# Maximally Multi-Focused Proofs for Skew Non-Commutative MILL 

Niccolò Veltri<br>Tallinn University of Technology

WoLLIC'23, Halifax NS, 13 July 2023

Conference participation supported by COST CA19135 - Connecting Education and Research Communities for an Innovative Resource Aware Society

## Permutative non-determinism

- In cut-free sequent calculi for various logical systems, there is lots of non-determinism in root-first proof search.

$$
\frac{\frac{A, B, \Gamma \vdash C \quad \Delta \vdash D}{A, B, \Gamma, \Delta \vdash C \otimes D}}{A \otimes B, \Gamma, \Delta \vdash C \otimes D} \otimes \mathrm{R}
$$

$$
\frac{\frac{A, B, \Gamma \vdash C}{A \otimes B, \Gamma \vdash C} \otimes \mathrm{~L} \quad \Delta \vdash D}{A \otimes B, \Gamma, \Delta \vdash C \otimes D} \otimes \mathrm{R}
$$

$$
\frac{\Gamma \vdash A}{A \multimap B, \Gamma, \Delta, \Omega \vdash C \otimes D} \multimap \mathrm{~L}
$$

$$
\frac{\frac{\Gamma \vdash A \quad B, \Delta \vdash C}{A \multimap B, \Gamma, \Delta \vdash C} \multimap \mathrm{~L} \quad \Omega \vdash D}{A \multimap B, \Gamma, \Delta, \Omega \vdash C \otimes D} \otimes \mathrm{R}
$$

## Focusing

- Andreoli's focusing is an established approach for reducing it. Organize proof search in two phases:
1 Eagerly apply invertible rules, like $\otimes \mathrm{L}$.
2 Pick a formula and apply non-invertible rules to it, like $\otimes R, \multimap$.
- Multi-focusing: possibly focus on more than one formula in phase 2.


## Focusing

- Andreoli's focusing is an established approach for reducing it. Organize proof search in two phases:
1 Eagerly apply invertible rules, like $\otimes \mathrm{L}$.
2 Pick a formula and apply non-invertible rules to it, like $\otimes \mathrm{R}, \multimap \mathrm{L}$.
- Multi-focusing: possibly focus on more than one formula in phase 2.
- To eliminate all permutative non-determinism, usual solutions switch to a different formalism, e.g. proof nets.
- But permutative canonicity can be achieved in sequent calculus as well via maximally multi-focused proofs (Chaudhuri, Miller \& Saurin'08).


## Content of the talk

The objective of the project:

- Comprehensive study of maximal multi-focused deductive systems for substructural logics.
- Development of proof-theoretic investigations of logical systems in interactive theorem provers.


## Content of the talk

The objective of the project:

- Comprehensive study of maximal multi-focused deductive systems for substructural logics.
- Development of proof-theoretic investigations of logical systems in interactive theorem provers.

In this talk:

- Maximal multi-focusing for skew non-commutative multiplicative linear logic (SkNMILL).
- This logic is a semi-associative and semi-unital variant of Lambek calculus with one implication.
- Fully formalized in the Agda proof assistant.


## Content of the talk

The objective of the project:

- Comprehensive study of maximal multi-focused deductive systems for substructural logics.
- Development of proof-theoretic investigations of logical systems in interactive theorem provers.

In this talk:

- Maximal multi-focusing for skew non-commutative multiplicative linear logic (SkNMILL).
- This logic is a semi-associative and semi-unital variant of Lambek calculus with one implication.
- Fully formalized in the Agda proof assistant.


## Why SkNMILL?

- In multi-focusing phase, at most two formulae can be under focus.
- Richer substructural logics are extensions.


## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$ $I, A \otimes B$ positive, $A \multimap B$ negative


## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$ $I, A \otimes B$ positive, $A \multimap B$ negative
- Sequents are triples $S \mid \Gamma \vdash C$ where
- $S$ (stoup) is an optional formula,
- 「 (context) is an ordered list of formulae,
- $C$ is a single formula.


## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$
$I, A \otimes B$ positive, $A \multimap B$ negative
- Sequents are triples $S \mid \Gamma \vdash C$ where
- $S$ (stoup) is an optional formula,
- 「 (context) is an ordered list of formulae,
- $C$ is a single formula.
- Derivations constructed via inference rules:

$$
\begin{aligned}
& \frac{X \mid \vdash X}{} \text { ax } \frac{-\mid \vdash I}{-\mid R} \frac{S|\Gamma \vdash A-| \Delta \vdash B}{S \mid \Gamma, \Delta \vdash A \otimes B} \otimes \mathrm{R} \frac{S \mid \Gamma, A \vdash B}{S \mid \Gamma \vdash A \multimap B} \multimap \mathrm{R} \\
& \frac{A \mid \Gamma \vdash C}{-\mid A, \Gamma \vdash C} \text { pass } \frac{-\mid \Gamma \vdash C}{|\mid \Gamma \vdash C} \mathrm{IL} \frac{A \mid B, \Gamma \vdash C}{A \otimes B \mid \Gamma \vdash C} \otimes \mathrm{~L} \frac{-|\Gamma \vdash A B| \Delta \vdash C}{A \rightarrow B \mid \Gamma, \Delta \vdash C}
\end{aligned} \mathrm{~L}
$$

## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$
$I, A \otimes B$ positive, $A \multimap B$ negative
- Sequents are triples $S \mid \Gamma \vdash C$ where
- $S$ (stoup) is an optional formula,
- $\Gamma$ (context) is an ordered list of formulae,
- $C$ is a single formula.
- Derivations constructed via inference rules:

$$
\begin{aligned}
& \frac{}{X \mid \vdash X} \text { ax } \frac{S \vdash}{-\mid \vdash I} \frac{S|\Gamma \vdash A-| \Delta \vdash B}{S \mid \Gamma, \Delta \vdash A \otimes B} \otimes \mathrm{R} \frac{S \mid \Gamma, A \vdash B}{S \mid \Gamma \vdash A \rightarrow B} \multimap \mathrm{R} \\
& \frac{A \mid \Gamma \vdash C}{-\mid A, \Gamma \vdash C} \text { pass } \frac{-\mid \Gamma \vdash C}{1 \mid \Gamma \vdash C} I \mathrm{~L} \frac{A \mid B, \Gamma \vdash C}{A \otimes B \mid \Gamma \vdash C} \otimes \mathrm{~L} \frac{-|\Gamma \vdash A B| \Delta \vdash C}{A \rightarrow B \mid \Gamma, \Delta \vdash C} \multimap \mathrm{~L}
\end{aligned}
$$

- L-rules only apply to the formula in the stoup


## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$
$I, A \otimes B$ positive, $A \multimap B$ negative
- Sequents are triples $S \mid \Gamma \vdash C$ where
- $S$ (stoup) is an optional formula,
- 「 (context) is an ordered list of formulae,
- $C$ is a single formula.
- Derivations constructed via inference rules:

$$
\begin{aligned}
& \frac{}{X \mid \vdash X} \text { ax } \frac{S \vdash}{-\mid \vdash I} \frac{S|\Gamma \vdash A-| \Delta \vdash B}{S \mid \Gamma, \Delta \vdash A \otimes B} \otimes \mathrm{R} \frac{S \mid \Gamma, A \vdash B}{S \mid \Gamma \vdash A \rightarrow B} \multimap \mathrm{R} \\
& \frac{A \mid \Gamma \vdash C}{-\mid A, \Gamma \vdash C} \text { pass } \frac{-\mid \Gamma \vdash C}{1 \mid \Gamma \vdash C} I \mathrm{~L} \frac{A \mid B, \Gamma \vdash C}{A \otimes B \mid \Gamma \vdash C} \otimes \mathrm{~L} \frac{-|\Gamma \vdash A B| \Delta \vdash C}{A \rightarrow B \mid \Gamma, \Delta \vdash C} \multimap \mathrm{~L}
\end{aligned}
$$

- L-rules only apply to the formula in the stoup
- $\otimes \mathrm{R}$ sends the stoup formula (if present) to the first premise


## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$
$I, A \otimes B$ positive, $A \multimap B$ negative
- Sequents are triples $S \mid \Gamma \vdash C$ where
- $S$ (stoup) is an optional formula,
- 「 (context) is an ordered list of formulae,
- $C$ is a single formula.
- Derivations constructed via inference rules:

$$
\begin{aligned}
& \frac{}{X \mid \vdash X} \text { ax } \frac{S \vdash}{-\mid \vdash I} \frac{S|\Gamma \vdash A-| \Delta \vdash B}{S \mid \Gamma, \Delta \vdash A \otimes B} \otimes \mathrm{R} \frac{S \mid \Gamma, A \vdash B}{S \mid \Gamma \vdash A \rightarrow B} \multimap \mathrm{R} \\
& \frac{A \mid \Gamma \vdash C}{-\mid A, \Gamma \vdash C} \text { pass } \frac{-\mid \Gamma \vdash C}{1 \mid \Gamma \vdash C} I \mathrm{~L} \frac{A \mid B, \Gamma \vdash C}{A \otimes B \mid \Gamma \vdash C} \otimes \mathrm{~L} \frac{-|\Gamma \vdash A B| \Delta \vdash C}{A \rightarrow B \mid \Gamma, \Delta \vdash C} \multimap \mathrm{~L}
\end{aligned}
$$

- L-rules only apply to the formula in the stoup
- $\otimes R$ sends the stoup formula (if present) to the first premise
- No structural rules of weakening, contraction, exchange


## Sequent calculus for SkNMILL (Uustalu, V. \& Wan'22)

- Formulae: $A, B::=X \in A t|I| A \otimes B \mid A \multimap B$
$I, A \otimes B$ positive, $A \multimap B$ negative
- Sequents are triples $S \mid \Gamma \vdash C$ where
- $S$ (stoup) is an optional formula,
- 「 (context) is an ordered list of formulae,
- $C$ is a single formula.
- Derivations constructed via inference rules:

$$
\begin{aligned}
& \frac{}{X \mid \vdash X} \text { ax } \frac{}{-\mid \vdash I} \frac{S|\Gamma \vdash A-| \Delta \vdash B}{S \mid \Gamma, \Delta \vdash A \otimes B} \otimes \mathrm{R} \frac{S \mid \Gamma, A \vdash B}{S \mid \Gamma \vdash A \rightarrow B} \multimap \mathrm{R} \\
& \frac{A \mid \Gamma \vdash C}{-\mid A, \Gamma \vdash C} \text { pass } \frac{-\mid \Gamma \vdash C}{1 \mid \Gamma \vdash C} I \mathrm{~L} \frac{A \mid B, \Gamma \vdash C}{A \otimes B \mid \Gamma \vdash C} \otimes \mathrm{~L} \frac{-|\Gamma \vdash A B| \Delta \vdash C}{A \rightarrow B \mid \Gamma, \Delta \vdash C} \multimap \mathrm{~L}
\end{aligned}
$$

- L-rules only apply to the formula in the stoup
- $\otimes R$ sends the stoup formula (if present) to the first premise
- No structural rules of weakening, contraction, exchange
- New structural rule pass moving leftmost formula in context to the stoup, when latter is empty


## Equivalence of derivations

- $f \doteq g$ iff they are equal modulo permutative conversions
- Congruence $\xlongequal{\circ}$ generated by equations:

$$
\begin{aligned}
& \otimes R(I L f, g) \doteq I L(\otimes R(f, g)) \\
& \otimes R(\otimes L f, g) \doteq \otimes L(\otimes R(f, g)) \\
& \text { pass }(\multimap R f) \stackrel{\circ}{=} \multimap \text { (pass } f) \\
& I L(\multimap R f) \xlongequal{\circ} \multimap R(I L f) \\
& \otimes \mathrm{L}(\multimap \mathrm{R} f) \stackrel{\circ}{=}(\otimes \mathrm{L} f) \\
& \multimap \mathrm{L}(f, \multimap \mathrm{R} g) \stackrel{\circ}{=}(\multimap \mathrm{L}(f, g)) \\
& \otimes \mathrm{R}(\text { pass } f, g) \stackrel{\circ}{=} \text { pass }(\otimes \mathrm{R}(f, g)) \\
& \otimes R(\multimap \mathrm{~L}(f, g), h) \xlongequal{\circ} \mathrm{L}(f, \otimes \mathrm{R}(g, h))
\end{aligned}
$$

## Semi-associativity, semi-unitality

- These sequents are derivable:

$$
\begin{aligned}
I \otimes A \mid & \vdash A \\
A \mid & \vdash A \otimes I \\
(A \otimes B) \otimes C \mid & \vdash A \otimes(B \otimes C)
\end{aligned}
$$

- These sequents are not:

$$
\begin{aligned}
X \mid & \forall I \otimes X \\
X \otimes I & \forall X \\
X \otimes(Y \otimes Z) & \forall(X \otimes Y) \otimes Z
\end{aligned}
$$

- Categorical semantics in skew monoidal closed category (Street'13).


## Multi-focused sequent calculus

Invertible phase $\Uparrow$

$$
\frac{S \mid \Gamma, A \Uparrow B}{S \mid \Gamma \Uparrow A \multimap B} \multimap \mathrm{R} \quad \frac{A \mid B, \Gamma \Uparrow Q}{A \otimes B \mid \Gamma \Uparrow Q} \otimes \mathrm{~L} \quad \frac{-\mid \Gamma \Uparrow Q}{I \mid \Gamma \Uparrow Q} \mathrm{~L} \quad \frac{T \mid \Gamma \Downarrow Q}{T \mid \Gamma \Uparrow Q} f \circ \mathrm{c}
$$

## Multi-focused sequent calculus

Invertible phase $\Uparrow$
$\frac{S \mid \Gamma, A \Uparrow B}{S \mid \Gamma \Uparrow A \multimap B} \multimap \mathrm{R} \quad \frac{A \mid B, \Gamma \Uparrow Q}{A \otimes B \mid \Gamma \Uparrow Q} \otimes \mathrm{~L} \quad \frac{-\mid \Gamma \Uparrow Q}{I \mid \Gamma \Uparrow Q} / \mathrm{L} \quad \frac{T \mid \Gamma \Downarrow Q}{T \mid \Gamma \Uparrow Q}$ foc
Focusing phase $\Downarrow$

## Multi-focused sequent calculus

Invertible phase $\Uparrow$
$\frac{S \mid \Gamma, A \Uparrow B}{S \mid \Gamma \Uparrow A \multimap B} \multimap \mathrm{R} \quad \frac{A \mid B, \Gamma \Uparrow Q}{A \otimes B \mid \Gamma \Uparrow Q} \otimes \mathrm{~L} \quad \frac{-\mid \Gamma \Uparrow Q}{I \mid \Gamma \Uparrow Q} / \mathrm{L} \quad \frac{T \mid \Gamma \Downarrow Q}{T \mid \Gamma \Uparrow Q}$ foc
Focusing phase $\Downarrow$

Left-focusing phase $\Downarrow_{\text {lf }}$

## Multi-focused sequent calculus

Invertible phase $\Uparrow$
$\frac{S \mid \Gamma, A \Uparrow B}{S \mid \Gamma \Uparrow A \multimap B} \multimap \mathrm{R} \quad \frac{A \mid B, \Gamma \Uparrow Q}{A \otimes B \mid \Gamma \Uparrow Q} \otimes \mathrm{~L} \quad \frac{-\mid \Gamma \Uparrow Q}{I \mid \Gamma \Uparrow Q} \mathrm{~L} \quad \frac{T \mid \Gamma \Downarrow Q}{T \mid \Gamma \Uparrow Q}$ fo
Focusing phase $\Downarrow$

Left-focusing phase $\Downarrow_{\text {If }}$

$$
\frac{A \mid \Gamma \psi_{\text {If }} Q}{-\mid A, \Gamma \psi_{\text {If }} Q} \text { pass } \quad \frac{-|\Gamma \Uparrow A \quad B| \Delta \psi_{\text {If }} Q}{A \multimap B \mid \Gamma, \Delta \Downarrow_{\text {If }} Q} \multimap \mathrm{~L} \quad \overline{Q \mid \quad \Downarrow_{\text {If }} Q} \text { blur }
$$

Right-focusing phase $\psi_{\mathrm{rf}}$

$$
\overline{-\mid \Downarrow_{\mathrm{rf}} l} \operatorname{IR} \quad \frac{T\left|\Gamma \Downarrow_{\mathrm{rf}} A-\right| \Delta \Uparrow B}{T \mid \Gamma, \Delta \Downarrow_{\mathrm{rf}} A \otimes B} \otimes \mathrm{R} \quad \overline{M \mid \Downarrow_{\mathrm{rf}} M} \text { blur }_{\mathrm{R}}
$$

## Effective multi-focusing

Soundness and completeness

- An embedding function emb : $S|\Gamma \Uparrow A \rightarrow S| \Gamma \vdash A$
- A focusing function focus: $S|\Gamma \vdash A \rightarrow S| \Gamma \Uparrow A$


## Effective multi-focusing

Soundness and completeness

- An embedding function emb : $S|\Gamma \Uparrow A \rightarrow S| \Gamma \vdash A$
- A focusing function focus: $S|\Gamma \vdash A \rightarrow S| \Gamma \Uparrow A$
- There exist $\xlongequal{\circ}$-related proofs that are not identified by focus
- E.g. 4 distinct proofs of $X \multimap I \mid X, Y \Uparrow(Z \multimap Z) \otimes Y$


## Effective multi-focusing

Soundness and completeness

- An embedding function emb : $S|\Gamma \Uparrow A \rightarrow S| \Gamma \vdash A$
- A focusing function focus: $S|\Gamma \vdash A \rightarrow S| \Gamma \Uparrow A$
- There exist $\xlongequal{\circ}$-related proofs that are not identified by focus
- E.g. 4 distinct proofs of $X \multimap I \mid X, Y \Uparrow(Z \multimap Z) \otimes Y$

Equational soundness and completeness

- Capture the remaining non-determinism in a congruence ${ }^{\circ} \Uparrow_{\Uparrow}$ on proofs of $S \mid \Gamma \Uparrow A$


## Theorem

Maps focus and emb underlie an isomorphism:

$$
(S \mid \Gamma \vdash A) / \doteq \cong(S \mid \Gamma \Uparrow A) / \doteq_{\Uparrow}^{\cong}
$$

## Right-focusing before left-focusing?

- Question: When does a right-focusing phase need to be performed strictly before a left-focusing one?
Strictly $=$ separated by (at least one) invertible phase $\Uparrow$.


## Right-focusing before left-focusing?

- Question: When does a right-focusing phase need to be performed strictly before a left-focusing one?
Strictly $=$ separated by (at least one) invertible phase $\Uparrow$.
- A proof of $X \multimap Y \mid Z \Uparrow(X \multimap Y) \otimes Z$ is obtained by focusing on the succedent, focusing on the stoup does not work.

$$
\begin{aligned}
& \frac{X \multimap Y \mid X \Downarrow Y}{X \multimap Y \mid X \Uparrow Y} \text { foc } f^{X \rightarrow L_{\mathrm{L}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\overline{X \multimap Y \mid \Downarrow_{\mathrm{rf}} X \multimap Y} \text { blur }_{\mathrm{R}}-\mid \dot{Z} \Uparrow Z}{X \multimap Y \mid Z \Downarrow_{\mathrm{rf}}(X \multimap Y) \otimes Z} \otimes \mathrm{R} \\
& \frac{X \multimap Y \mid Z \Downarrow(X \multimap Y) \otimes Z}{X \multimap Y \mid Z \Uparrow(X \multimap Y) \otimes Z} \text { foc }
\end{aligned}
$$

## Introducing tags

- Answer: when the subsequent left-focusing phase meaningfully employs new formulae appearing in context during invertible phase.


## Introducing tags

- Answer: when the subsequent left-focusing phase meaningfully employs new formulae appearing in context during invertible phase.
- Our solution:
- Tag formulae in context: A new, $A$ old
- Tag stoup: $S$ no left-focusing in previous foc. phase, $S \mathrm{So} / \mathrm{w}$
- Tag succedent: C no right-focusing in previous foc. phase, $C$ o/w


## Maximally multi-focused sequent calculus (some rules)

Invertible phase $\Uparrow_{m}$

$$
\frac{S \mid \Gamma, A \Uparrow_{m} B}{S \mid \Gamma \Uparrow_{m} A \multimap B} \multimap \mathrm{R} \quad \frac{S \mid \Gamma, A \Uparrow_{m} B}{S \mid \Gamma \Uparrow_{m} A \multimap B} \multimap \mathrm{R}
$$

## Maximally multi-focused sequent calculus (some rules)

Invertible phase $\Uparrow_{m}$

$$
\frac{S \mid \Gamma, A \Uparrow_{m} B}{S \mid \Gamma \Uparrow_{m} A \multimap B} \multimap \mathrm{R} \quad \frac{S \mid \Gamma, A \Uparrow_{m} B}{S \mid \Gamma \Uparrow_{m} A \multimap B} \multimap \mathrm{R} \quad \ldots
$$

Focusing phase $\Downarrow_{\mathrm{m}}$

$$
\begin{aligned}
& \left(S^{\text {true }}=S, S^{\text {false }}=S, A^{\text {true }}=A, A^{\text {false }}=A\right)
\end{aligned}
$$

Left-focusing $\psi_{\mathrm{lfm}}$ and right-focusing phase $\Downarrow_{\mathrm{rfm}}$ are as before.

## Effective maximization

Soundness and completeness

- An untagging function untag : $S\left|\Gamma \Uparrow_{m} A \rightarrow S\right| \Gamma \Uparrow A$
- A maximization function max $: S|\Gamma \Uparrow A \rightarrow S| \Gamma \Uparrow m A$

Theorem
Maps max and untag underlie an isomorphism:

$$
(S \mid \Gamma \Uparrow A) / \doteq_{\Uparrow}^{\circ} \cong S \mid \Gamma \Uparrow_{m} A
$$

Corollary

$$
(S \mid \Gamma \vdash A) / \xlongequal{\cong} \cong(S \mid \Gamma \Uparrow A) / \stackrel{\circ}{=} \cong S \mid \Gamma \Uparrow_{\mathrm{m}} A
$$

## Conclusions

- Results fully formalized in Agda:
https://github.com/niccoloveltri/multifocus-sknmill
- First steps towards formalization of maximal multi-focusing for richer substructural logics.


## Conclusions

- Results fully formalized in Agda:
https://github.com/niccoloveltri/multifocus-sknmill
- First steps towards formalization of maximal multi-focusing for richer substructural logics.
- We have some ideas on how to extend the technique to other logics:
- Full associativity and unitality for $(\otimes, I)$, exchange rule
- Current work with Wan on adding additives (at LSFA'23)
- With Uustalu and Wan, we studied another class of normal forms for SkNMILL, where left-foc. rules are prioritized over right-foc. ones. Study the relationship between the two classes of normal forms.

