mu x\varphi/x]^{\circ},\Gamma}{\mu x\varphi^{u},\Gamma} \mu \qquad \frac{\varphi[\nu x\varphi/x]^{u},\Gamma}{\nu x\varphi^{u},\Gamma} \nu \qquad \frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \mathsf{F}$$

Definition

A non-well-founded derivation is a *proof* if every infinite branch has a final segment on which there is always a formula in focus.

- The (path-based) focus system is equivalent to the trace-based system.
- The focus annotations allow for a nice soundness condition on cyclic proofs as finite trees with back edges.

The proof search game is defined as follows:

- Given a sequent Γ , Prover chooses a rule instance $\frac{\Delta_1 \cdots \Delta_n}{\Gamma}$ r
- Given a rule instance $\frac{\Delta_1 \cdots \Delta_n}{\Gamma}$ r, Refuter chooses a sequent Δ_i .
- An infinite match is won by Prover if and only if from some point on, every sequent has a formula in focus.

Note: viewed as a tree, a winning strategy for Prover is the same as a proof.

Completeness

Theorem (Niwinski & Walukiewicz, Marti & Venema)

Every valid sequent Γ is provable.

Proof (sketch).

Suppose Γ is not provable. By determinacy, there is a winning strategy T for Refuter in the proof search game. This winning strategy carries a countermodel.

 $p \in V^{T}(\rho) :\Leftrightarrow p$ does *not* occur in a sequent on the path ρ

The two-way alternation-free modal μ -calculus

- A set P of propositional variables.
- A set D of actions.

Fix an involution operation $\check{\cdot}$ on D, *i.e.* $a \neq \check{a}$ and $\check{a} = a$ for every $a \in D$

$$\varphi ::= p \mid \overline{p} \mid \varphi \lor \psi \mid \varphi \land \psi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu \times \varphi \mid \nu \times \varphi$$

where $\overline{\times}$ does not occur in φ .

The two-way modal μ -calculus is interpreted over *regular* models:

$$R_{\breve{a}} = \{(t,s): (s,t) \in R_a\}$$

Example $\nu x(\langle a \rangle \langle \breve{a} \rangle x) \equiv$ "there is an infinite path of alternating *a* and \breve{a} transitions"

Problem for completeness

$$(\langle \breve{a} \rangle \psi, \rho_1) \xrightarrow{\exists} (\psi, \rho_0)$$

Another problem for completeness

If $\langle \breve{a} \rangle \psi^{\bullet}$ occurs in ρ_1 , then ψ^u occurs in ρ_0 . But how do we get $u = \bullet$?

Definition

Given φ, ψ , there is a *trace atom* $\varphi \rightsquigarrow \psi$ and a *negated trace atom* $\varphi \not\rightsquigarrow \psi$.

The semantics of trace atoms is defined relative to a strategy for \forall .

Definition

Given a strategy f for \forall in \mathcal{E} , we say that $\varphi \rightsquigarrow \psi$ is *satisfied* in \mathbb{S} at s with respect to f (and write $\mathbb{S}, s \Vdash_f \varphi \rightsquigarrow \psi$) if there is an f-guided match

$$(\varphi, s) = (\varphi_0, s_0) \cdot (\varphi_1, s_1) \cdots (\varphi_n, s_n) = (\psi, s) \quad (n \ge 0)$$

such that for no i < n the formula φ_i is a μ -formula. We say that \mathbb{S} satisfies $\varphi \not\rightsquigarrow \psi$ at s with respect to f (and write $\mathbb{S}, s \Vdash_f \varphi \not\rightsquigarrow \psi$) iff $\mathbb{S}, s \nvDash_f \varphi \rightsquigarrow \psi$.

Example

- $\ \, {\it Omega} \ \, \nu x \varphi \rightsquigarrow \varphi [\nu x \varphi / x] \ \, {\it is always true}.$
- $If \mathbb{S}, s \Vdash_{f} \varphi \rightsquigarrow \psi \text{ and } \mathbb{S}, s \Vdash_{f} \psi \rightsquigarrow \varphi \text{ for some } \varphi \neq \psi, \text{ then } \mathbb{S}, s \Vdash_{f} \varphi.$
- $\ \, {\mathbb S}, s \Vdash_f \varphi \rightsquigarrow \langle a \rangle \psi \text{ implies } {\mathbb S}, t \Vdash_f \langle \breve{a} \rangle \varphi \rightsquigarrow \psi \text{ for every } a \text{-successor } t \text{ of } s.$

Lemma

Let $\rho \in S^T$. Suppose \mathbb{S}^T , $\rho \Vdash_f \varphi \rightsquigarrow \psi$. Then $\varphi \not\rightsquigarrow \psi$ occurs in ρ .

Results

Let Γ be a sequent consisting of annotated formulas φ^u with $u \in \{\circ, \bullet\}$), trace atoms $\varphi \rightsquigarrow \psi$, and negated trace atoms $\varphi \not\rightsquigarrow \psi$.

Theorem (Soundness)

If Γ is provable, then for every model \mathbb{S} , state s of \mathbb{S} and optimal positional strategy f for \forall in \mathcal{E} , there is an $A \in \Gamma$ such that $\mathbb{S}, s \Vdash_f A$.

Let Γ^- be the set of annotated formulas in Γ (so we remove the trace atoms).

Theorem (Completeness)

If Γ^- is valid, then Γ is provable.

Remark

The infinitary proof system naturally restricts to a finitary cyclic system.

Corollary

The two-way alternation-free modal μ -calculus is decidable and has the regular tree model property.

- Completeness for all sequents, e.g. $\{\varphi_1 \land \varphi_2 \rightsquigarrow \varphi_1, \varphi_1 \land \varphi_2 \rightsquigarrow \varphi_2\}.$
- Craig interpolation
- Incorporating trace atoms in the syntax?
- Extending this system to the full two-way modal μ -calculus (*i.e.* with alternation)

Thank you

https://staff.fnwi.uva.nl/j.m.w.rooduijn/

$$\begin{array}{c} \hline \varphi^{u}, \overline{\varphi^{v}}, \Gamma \end{array} Ax1 \qquad \hline \varphi \rightsquigarrow \psi, \varphi \not\rightsquigarrow \psi, \Gamma \end{array} Ax2 \qquad \hline \varphi \rightsquigarrow \varphi, \Gamma \end{array} Ax3 \\ \hline (\varphi \lor \psi) \not\rightsquigarrow \varphi, (\varphi \lor \psi) \not\rightsquigarrow \psi, \varphi^{u}, \psi^{u}, \Gamma \end{array} R_{\vee} \qquad \hline \varphi^{\circ}, \Gamma \qquad \overline{\varphi^{\circ}, \Gamma} \quad \overline{\varphi^{\circ}, \Gamma} \quad \text{cut} \end{array}$$

$$\frac{(\varphi \land \psi) \not\rightsquigarrow \varphi, \varphi^{u}, \Gamma}{\varphi \land \psi^{u}, \Gamma} \xrightarrow{(\varphi \land \psi) \not\rightsquigarrow \psi, \psi^{u}, \Gamma} \mathsf{R}_{\land} \qquad \frac{\varphi[\mu x \varphi/x]^{\circ}, \Gamma}{\mu x \varphi^{u}, \Gamma} \mathsf{R}_{\mu}$$

$$\frac{\nu x \varphi \not\rightsquigarrow \varphi[\nu x \varphi/x], \varphi[\nu x \varphi/x] \rightsquigarrow \nu x \varphi, \varphi[\nu x \varphi/x]^{u}, \Gamma}{\nu x \varphi^{u}, \Gamma} \mathsf{R}_{\nu} \qquad \frac{\Gamma^{[\mathfrak{a}]\varphi^{u}}}{[\mathfrak{a}]\varphi^{u}, \Gamma} \mathsf{R}_{[\mathfrak{a}]}$$

$$\frac{\Gamma^{\bullet}}{\Gamma^{\circ}} \mathsf{F} = \frac{\varphi \not\rightsquigarrow \psi, \psi \not\rightsquigarrow \chi, \varphi \not\rightsquigarrow \chi, \Gamma}{\varphi \not\rightsquigarrow \psi, \psi \not\rightsquigarrow \chi, \Gamma} \operatorname{trans} = \frac{\varphi \rightsquigarrow \psi, \Gamma}{\varphi} \frac{\varphi \not\rightsquigarrow \psi, \Gamma}{\varphi \not\land \psi, \Gamma} \operatorname{trans}$$

Definition

Let Γ be a sequent and let $[a]\varphi^b$ be an annotated formula. The *jump* $\Gamma^{[a]\varphi^b}$ of Γ with respect to $[a]\varphi^b$ consists of:

$$s(\xi, \Gamma) = \begin{cases} \bullet & \text{if } \xi^{\bullet} \in \Gamma, \\ \bullet & \text{if } \theta \not\rightsquigarrow \xi \in \Gamma \text{ for some } \theta^{\bullet} \in I \\ \circ & \text{otherwise.} \end{cases}$$

When taking the strategy tree T, we assume that Prover adheres to the following non-deterministic strategy:

- Only apply a modal rule when all of the propositional rules are exhausted.
- Apply the rule F whenever possible.

The canonical strategy f for \forall in $\mathcal{E}(\Gamma, \mathbb{S}^T)$ is given by:

- At $(\varphi \land \psi, \rho)$ choose the conjunct corresponding to the choice of Refuter when $\varphi \land \psi$ is principal in an application of the rule \land in ρ .
- At ([a]φ, ρ) choose an a-successor ρ' of ρ such that ρ and ρ' are separated by an application of [a].

Example

Define $\varphi := \nu x \langle a \rangle \langle \check{a} \rangle x$, *i.e.* φ expresses that there is an infinite path of alternating *a* and \check{a} transitions. Clearly this holds at every state with an *a*-successor. Hence the implication $\langle a \rangle p \rightarrow \varphi$ is valid. As context Σ we consider the least negation-closed set containing both $\langle a \rangle p$ and φ , *i.e.*,

 $\{\langle a \rangle p, p, \varphi, \langle a \rangle \langle \breve{a} \rangle \varphi, \langle \breve{a} \rangle \varphi, [a]\overline{p}, \overline{p}, \overline{\varphi}, [a][\breve{a}]\overline{\varphi}, [\breve{a}]\overline{\varphi}\}.$

The following is a $\operatorname{Focus}^2_\infty$ -proof of $\langle a \rangle p \to \varphi$.

$$\frac{\overline{p^{\bullet}}, \langle \breve{a} \rangle \varphi^{\bullet}, \langle \breve{a} \rangle \varphi \not\rightsquigarrow \langle \breve{a} \rangle \varphi, \langle \breve{a} \rangle \varphi \rightsquigarrow \langle \breve{a} \rangle \varphi}{[a]\overline{p^{\bullet}}, \langle a \rangle \langle \breve{a} \rangle \varphi^{\bullet}, \varphi \not\rightsquigarrow \langle a \rangle \langle \breve{a} \rangle \varphi, \langle a \rangle \langle \breve{a} \rangle \varphi \rightsquigarrow \varphi} \frac{\mathsf{R}_{[a]}}{\mathsf{R}_{\nu}}$$

Note that it is also possible to use Ax3 instead of Ax2 in the above proof.