# Decidability of modal logics of non-k-colorable graphs

Ilya Shapirovsky

New Mexico State University

29th Workshop on Logic, Language, Information and Computation July 2023, Halifax

#### Modal language

The set of *n*-modal formulas is built from a countable set of propositional variables  $PV = \{p_0, p_1, ...\}$  using Boolean connectives and unary connectives  $\Diamond_i$ , i < n (modalities).

#### Kripke semantics

An *n*-frame F:  $(X, (R_i)_{i < n})$ , where  $R_i$  are binary relations on a set X. A model M on F is a pair  $(F, \theta)$  where  $\theta : \operatorname{Var} \to \mathcal{P}(X)$ .

 $M, x \vDash p$  iff  $x \in \theta(p)$ ,  $M, x \vDash \Diamond_i \varphi$  iff  $M, y \vDash \varphi$  for some y with  $xR_iy$ .

A formula  $\varphi$  is true in a model M, in symbols  $M \vDash \varphi$ , if  $M, x \vDash \varphi$  for all x in M. A formula  $\varphi$  is valid in a frame F, in symbols  $F \vDash \varphi$ , if  $\varphi$  is true in every model on F.

#### Examples (Unimodal case)

| $(X,R) \vDash p  ightarrow \Diamond p$                                    | $\iff$ | R is reflexive;                                                         |
|---------------------------------------------------------------------------|--------|-------------------------------------------------------------------------|
| $(X,R) \vDash p  ightarrow \Box \Diamond p$                               | $\iff$ | R is symmetric ( $\Box \varphi$ denotes $\neg \Diamond \neg \varphi$ ); |
| $(X,R) \vDash \Diamond \top$                                              | $\iff$ | $\forall x \exists y \ x Ry;$                                           |
| $(X,R) \models \Diamond p \rightarrow \Diamond (p \land \neg \Diamond p)$ | $\iff$ | $(X, R^{-1})$ is a well-founded strict poset                            |

#### Modal language

The set of *n*-modal formulas is built from a countable set of propositional variables  $PV = \{p_0, p_1, ...\}$  using Boolean connectives and unary connectives  $\Diamond_i$ , i < n (modalities).

#### Kripke semantics

An *n*-frame F:  $(X, (R_i)_{i < n})$ , where  $R_i$  are binary relations on a set X. A model M on F is a pair  $(F, \theta)$  where  $\theta : \operatorname{Var} \to \mathcal{P}(X)$ .

 $M, x \vDash p$  iff  $x \in \theta(p)$ ,  $M, x \vDash \Diamond_i \varphi$  iff  $M, y \vDash \varphi$  for some y with  $xR_iy$ .

A formula  $\varphi$  is *true in a model M*, in symbols  $M \vDash \varphi$ , if  $M, x \vDash \varphi$  for all x in M. A formula  $\varphi$  is *valid in a frame F*, in symbols  $F \vDash \varphi$ , if  $\varphi$  is true in every model on F.



#### Modal language

The set of *n*-modal formulas is built from a countable set of propositional variables  $PV = \{p_0, p_1, ...\}$  using Boolean connectives and unary connectives  $\Diamond_i$ , i < n (modalities).

#### Kripke semantics

An *n*-frame F:  $(X, (R_i)_{i < n})$ , where  $R_i$  are binary relations on a set X. A model M on F is a pair  $(F, \theta)$  where  $\theta : \operatorname{Var} \to \mathcal{P}(X)$ .

 $M, x \vDash p$  iff  $x \in \theta(p)$ ,  $M, x \vDash \Diamond_i \varphi$  iff  $M, y \vDash \varphi$  for some y with  $xR_iy$ .

A formula  $\varphi$  is true in a model M, in symbols  $M \vDash \varphi$ , if  $M, x \vDash \varphi$  for all x in M. A formula  $\varphi$  is valid in a frame F, in symbols  $F \vDash \varphi$ , if  $\varphi$  is true in every model on F.

#### Example (Bimodal case)

Consider a structure  $(X, R, X \times X)$ , R is symmetric.

*R* interprets  $\Diamond_0$ , the universal relation  $X \times X$  interprets  $\Diamond_1$ .

We have:

 $(X, R, X \times X) \vDash \Diamond_1 p \land \Diamond_1 \neg p \rightarrow \Diamond_1 (p \land \Diamond_0 \neg p) \iff$ 

#### Modal language

The set of *n*-modal formulas is built from a countable set of propositional variables  $PV = \{p_0, p_1, ...\}$  using Boolean connectives and unary connectives  $\Diamond_i$ , i < n (modalities).

#### Kripke semantics

An *n*-frame F:  $(X, (R_i)_{i < n})$ , where  $R_i$  are binary relations on a set X. A model M on F is a pair  $(F, \theta)$  where  $\theta : \operatorname{Var} \to \mathcal{P}(X)$ .

 $M, x \vDash p$  iff  $x \in \theta(p)$ ,  $M, x \vDash \Diamond_i \varphi$  iff  $M, y \vDash \varphi$  for some y with  $xR_iy$ .

A formula  $\varphi$  is true in a model M, in symbols  $M \vDash \varphi$ , if  $M, x \vDash \varphi$  for all x in M. A formula  $\varphi$  is valid in a frame F, in symbols  $F \vDash \varphi$ , if  $\varphi$  is true in every model on F.

#### Example (Bimodal case)

Consider a structure  $(X, R, X \times X)$ , R is symmetric.

*R* interprets  $\Diamond_0$ , the universal relation  $X \times X$  interprets  $\Diamond_1$ .

We have:

 $(X, R, X \times X) \vDash \Diamond_1 p \land \Diamond_1 \neg p \rightarrow \Diamond_1 (p \land \Diamond_0 \neg p) \iff (X, R)$  is connected.

# Chromatic number of a graph

A graph is a unimodal frame (X, R) in which R is symmetric. A directed graph is a unimodal frame.

# Chromatic number of a graph

A graph is a unimodal frame (X, R) in which R is symmetric. A directed graph is a unimodal frame.

As usual, a partition A of a set X is a family of non-empty pairwise disjoint sets such that  $X = \bigcup A$ .

## Definition

Let X be a set,  $R \subseteq X \times X$ . A partition (in other terms: coloring)  $\mathcal{A}$  of X is *proper*, if

 $\forall A \in \mathcal{A} \, \forall x \in A \, \forall y \in A \, \neg x R y.$ 

The chromatic number  $\chi(X, R)$  of (X, R) is the least k in the set

 $\{|\mathcal{A}| : \mathcal{A} \text{ is a finite proper partition of } X\}$ 

(if the set is empty,  $\chi(X,R)=\infty$  )



Figure: Wikipedia/Graph coloring

# Formulas of non-colorability

For a unimodal frame F = (X, R), let  $F_{\neq}$  be the bimodal frame  $(X, R, \neq_X)$ , where  $\neq_X$  is the inequality relation on X, i.e., the set of pairs  $(x, y) \in X \times X$  such that  $x \neq y$ .

From now on, we write  $\Diamond$  for  $\Diamond_0$ , and  $\langle \neq \rangle$  for  $\Diamond_1$ ; likewise for boxes. We also use abbreviations  $\exists \varphi$  for  $\langle \neq \rangle \varphi \lor \varphi$  and  $\forall \varphi$  for  $[\neq] \varphi \land \varphi$ .

Put

$$\chi_k^{>} = \forall \bigvee_{i < k} (p_i \land \bigwedge_{i \neq j < k} \neg p_j) \to \exists \bigvee_{i < k} (p_i \land \Diamond p_i).$$

Proposition (Follows from [Hughes 1990])

The chromatic number of F > k iff  $F_{\neq} \models \chi_k^>$ .

# Formulas of non-colorability

For a unimodal frame F = (X, R), let  $F_{\neq}$  be the bimodal frame  $(X, R, \neq_X)$ , where  $\neq_X$  is the inequality relation on X, i.e., the set of pairs  $(x, y) \in X \times X$  such that  $x \neq y$ .

From now on, we write  $\Diamond$  for  $\Diamond_0$ , and  $\langle \neq \rangle$  for  $\Diamond_1$ ; likewise for boxes. We also use abbreviations  $\exists \varphi$  for  $\langle \neq \rangle \varphi \lor \varphi$  and  $\forall \varphi$  for  $[\neq] \varphi \land \varphi$ .

Put

$$\chi_k^{>} = \forall \bigvee_{i < k} (p_i \land \bigwedge_{i \neq j < k} \neg p_j) \to \exists \bigvee_{i < k} (p_i \land \Diamond p_i).$$

Proposition (Follows from [Hughes 1990])

The chromatic number of F > k iff  $F_{\neq} \models \chi_k^>$ .

#### Historical remark

In [Goldblatt, Hodkinson, Venema 2004], these formulas were used to construct a *canonical logic* which cannot be determined by a first-order definable class of relational structures; this gave a solution of a long-standing problem [Fine 1975].

# Modal logics

For a class C of frames, the set  $\operatorname{Log} C = \{\varphi \mid C \vDash \varphi\}$  is called the *logic of* C.

# General problems

- complete axiomatization of  $\operatorname{Log} \mathcal{C}$ ;
- $\bullet$  decidability of  $\operatorname{Log} \mathcal{C}.$

# Modal logics

For a class C of frames, the set  $\operatorname{Log} C = \{\varphi \mid C \vDash \varphi\}$  is called the *logic of* C.

#### General problems

- complete axiomatization of  $\operatorname{Log} \mathcal{C}$ ;
- decidability of  $\operatorname{Log} \mathcal{C}$ .

## Definitions

A set L of formulas is a *modal logic* (in a more accurate terminology — *normal propositional modal logic*), if L contains the classical tautologies, the formulas

$$\Diamond_i \bot \leftrightarrow \bot, \quad \Diamond_i (p \lor q) \leftrightarrow \Diamond_i p \lor \Diamond_i q \quad (i < n),$$

and is closed under the rules of MP, substitution and monotonicity: if  $(\varphi \rightarrow \psi) \in L$ , then  $(\Diamond_i \varphi \rightarrow \Diamond_i \psi) \in L$ .

A logic L is Kripke complete, if L is the logic of a class C of Kripke frames: L = Log C.

A logic L has the *finite model property*, if L is the logic of a class C of finite frames.

#### Fact

If L has the fmp and is finitely axiomatizable, then it is decidable.

K is the least unimodal logic. KB is the least unimodal logic that contains the formula  $p \to \Box \Diamond p$  (recall: the formula expresses symmetry of relation).

Facts. K is the logic of all (finite) unimodal frames;  ${\rm KB}$  is the logic of all (finite) graphs (symmetric unimodal frames).

K is the least unimodal logic. KB is the least unimodal logic that contains the formula  $p \to \Box \Diamond p$  (recall: the formula expresses symmetry of relation).

Facts. K is the logic of all (finite) unimodal frames; KB is the logic of all (finite) graphs (symmetric unimodal frames).

For a unimodal logic L, let  $L_{\neq}$  be the smallest bimodal logic that contains L and

 $p \to [\neq] \langle \neq \rangle p, \quad \langle \neq \rangle \langle \neq \rangle p \to \exists p, \quad \Diamond p \to \exists p.$ 

[De Rijke 1992].  $K_{\neq}$  is the logic of the class of (finite) frames of the form  $(X, R, \neq_X)$ .

K is the least unimodal logic. KB is the least unimodal logic that contains the formula  $p \to \Box \Diamond p$  (recall: the formula expresses symmetry of relation).

Facts. K is the logic of all (finite) unimodal frames; KB is the logic of all (finite) graphs (symmetric unimodal frames).

For a unimodal logic L, let  $L_{\neq}$  be the smallest bimodal logic that contains L and

 $p \to [\neq] \langle \neq \rangle p, \quad \langle \neq \rangle \langle \neq \rangle p \to \exists p, \quad \Diamond p \to \exists p.$ 

[De Rijke 1992].  $K_{\neq}$  is the logic of the class of (finite) frames of the form  $(X, R, \neq_X)$ .

#### Theorem

1. Let  $\mathcal{G}^{>k}$  be the class of graphs G such that  $\chi(G) > k$ , and let  $\mathcal{D}^{>k}$  be the class of directed graphs G such that  $\chi(G) > k$ . Then

 $\operatorname{Log} \mathcal{G}_{\neq}^{>k} \text{ is } \operatorname{KB}_{\neq} + \chi_k^>, \text{ and } \operatorname{Log} \mathcal{D}_{\neq}^{>k} \text{ is } \operatorname{K}_{\neq} + \chi_k^>.$ 

2. For each  $k < \omega$ , the logics  $KB_{\neq} + \chi_k^>$  and  $K_{\neq} + \chi_k^>$  have the exponential finite model property and are decidable.

K is the least unimodal logic. KB is the least unimodal logic that contains the formula  $p \to \Box \Diamond p$  (recall: the formula expresses symmetry of relation).

Facts. K is the logic of all (finite) unimodal frames; KB is the logic of all (finite) graphs (symmetric unimodal frames).

For a unimodal logic L, let  $L_{\neq}$  be the smallest bimodal logic that contains L and

 $p \to [\neq] \langle \neq \rangle p, \quad \langle \neq \rangle \langle \neq \rangle p \to \exists p, \quad \Diamond p \to \exists p.$ 

[De Rijke 1992].  $K_{\neq}$  is the logic of the class of (finite) frames of the form  $(X, R, \neq_X)$ .

#### Theorem

1. Let  $\mathcal{G}^{>k}$  be the class of graphs G such that  $\chi(G) > k$ , and let  $\mathcal{D}^{>k}$  be the class of directed graphs G such that  $\chi(G) > k$ . Then

 $\operatorname{Log} \mathcal{G}_{\neq}^{>k} \text{ is } \operatorname{KB}_{\neq} + \chi_k^>, \text{ and } \operatorname{Log} \mathcal{D}_{\neq}^{>k} \text{ is } \operatorname{K}_{\neq} + \chi_k^>.$ 

2. For each  $k < \omega$ , the logics  $KB_{\neq} + \chi_k^>$  and  $K_{\neq} + \chi_k^>$  have the exponential finite model property and are decidable.

Update: A related result was obtained very recently in [Ding, Liu & Wang, 2023]: it was shown that in *neighborhood semantics* of modal language, the non-k-colorability of *hypergraphs* is expressible, and the resulting modal systems are decidable as well. I am grateful to Gillman Payette for sharing with me this reference after my talk at WoLLIC.

A frame F = (X, R) is connected, if for any points x, y in X, there are points  $x_0 = x, x_1, \ldots, x_n = y$  such that for each  $i < n, x_i R x_{i+1}$  or  $x_{i+1} R x_i$ . Let Con be the following formula:

$$\exists p \land \exists \neg p \to \exists (p \land \Diamond \neg p). \tag{1}$$

Recall: for every graph G,

*G* is connected iff 
$$G_{\neq} \vDash Con$$
.

#### Theorem

1. Let  $C^{>k}$  be the class of non-k-colorable connected non-singleton graphs. Then

$$\operatorname{Log} \mathcal{C}_{\neq}^{>k} \text{ is } \operatorname{KB}_{\neq} + \{\chi_k^>, \operatorname{Con}, \Diamond \top \}.$$

2. All logics  $KB_{\neq} + \{\chi_k^>, Con, \Diamond T\}$  have the exponential finite model property and are decidable.

# A few technical details and corollaries

normal modal logics ⊋ Kripke complete logics ⊋ logics with the finite model property ⊋ logics that *admit filtration* 

Informally, filtration is a method of collapsing an infinite model into a finite one while preserving the truth value of a given formula. It is widely used for establishing the finite model property and decidability of modal logics.

A logic L admits filtration iff any L-model can be "filtrated" into a finite L-model.

Formally:

For a model  $M = (X, (R_i)_{i < n}, \theta)$  and a set  $\Gamma$  of formulas, put

$$x \sim_{\Gamma} y \text{ iff } \forall \psi \in \Gamma \ (M, x \models \psi \text{ iff } M, y \models \psi).$$

A  $\Gamma$ -filtration of M is a model  $\widehat{M} = (\widehat{X}, (\widehat{R}_i)_{i < n}, \widehat{\theta})$  such that:

 $\widehat{X} = X/\sim$  for some equivalence relation  $\sim$  finer than  $\sim_{\Gamma}$ ;

 $\widehat{M}, [x] \models p \text{ iff } M, x \models p \text{ for all } p \in \Gamma.$ 

For all i < n, we have  $(R_i)_{\sim} \subseteq \widehat{R}_i \subseteq (R_i)_{\sim}^{\Gamma}$ , where

$$\begin{aligned} & [x] \left( R_i \right)_{\sim} [y] & \text{iff} \quad \exists x' \sim x \; \exists y' \sim y \; (x' \; R_i \; y'), \\ & [x] \left( R_i \right)_{\sim}^{\Gamma} [y] & \text{iff} \quad \forall \psi \; (\Diamond_i \psi \in \Gamma \And M, y \models \psi \Rightarrow M, x \models \Diamond_i \psi) \end{aligned}$$

If  $\sim = \sim_{\Psi}$  for some finite set of formulas  $\Psi \supseteq \Gamma$ , then  $\widehat{M}$  is called a *definable*  $\Gamma$ -*filtration* of M.

# A few technical details and corollaries

A logic *L* admits (rooted) definable filtration, if for any (point-generated) model *M* with  $M \vDash L$ , and for any finite subformula-closed set of formulas  $\Gamma$ , there exists a finite model  $\widehat{M}$  with  $\widehat{M} \vDash L$  that is a definable  $\Gamma$ -filtration of *M*.

It is well-known that many standard logics admit filtration and hence have the finite model property.

Moreover, in many cases filtrability of a logic leads to the finite model property of reacher systems.

For example, if a modal logic L admits definable filtration, then its enrichments with modalities for the transitive closure and converse relations also admit definable filtration (that is, you can build a PDL extension of such an L and keep the finite model property) [Kikot, Zolin, Sh, 2014; 2020].

# A few technical details and corollaries

A logic *L* admits (rooted) definable filtration, if for any (point-generated) model *M* with  $M \vDash L$ , and for any finite subformula-closed set of formulas  $\Gamma$ , there exists a finite model  $\widehat{M}$  with  $\widehat{M} \vDash L$  that is a definable  $\Gamma$ -filtration of *M*.

It is well-known that many standard logics admit filtration and hence have the finite model property.

Moreover, in many cases filtrability of a logic leads to the finite model property of reacher systems.

For example, if a modal logic L admits definable filtration, then its enrichments with modalities for the transitive closure and converse relations also admit definable filtration (that is, you can build a PDL extension of such an L and keep the finite model property) [Kikot, Zolin, Sh, 2014; 2020].

#### Theorem

If a bimodal logic L admits definable filtration, then all  $L + \chi_k^>$  admit definable filtration, and consequently have the finite model property.

#### Theorem

Assume that a bimodal logic L admits rooted definable filtration,  $k < \omega$ . Then  $L + \chi_k^>$  has the finite model property. If also L extends  $\mathrm{KB}_{\neq}$ , then  $L + \{\chi_k^>, \mathrm{Con}\}$  has the finite model property.

Modal logics of different classes of non-*k*-colorable graphs are decidable. It is of definite interest to consider logics of certain graphs, for which the chromatic number is unknown.

Let  $F = (\mathbb{R}^2, R_{=1})$  be the unit distance graph of the real plane.

Hadwiger-Nelson problem (1950s)

What is  $\chi(F)$ ?

It is known that  $5 \le \chi(F) \le 7$  ([ $\le 7$ : Isbell, 1950s]; [ $5 \le$ : Aubrey De Grey, 2018]).

Modal logics of different classes of non-*k*-colorable graphs are decidable. It is of definite interest to consider logics of certain graphs, for which the chromatic number is unknown.

Let  $F = (\mathbb{R}^2, R_{=1})$  be the unit distance graph of the real plane.

Hadwiger-Nelson problem (1950s)

What is  $\chi(F)$ ?

It is known that  $5 \le \chi(F) \le 7$  ([ $\le 7$ : Isbell, 1950s]; [ $5 \le$ : Aubrey De Grey, 2018]). Let  $L_{=1}$  be the bimodal logic of the frame ( $\mathbb{R}^2, R_{=1}, \neq_{\mathbb{P}^2}$ ).

In modal terms, the Hadwiger–Nelson problem asks whether  $\chi_5^>, \chi_6^>$  belong to  $L_{=1}$ .

We know that  $L_{=1}$  extends  $L = KB_{\neq} + \{\chi_4^2, Con, \Diamond \top, \Diamond p \rightarrow \langle \neq \rangle p\}$  (the latter logic is decidable). However,  $L_{=1}$  contains extra formulas. For example, let

$$\mathbf{P}(k,m,n) = \bigwedge_{i < k} \Diamond^m \Box^n p_i \to \bigvee_{i \neq j < k} \Diamond^m (p_i \wedge p_j).$$

For various k, m, n, P(k, m, n) is in  $L_{=1}$  (and not in L); this can be obtained from known solutions for problems of packing equal circles in a circle.

Problem

Is  $L_{=1}$  decidable? Finitely axiomatizable? Recursively enumerable? Does it have the finite model property?

Modal logics of different classes of non-*k*-colorable graphs are decidable. It is of definite interest to consider logics of certain graphs, for which the chromatic number is unknown.

Let  $F = (\mathbb{R}^2, R_{=1})$  be the unit distance graph of the real plane.

Hadwiger-Nelson problem (1950s)

What is  $\chi(F)$ ?

It is known that  $5 \le \chi(F) \le 7$  ([ $\le 7$ : Isbell, 1950s]; [ $5 \le$ : Aubrey De Grey, 2018]). Let  $L_{=1}$  be the bimodal logic of the frame ( $\mathbb{R}^2, R_{=1}, \neq_{\mathbb{R}^2}$ ).

In modal terms, the Hadwiger–Nelson problem asks whether  $\chi_5^>, \chi_6^>$  belong to  $L_{=1}$ .

Let  $V_r \subseteq \mathbb{R}^2$  be a disk of radius r. It follows from de Bruijn-Erdős theorem that if  $\chi(F) > k$ , then  $\chi(V_r, R_{=1}) > k$  for some r. Let  $L_{=1,r}$  be the unimodal logic of the frame  $F_r = (V_r, R_{=1})$  (r > 1). In this case, the properties

$$\chi(F) > k$$

are expressible in the unimodal language.

#### Problem

To analyze the unimodal logics  $L_{=1,r}$ .

Modal logics of different classes of non-*k*-colorable graphs are decidable. It is of definite interest to consider logics of certain graphs, for which the chromatic number is unknown.

Let  $F = (\mathbb{R}^2, R_{=1})$  be the unit distance graph of the real plane.

Hadwiger-Nelson problem (1950s)

What is  $\chi(F)$ ?

It is known that  $5 \le \chi(F) \le 7$  ([ $\le 7$ : Isbell, 1950s]; [ $5 \le$ : Aubrey De Grey, 2018]). Let  $L_{=1}$  be the bimodal logic of the frame ( $\mathbb{R}^2, R_{=1}, \neq_{\mathbb{R}^2}$ ).

In modal terms, the Hadwiger–Nelson problem asks whether  $\chi_5^>, \chi_6^>$  belong to  $L_{=1}$ .

Let  $V_r \subseteq \mathbb{R}^2$  be a disk of radius r. It follows from de Bruijn-Erdős theorem that if  $\chi(F) > k$ , then  $\chi(V_r, R_{=1}) > k$  for some r. Let  $L_{=1,r}$  be the unimodal logic of the frame  $F_r = (V_r, R_{=1})$  (r > 1). In this case, the properties

$$\chi(F) > k$$

are expressible in the unimodal language.

Problem

To analyze the unimodal logics  $L_{=1,r}$ .

# Thank you!