
Maximally Multi-Focused Proofs for Skew
Non-Commutative MILL

Niccolò Veltri
Tallinn University of Technology

WoLLIC’23, Halifax NS, 13 July 2023

Conference participation supported by COST CA19135 - Connecting Education
and Research Communities for an Innovative Resource Aware Society

Permutative non-determinism

In cut-free sequent calculi for various logical systems, there is lots of
non-determinism in root-first proof search.

A,B, Γ ` C ∆ ` D

A,B, Γ,∆ ` C ⊗ D
⊗R

A⊗ B, Γ,∆ ` C ⊗ D
⊗L

A,B, Γ ` C

A⊗ B, Γ ` C
⊗L

∆ ` D

A⊗ B, Γ,∆ ` C ⊗ D
⊗R

Γ ` A

B,∆ ` C Ω ` C

B,∆,Ω ` C ⊗ D
⊗R

A (B, Γ,∆,Ω ` C ⊗ D
(L

Γ ` A B,∆ ` C

A (B, Γ,∆ ` C
(L

Ω ` D

A (B, Γ,∆,Ω ` C ⊗ D
⊗R

Focusing

Andreoli’s focusing is an established approach for reducing it.
Organize proof search in two phases:

1 Eagerly apply invertible rules, like ⊗L.
2 Pick a formula and apply non-invertible rules to it, like ⊗R, (L.

Multi-focusing: possibly focus on more than one formula in phase 2.

To eliminate all permutative non-determinism, usual solutions switch
to a different formalism, e.g. proof nets.

But permutative canonicity can be achieved in sequent calculus as well
via maximally multi-focused proofs (Chaudhuri, Miller & Saurin’08).

Focusing

Andreoli’s focusing is an established approach for reducing it.
Organize proof search in two phases:

1 Eagerly apply invertible rules, like ⊗L.
2 Pick a formula and apply non-invertible rules to it, like ⊗R, (L.

Multi-focusing: possibly focus on more than one formula in phase 2.

To eliminate all permutative non-determinism, usual solutions switch
to a different formalism, e.g. proof nets.

But permutative canonicity can be achieved in sequent calculus as well
via maximally multi-focused proofs (Chaudhuri, Miller & Saurin’08).

Content of the talk

The objective of the project:

Comprehensive study of maximal multi-focused deductive systems for
substructural logics.

Development of proof-theoretic investigations of logical systems in
interactive theorem provers.

In this talk:

Maximal multi-focusing for skew non-commutative multiplicative linear
logic (SkNMILL).

This logic is a semi-associative and semi-unital variant of Lambek
calculus with one implication.

Fully formalized in the Agda proof assistant.

Why SkNMILL?

In multi-focusing phase, at most two formulae can be under focus.

Richer substructural logics are extensions.

Content of the talk

The objective of the project:

Comprehensive study of maximal multi-focused deductive systems for
substructural logics.

Development of proof-theoretic investigations of logical systems in
interactive theorem provers.

In this talk:

Maximal multi-focusing for skew non-commutative multiplicative linear
logic (SkNMILL).

This logic is a semi-associative and semi-unital variant of Lambek
calculus with one implication.

Fully formalized in the Agda proof assistant.

Why SkNMILL?

In multi-focusing phase, at most two formulae can be under focus.

Richer substructural logics are extensions.

Content of the talk

The objective of the project:

Comprehensive study of maximal multi-focused deductive systems for
substructural logics.

Development of proof-theoretic investigations of logical systems in
interactive theorem provers.

In this talk:

Maximal multi-focusing for skew non-commutative multiplicative linear
logic (SkNMILL).

This logic is a semi-associative and semi-unital variant of Lambek
calculus with one implication.

Fully formalized in the Agda proof assistant.

Why SkNMILL?

In multi-focusing phase, at most two formulae can be under focus.

Richer substructural logics are extensions.

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Sequent calculus for SkNMILL (Uustalu, V. & Wan’22)

Formulae: A,B ::= X ∈ At | I | A⊗ B | A (B
I ,A⊗ B positive, A (B negative

Sequents are triples S | Γ ` C where

S (stoup) is an optional formula,
Γ (context) is an ordered list of formulae,
C is a single formula.

Derivations constructed via inference rules:

X | ` X
ax
− | ` I

IR
S | Γ ` A − | ∆ ` B

S | Γ,∆ ` A⊗ B
⊗R

S | Γ,A ` B

S | Γ ` A (B
(R

A | Γ ` C

− | A, Γ ` C
pass

− | Γ ` C

I | Γ ` C
IL

A | B, Γ ` C

A⊗ B | Γ ` C
⊗L

− | Γ ` A B | ∆ ` C

A (B | Γ,∆ ` C
(L

L-rules only apply to the formula in the stoup

⊗R sends the stoup formula (if present) to the first premise

No structural rules of weakening, contraction, exchange

New structural rule pass moving leftmost formula in context to the
stoup, when latter is empty

Equivalence of derivations

f $ g iff they are equal modulo permutative conversions

Congruence $ generated by equations:

⊗R (IL f , g) $ IL (⊗R (f , g))

⊗R (⊗L f , g) $ ⊗L (⊗R (f , g))

pass ((R f) $ (R (pass f)

IL ((R f) $ (R (IL f)

⊗L ((R f) $ (R (⊗L f)

(L (f ,(R g) $ (R ((L (f , g))

⊗R (pass f , g) $ pass (⊗R (f , g))

⊗R ((L (f , g), h) $ (L (f ,⊗R (g , h))

Semi-associativity, semi-unitality

These sequents are derivable:

I ⊗ A | ` A

A | ` A⊗ I

(A⊗ B)⊗ C | ` A⊗ (B ⊗ C)

These sequents are not:

X | 6` I ⊗ X

X ⊗ I | 6` X

X ⊗ (Y ⊗ Z) | 6` (X ⊗ Y)⊗ Z

Categorical semantics in skew monoidal closed category (Street’13).

Multi-focused sequent calculus
Invertible phase ⇑

S | Γ,A ⇑ B

S | Γ ⇑ A (B
(R

A | B, Γ ⇑ Q

A⊗ B | Γ ⇑ Q
⊗L

− | Γ ⇑ Q

I | Γ ⇑ Q
IL

T | Γ ⇓ Q

T | Γ ⇑ Q
foc

Focusing phase ⇓

T | Γ ⇓lf Q Q | ∆ ⇓ A
b

T | Γ,∆ ⇓ A
b

focL

S
b
| Γ ⇓ T T | ∆ ⇓rf Q

S
b
| Γ,∆ ⇓ Q

focR

X | ⇓ X
ax

S | Γ ⇑ A UT(b, c,S ,A)

S
b
| Γ ⇓ A

c

unfoc

Left-focusing phase ⇓lf

A | Γ ⇓lf Q

− | A, Γ ⇓lf Q
pass

− | Γ ⇑ A B | ∆ ⇓lf Q

A (B | Γ,∆ ⇓lf Q
(L

Q | ⇓lf Q
blurL

Right-focusing phase ⇓rf

− | ⇓rf I
IR

T | Γ ⇓rf A − | ∆ ⇑ B

T | Γ,∆ ⇓rf A⊗ B
⊗R

M | ⇓rf M
blurR

Multi-focused sequent calculus
Invertible phase ⇑

S | Γ,A ⇑ B

S | Γ ⇑ A (B
(R

A | B, Γ ⇑ Q

A⊗ B | Γ ⇑ Q
⊗L

− | Γ ⇑ Q

I | Γ ⇑ Q
IL

T | Γ ⇓ Q

T | Γ ⇑ Q
foc

Focusing phase ⇓

T | Γ ⇓lf Q Q | ∆ ⇓ A
b

T | Γ,∆ ⇓ A
b

focL

S
b
| Γ ⇓ T T | ∆ ⇓rf Q

S
b
| Γ,∆ ⇓ Q

focR

X | ⇓ X
ax

S | Γ ⇑ A UT(b, c, S ,A)

S
b
| Γ ⇓ A

c

unfoc

Left-focusing phase ⇓lf

A | Γ ⇓lf Q

− | A, Γ ⇓lf Q
pass

− | Γ ⇑ A B | ∆ ⇓lf Q

A (B | Γ,∆ ⇓lf Q
(L

Q | ⇓lf Q
blurL

Right-focusing phase ⇓rf

− | ⇓rf I
IR

T | Γ ⇓rf A − | ∆ ⇑ B

T | Γ,∆ ⇓rf A⊗ B
⊗R

M | ⇓rf M
blurR

Multi-focused sequent calculus
Invertible phase ⇑

S | Γ,A ⇑ B

S | Γ ⇑ A (B
(R

A | B, Γ ⇑ Q

A⊗ B | Γ ⇑ Q
⊗L

− | Γ ⇑ Q

I | Γ ⇑ Q
IL

T | Γ ⇓ Q

T | Γ ⇑ Q
foc

Focusing phase ⇓

T | Γ ⇓lf Q Q | ∆ ⇓ A
b

T | Γ,∆ ⇓ A
b

focL

S
b
| Γ ⇓ T T | ∆ ⇓rf Q

S
b
| Γ,∆ ⇓ Q

focR

X | ⇓ X
ax

S | Γ ⇑ A UT(b, c, S ,A)

S
b
| Γ ⇓ A

c

unfoc

Left-focusing phase ⇓lf

A | Γ ⇓lf Q

− | A, Γ ⇓lf Q
pass

− | Γ ⇑ A B | ∆ ⇓lf Q

A (B | Γ,∆ ⇓lf Q
(L

Q | ⇓lf Q
blurL

Right-focusing phase ⇓rf

− | ⇓rf I
IR

T | Γ ⇓rf A − | ∆ ⇑ B

T | Γ,∆ ⇓rf A⊗ B
⊗R

M | ⇓rf M
blurR

Multi-focused sequent calculus
Invertible phase ⇑

S | Γ,A ⇑ B

S | Γ ⇑ A (B
(R

A | B, Γ ⇑ Q

A⊗ B | Γ ⇑ Q
⊗L

− | Γ ⇑ Q

I | Γ ⇑ Q
IL

T | Γ ⇓ Q

T | Γ ⇑ Q
foc

Focusing phase ⇓

T | Γ ⇓lf Q Q | ∆ ⇓ A
b

T | Γ,∆ ⇓ A
b

focL

S
b
| Γ ⇓ T T | ∆ ⇓rf Q

S
b
| Γ,∆ ⇓ Q

focR

X | ⇓ X
ax

S | Γ ⇑ A UT(b, c, S ,A)

S
b
| Γ ⇓ A

c

unfoc

Left-focusing phase ⇓lf

A | Γ ⇓lf Q

− | A, Γ ⇓lf Q
pass

− | Γ ⇑ A B | ∆ ⇓lf Q

A (B | Γ,∆ ⇓lf Q
(L

Q | ⇓lf Q
blurL

Right-focusing phase ⇓rf

− | ⇓rf I
IR

T | Γ ⇓rf A − | ∆ ⇑ B

T | Γ,∆ ⇓rf A⊗ B
⊗R

M | ⇓rf M
blurR

Effective multi-focusing

Soundness and completeness

An embedding function emb : S | Γ ⇑ A → S | Γ ` A

A focusing function focus : S | Γ ` A → S | Γ ⇑ A

There exist $-related proofs that are not identified by focus

E.g. 4 distinct proofs of X (I | X ,Y ⇑ (Z (Z)⊗ Y

Equational soundness and completeness

Capture the remaining non-determinism in a congruence $⇑ on proofs
of S | Γ ⇑ A

Theorem
Maps focus and emb underlie an isomorphism:

(S | Γ ` A)/ $ ∼= (S | Γ ⇑ A)/ $⇑

Effective multi-focusing

Soundness and completeness

An embedding function emb : S | Γ ⇑ A → S | Γ ` A

A focusing function focus : S | Γ ` A → S | Γ ⇑ A

There exist $-related proofs that are not identified by focus

E.g. 4 distinct proofs of X (I | X ,Y ⇑ (Z (Z)⊗ Y

Equational soundness and completeness

Capture the remaining non-determinism in a congruence $⇑ on proofs
of S | Γ ⇑ A

Theorem
Maps focus and emb underlie an isomorphism:

(S | Γ ` A)/ $ ∼= (S | Γ ⇑ A)/ $⇑

Effective multi-focusing

Soundness and completeness

An embedding function emb : S | Γ ⇑ A → S | Γ ` A

A focusing function focus : S | Γ ` A → S | Γ ⇑ A

There exist $-related proofs that are not identified by focus

E.g. 4 distinct proofs of X (I | X ,Y ⇑ (Z (Z)⊗ Y

Equational soundness and completeness

Capture the remaining non-determinism in a congruence $⇑ on proofs
of S | Γ ⇑ A

Theorem
Maps focus and emb underlie an isomorphism:

(S | Γ ` A)/ $ ∼= (S | Γ ⇑ A)/ $⇑

Right-focusing before left-focusing?

Question: When does a right-focusing phase need to be performed
strictly before a left-focusing one?
Strictly = separated by (at least one) invertible phase ⇑.

A proof of X (Y | Z ⇑ (X (Y)⊗ Z is obtained by focusing on the
succedent, focusing on the stoup does not work.

...
− | X ⇑ X Y | ⇓lf Y

blurL

X (Y | X ⇓lf Y
(L

...

Y | ⇓ Y

X (Y | X ⇓ Y
focL

X (Y | X ⇑ Y
foc

X (Y | ⇑ X (Y
(R

X (Y | ⇓ X (Y
unfoc

X (Y | ⇓rf X (Y
blurR

...
− | Z ⇑ Z

X (Y | Z ⇓rf (X (Y)⊗ Z
⊗R

X (Y | Z ⇓ (X (Y)⊗ Z
focR

X (Y | Z ⇑ (X (Y)⊗ Z
foc

Right-focusing before left-focusing?

Question: When does a right-focusing phase need to be performed
strictly before a left-focusing one?
Strictly = separated by (at least one) invertible phase ⇑.

A proof of X (Y | Z ⇑ (X (Y)⊗ Z is obtained by focusing on the
succedent, focusing on the stoup does not work.

...
− | X ⇑ X Y | ⇓lf Y

blurL

X (Y | X ⇓lf Y
(L

...

Y | ⇓ Y

X (Y | X ⇓ Y
focL

X (Y | X ⇑ Y
foc

X (Y | ⇑ X (Y
(R

X (Y | ⇓ X (Y
unfoc

X (Y | ⇓rf X (Y
blurR

...
− | Z ⇑ Z

X (Y | Z ⇓rf (X (Y)⊗ Z
⊗R

X (Y | Z ⇓ (X (Y)⊗ Z
focR

X (Y | Z ⇑ (X (Y)⊗ Z
foc

Introducing tags

Answer: when the subsequent left-focusing phase meaningfully employs
new formulae appearing in context during invertible phase.

Our solution:

Tag formulae in context: A new, A old
Tag stoup: S no left-focusing in previous foc. phase, S o/w
Tag succedent: C no right-focusing in previous foc. phase, C o/w

...
− | X ⇑ X Y | ⇓lf Y

blurL

X (Y | X ⇓lf Y
(L

...

Y | ⇓ Y

X (Y | X ⇓ Y
focL

X (Y | X ⇑ Y
foc

X (Y | ⇑ X (Y
(R

X (Y | ⇓ X (Y
unfoc

X (Y | ⇓rf X (Y
blurR

...
− | Z ⇑ Z

X (Y | Z ⇓rf (X (Y)⊗ Z
⊗R

X (Y | Z ⇓ (X (Y)⊗ Z
focR

X (Y | Z ⇑ (X (Y)⊗ Z
foc

Introducing tags

Answer: when the subsequent left-focusing phase meaningfully employs
new formulae appearing in context during invertible phase.

Our solution:

Tag formulae in context: A new, A old
Tag stoup: S no left-focusing in previous foc. phase, S o/w
Tag succedent: C no right-focusing in previous foc. phase, C o/w

...
− | X ⇑ X Y | ⇓lf Y

blurL

X (Y | X ⇓lf Y
(L

...

Y | ⇓ Y

X (Y | X ⇓ Y
focL

X (Y | X ⇑ Y
foc

X (Y | ⇑ X (Y
(R

X (Y | ⇓ X (Y
unfoc

X (Y | ⇓rf X (Y
blurR

...
− | Z ⇑ Z

X (Y | Z ⇓rf (X (Y)⊗ Z
⊗R

X (Y | Z ⇓ (X (Y)⊗ Z
focR

X (Y | Z ⇑ (X (Y)⊗ Z
foc

Maximally multi-focused sequent calculus (some rules)

Invertible phase ⇑m

S | Γ,A ⇑m B

S | Γ ⇑m A (B
(R

S | Γ,A ⇑m B

S | Γ ⇑m A (B
(R · · ·

Focusing phase ⇓m

T | Γ ⇓lfm Q Q | ∆ ⇓m A

T | Γ,∆ ⇓m A
focL

T | Γ ⇓lfm Q Q | ∆ ⇓m A • ∈ Γ

T | Γ,∆ ⇓m A
focL

S¬b | Γ ⇑m A¬c UT(b, c, S ,A)

S
b
| Γ ⇓m A

c

unfoc
· · ·

(S true = S , S false = S , Atrue = A, Afalse = A)

Left-focusing ⇓lfm and right-focusing phase ⇓rfm are as before.

Maximally multi-focused sequent calculus (some rules)

Invertible phase ⇑m

S | Γ,A ⇑m B

S | Γ ⇑m A (B
(R

S | Γ,A ⇑m B

S | Γ ⇑m A (B
(R · · ·

Focusing phase ⇓m

T | Γ ⇓lfm Q Q | ∆ ⇓m A

T | Γ,∆ ⇓m A
focL

T | Γ ⇓lfm Q Q | ∆ ⇓m A • ∈ Γ

T | Γ,∆ ⇓m A
focL

S¬b | Γ ⇑m A¬c UT(b, c, S ,A)

S
b
| Γ ⇓m A

c

unfoc
· · ·

(S true = S , S false = S , Atrue = A, Afalse = A)

Left-focusing ⇓lfm and right-focusing phase ⇓rfm are as before.

Effective maximization

Soundness and completeness

An untagging function untag : S | Γ ⇑m A → S | Γ ⇑ A

A maximization function max : S | Γ ⇑ A → S | Γ ⇑m A

Theorem
Maps max and untag underlie an isomorphism:

(S | Γ ⇑ A)/ $⇑ ∼= S | Γ ⇑m A

Corollary

(S | Γ ` A)/ $ ∼= (S | Γ ⇑ A)/ $⇑ ∼= S | Γ ⇑m A

Conclusions

Results fully formalized in Agda:

https://github.com/niccoloveltri/multifocus-sknmill

First steps towards formalization of maximal multi-focusing for richer
substructural logics.

We have some ideas on how to extend the technique to other logics:

Full associativity and unitality for (⊗, I), exchange rule
Current work with Wan on adding additives (at LSFA’23)

With Uustalu and Wan, we studied another class of normal forms for
SkNMILL, where left-foc. rules are prioritized over right-foc. ones.
Study the relationship between the two classes of normal forms.

https://github.com/niccoloveltri/multifocus-sknmill

Conclusions

Results fully formalized in Agda:

https://github.com/niccoloveltri/multifocus-sknmill

First steps towards formalization of maximal multi-focusing for richer
substructural logics.

We have some ideas on how to extend the technique to other logics:

Full associativity and unitality for (⊗, I), exchange rule
Current work with Wan on adding additives (at LSFA’23)

With Uustalu and Wan, we studied another class of normal forms for
SkNMILL, where left-foc. rules are prioritized over right-foc. ones.
Study the relationship between the two classes of normal forms.

https://github.com/niccoloveltri/multifocus-sknmill

