Subsumption-Linear Q-Resolution for QBF*

- What is Subsumption-Linear Q-Resolution (SLQR)?
- The paper's main result about SLQR
- Why SLQR is of interest: Search Complexity vs. Proof Complexity
- Main Proof Idea of Anderson and Bledsoe (1970)
- A Word about QBF Models and the Two-Player Game
- Questions
*Full paper:https://users.soe.ucsc.edu/~avg/Papers/slqr-long.pdf

Search Complexity vs. Proof Complexity

- Prof. Toniann Pitassi at Univ. of Toronto and co-authors pioneered study of Proof Search Complexity:
- Even though a formula family has "short" refutations, does it take exponential time for a proof system to find one?
- The motivation for (propositional) SLR was efficient proof search, rather than short refutations.
- SLQR is similarly motivated.

What is SLQR?

- Linear means first clause for next resolution operation must be the most recently derived clause.
- The second clause may be any input clause or an earlier derived clause.
- Old name: Selection Linear Resolution
- Selection means any literal in the first clause of a resolution operation may be selected as the clashing literal.
- If no refutation can be found, backtracking on choice of clashing literal is unnecessary for completeness.
- Backtracking on the choice of second clause is needed for completeness.
- Many clauses may qualify as the second clause, including earlier-derived clauses.

Subsumption Linear Resolution: later papers

- Subsumption Resolution occurs when the resolvent properly subsumes one of the operands.
- E. g., $\operatorname{Res}([\neg e, p, q, r],[e, q])=[p, q, r]$.
- The main results for propositional resolution and first-order resolution are that:
An earlier-derived clause needs to be considered as the second clause of a resolution operation ONLY IF that clause permits subsumption resolution.
- This paper extends that property to Quantified Boolean Formulas.

Anderson-Bledsoe (1970) Completeness Idea

- Restriction on v for a quantifier-free CNF formula F means "assign v to 1 (true) and apply truth-value simplifications".
- Restriction on $\neg v$ for a quantifier-free CNF formula F means "assign v to 0 (false) and apply truth-value simplifications".
- Restrict F on $v=1$ giving $F 1$ and refute $F 1$ giving $R 1$.
- Restrict F on $v=0$ giving $F 0$ and refute $F 0$ giving $R 0$. W.L.O.G. The top clause of $R 0$ may be an original clause that contained v.
- Put back $\neg v$ in $R 1$, deriving unit clause $[\neg v]$. Call this derivation $R 1 B$.

The AB70 Idea Applies to SLR (cont'd)

- Concatenate the derivations $R 1 B$ and $R 0$, except whenever a clause with v is derived, immediately insert resolution with $[\neg v]$.
- The last clause thus derived is the empty clause.
- The Subsumption Linear restriction is satisfied because resolution with a unit clause is subsumption resolution.

QBF Models and the Two-Player Game

- A QBF Model is a set of Herbrand functions, $\left\{H_{e}\right\}$, one of each existential variable e.
- H_{e} depends on universal variables outer to e in the prenex. (If e is outermost in the prenex, H_{e} is a constant 0 or 1.)
- The A player tries to make the QBF false by choosing a value for the outermost unassigned universal variable.
- The E player tries to make the QBF true by choosing a value for the outermost unassigned existential variable.
- Choices continue until the matrix (quantifier-free part) simplifies to 1 or 0 .
- If the QBF has a model, the E player wins by choosing according to H_{e}.

