

The Epsilon Calculus in Non-classical Logics Recent Results and Open Questions

Richard Zach (joint work with Matthias Baaz)

11 July 2023 WoLLIC 2023

Outline

The classical epsilon calculus

arepsilon and au in intermediate logics

Conservativity and non-conservativity

Epsilon theorems

Open questions

- \triangleright Formalization of logic without quantifiers but with the ε -operator.
- ▷ If A(x) is a formula, then $\varepsilon_x A(x)$ is an ε -term.
- ▷ Intuitively, $\epsilon_x A(x)$ is an indefinite description: $\epsilon_x A(x)$ is some x for which A(x) is true.
- $\vartriangleright \ \epsilon \ \text{can replace } \exists : \ \exists x \ A(x) \Leftrightarrow A(\epsilon_x \ A(x))$
- \triangleright Axioms of ϵ -calculus:
 - Propositional tautologies
 - $A(t) \to A(\varepsilon_x A(x))$
- \triangleright Predicate logic can be embedded in ε -calculus.

- Alternative basis for proof-theoretic research: proof theory without sequents.
- ▷ Interesting logical formalism:
 - Trades logical structure for term structure.
 - Suitable for proof formalization.
- ▷ Other Applications:
 - Use of choice functions in provers (e.g., HOL, Isabelle).
 - Applications in linguistics (choice functions, anaphora).
 - Connections to Fine's "arbitrary object" theory.
 - Propositions-as-types for dynamic linking.

The classical epsilon calculus

- ▷ C (axioms of the *elementary calculus*): all propositional tautologies
- \triangleright C ϵ (the pure epsilon calculus): add to C all substitution instances of

$$A(t) \to A(\varepsilon_x A(x)) . \tag{1}$$

An axiom of the form (1) is called a *critical formula*.

▷ QC (the predicate calculus), QC ϵ (extended predicate calculus): C and C ϵ , respectively, together with all instances of $A(t) \rightarrow \exists x A(x)$ and $\forall x A(x) \rightarrow A(t)$ in the respective language, and quantifier rules.

Map $^{\varepsilon}$ of expressions in QC ε to expressions in C ε as follows:

$$\begin{split} \triangleright \ x^{\varepsilon} &= x \\ \triangleright \ P(t_1, \dots, t_n)^{\varepsilon} &= P(t_1^{\varepsilon}, \dots, t_n^{\varepsilon}) \\ \triangleright \ (\neg A)^{\varepsilon} &= \neg A^{\varepsilon} \\ \triangleright \ (A \lor B)^{\varepsilon} &= A^{\varepsilon} \lor B^{\varepsilon} \\ \triangleright \ (A \land B)^{\varepsilon} &= A^{\varepsilon} \land B^{\varepsilon} \\ \triangleright \ (A \land B)^{\varepsilon} &= A^{\varepsilon} \land B^{\varepsilon} \\ \triangleright \ (A \land B)^{\varepsilon} &= A^{\varepsilon} \land A^{\varepsilon} \\ \triangleright \ (A \land B)^{\varepsilon} &= A^{\varepsilon} (a_x A(x))^{\varepsilon} \\ \triangleright \ (\exists x \ A(x))^{\varepsilon} &= A^{\varepsilon} (e_x \ A(x)^{\varepsilon}) \\ \triangleright \ (\forall x \ A(x))^{\varepsilon} &= A^{\varepsilon} (e_x \ \neg A(x)^{\varepsilon}) \end{split}$$

$\triangleright A^{\varepsilon}$ is of the form:

$$[A(t) \to \exists x \, A(x)]^{\varepsilon} \equiv A^{\varepsilon}(t^{\varepsilon}) \to A^{\varepsilon}(\varepsilon_x \, A(x)^{\varepsilon}) ,$$

which is a critical formula.

 $\triangleright A^{\varepsilon}$ is of the form:

$$[\forall x \ A(x) \to A(t)]^{\varepsilon} \equiv A^{\varepsilon}(\varepsilon_x \neg A(x)) \to A^{\varepsilon}(t^{\varepsilon})$$

This is the contrapositive of, and hence provable from, the critical formula

$$\neg A^{\varepsilon}(t^{\varepsilon}) \to \neg A^{\varepsilon}(\varepsilon_x \, \neg A(x))$$

- ▷ Translations of axioms provable
- \triangleright Modus ponens preserved under $^{\varepsilon}$:

$$\frac{A \quad A \to B}{B} \quad \mapsto \quad \frac{A^{\varepsilon} \quad A^{\varepsilon} \to B^{\varepsilon}}{B^{\varepsilon}}$$

▷ Applications of generalization rule redundant:

$$\begin{array}{ccc} \vdots \ \pi \\ A \rightarrow B(x) \\ \overline{A \rightarrow \forall x \ B(x)} & \mapsto & A^{\varepsilon} \rightarrow B^{\varepsilon}(\varepsilon_x \ B^{\varepsilon}(x)) \\ \end{array}$$

First Epsilon Theorem

If A is a formula without bound variables (no quantifiers, no epsilons) and $\mathbf{QC} \epsilon \vdash A$ then $\mathbf{C} \vdash A$.

Second Epsilon Theorem

If A is a formula without epsilons and $\mathbf{C}^{\varepsilon} \vdash A^{\varepsilon}$ then $\mathbf{Q}\mathbf{C} \vdash A$.

Herbrand Theorem

Herbrand Theorem for \exists_1

If $\exists x_1 \dots \exists x_n A(x_1, \dots, x_n)$ is a purely existential formula

```
\mathbf{QC} \vdash \exists x_1 \dots \exists x_n A(x_1, \dots, x_n),
```

then there are terms t_{ij} such that

$$\mathbf{C} \vdash \bigvee_{i} A(t_{i1}, \ldots, t_{in}).$$

From the last formula, the original formula can be proved in QC.

- ▷ Can be extended to prenex formulas (by "Herbrandization")
- ▷ Can be extended to all formulas, since QC proves every formula equivalent to prenex form.
- ▷ Herbrand Theorem is a consequence of Extended Epsilon Theorem

Extended First Epsilon Theorem

Suppose $D(e_1, \ldots, e_m)$ is a quantifier-free formula containing only the ε -terms e_1 , \ldots , e_m , and

$$\mathbf{C} \varepsilon \vdash_{\pi} D(e_1, \dots, e_m)$$
 ,

then there are ε -free terms t_i^i such that

$$\mathbf{C} \vdash \bigvee_{i=1}^{n} D(t_1^i, \dots, t_m^i)$$

 ε and τ in intermediate logics

- $\,\triangleright\,$ In classical logic, \exists and \forall are interdefinable
- ▷ Not true in *intuitionistic logic* and its extensions (*intermediate logics*)
- Epsilon operator seems intuitively related to *choice*, so intuitionistically suspect
- \triangleright So: what happens when ε added to a intermediate logic?

▷ In classical logic:

$$\neg \exists x \neg A(x) \leftrightarrow \forall x A(x)$$
$$\neg A(\varepsilon_x \neg A(x)) \leftrightarrow A(\varepsilon_x \neg A(x))$$

- $\vartriangleright\,\rightarrow\,$ fails in intuitionistic logic
- ▷ Cannot define ∀ as ¬∃¬
- ▷ Cannot faithfully translate $\forall x A(x)$ to $A(\varepsilon_x \neg A(x))$

H Intuitionistic logic

- **KC** Logic of weak excluded middle: $\mathbf{H} + J = \neg A \lor \neg \neg A$
- LC infinite-valued Gödel logic, linear Kripke frames $\mathbf{H} + Lin = (A \rightarrow B) \lor (B \rightarrow A)$

 $\begin{array}{l} \mathbf{LC}_m & m \text{-valued Gödel logic, linear Kripke frames of length} < m \\ & \mathbf{H} + B_m = (A_1 \rightarrow A_2) \lor \cdots \lor (A_m \rightarrow A_{m+1}) \\ \mathbf{C} & \text{Classical logic: } \mathbf{H} + A \lor \neg A, \mathbf{H} + B_2 \end{array}$

OH Intuitionistic logic OKC Weak excluded middle: OH + JOLC Linear Kripke frames: OH + LinQLC_m $OH + B_{m}$ $\mathbf{G}_{\mathbb{R}}$ Gödel logic on [0, 1], constant-domain linear Kripke frames $OLC + CD = \forall x(A(x) \lor B) \to (\forall x A(x) \lor B)$ \mathbf{G}_{0} Gödel logic on $\{0\} \cup [1/2, 1]$ **OLC** + *CD* + *K* = $\forall x \neg \neg A(x) \rightarrow \neg \neg \forall x A(x)$ \mathbf{G}_{m} *m*-valued Gödel logic: $\mathbf{OH} + B_m + CD$ **O**C **Classical logic**

- ▷ Introduce dual operator τ : $\tau_x A(x)$
- ▷ Critical formulas now:
 - $A(t) \rightarrow A(\varepsilon_x A(x))$ and
 - $A(\tau_x A(x)) \to A(t)$
- $\triangleright \epsilon \tau$ -translation just like ϵ -translation, except for:
 - $(\exists x A(x))^{\epsilon \tau} = A^{\epsilon \tau}(\epsilon_x A(x)^{\epsilon \tau})$
 - $(\forall x A(x))^{\epsilon \tau} = A^{\epsilon \tau}(\tau_x A(x)^{\epsilon \tau})$

Conservativity and non-conservativity

- $\triangleright\,$ In classical logic, addition of ε is conservative.
- \triangleright Question: Does addition of ε and τ to intermediate logic have effect on theorems?
- ▷ Results by Bell and DeVidi suggest yes: under certain assumptions, even excluded middle $A \lor \neg A$ becomes provable.
- \triangleright However, these results rely on presence of = and need axioms.
- ▷ What about *pure logic*?
 - No effect on propositional level.
 - All quantifier shifts become provable.

Shadow

The *shadow A*^{*s*} of a formula is defined as follows:

$$P(t_1, \dots, t_n)^s = X_P$$

$$(A \land B)^s = A^s \land B^s$$

$$(A \lor B)^s = A^s \land B^s$$

$$(\neg A)^s = \neg A^s$$

$$(\exists x A)^s = A^s$$

$$(\forall x A)^s = A^s$$

where X_P is a propositional variable.

The shadow of a proof $\pi = A_1, \ldots, A_n$ is A_1^s, \ldots, A_n^s .

Conservativity of $\varepsilon\tau$

If $A_1, \ldots, A_n \vdash_{\mathbf{L} \in \tau} B$, then $A_1^s, \ldots, A_n^s \vdash B^s$.

 $\mathbf{L} \mathbf{\epsilon} \mathbf{\tau}$ is conservative over \mathbf{L} for propositional formulas.

- \triangleright The shadows of critical formulas are of the form $A \rightarrow A$.
- \triangleright Intermediate logics prove $A \rightarrow A$.
- ▷ The shadow of modus ponens is modus ponens.
- \triangleright (The shadows of premise and conclusion of universal quantification rules are identical so also holds for QL $\epsilon\tau$.)

$$\forall x (A(x) \lor B) \to (\forall x \ A(x) \lor B) \tag{CD}$$

$$(A(\tau_x(A(x) \lor B)) \lor B) \to (A(\tau_x A(x)) \lor B)$$

$$(CD^{\varepsilon\tau})$$

$$(B \to \exists x \, A(x)) \to \exists x (B \to A(x)) \tag{Q}_{\exists}$$

$$(B \to A(\varepsilon_x A(x))) \to (B \to A(\varepsilon_x (B \to A(x)))) \qquad (Q_{\exists}^{\varepsilon\tau})$$

$$(\forall x \ A(x) \to B) \to \exists x (A(x) \to B) \tag{Q}$$

$$(A(\tau_x A(x)) \to B) \to (A(\varepsilon_x (A(x) \to B)) \to B) \qquad (Q_{\forall}^{\varepsilon\tau})$$

- \triangleright In each case, x is not free in B.
- \triangleright Note: $(Q_{\forall}^{\epsilon\tau})$ is a critical formula.

Proving quantifier shifts

$$\begin{split} CD^{\varepsilon\tau} & (A(\tau_x A) \lor B) \to (A(\tau_x (A \lor B)) \lor B) \\ A_1 &= A(\tau_x A) \qquad A_2 = A(\tau_x (A \lor B)) \\ A(\tau_x A) \to A(\tau_x (A \lor B)) \\ (A_1 \to A_2) \to ((A_1 \lor B) \to (A_2 \lor B)) \end{split}$$

$$\begin{array}{ll} Q_{\exists}^{\varepsilon\tau} & (B \to A(\varepsilon_x(B \to A))) \to (B \to A(\varepsilon_x A)) \\ A_1 = A(\varepsilon_x(B \to A)) & A_2 = A(\varepsilon_x A) \\ A(\varepsilon_x(B \to A)) \to A(\varepsilon_x A) \\ (A_1 \to A_2) \to ((B \to A_1) \to (B \to A_2)) \end{array}$$

 $A_1 \rightarrow A_2$ is a critical formula

Epsilon theorems

If $D(e_1, \ldots, e_n)$ is an $\varepsilon \tau$ -formula with e_1, \ldots, e_n , its only $\varepsilon \tau$ -terms and

 $\mathbf{L}\varepsilon\tau\vdash A(e_1,\ldots,e_n),$

then there are terms t_{ii} such that

$$\mathbf{L} \vdash \bigvee_{i} D(t_{i1}, \ldots, t_{in}).$$

Theorem

Suppose $L^{\epsilon\tau}$ has the extended first epsilon theorem. Then

$$\mathbf{L} \vdash B_m = (A_1 \to A_2) \lor \ldots \lor (A_m \to A_{m+1})$$

for some *m*.

- $\triangleright \text{ Consider } \exists x \forall y (P(y) \rightarrow P(x)).$
- ▷ (Equivalent over **QH** to Q_\exists so $\varepsilon\tau$ -translation provable.)
- ▷ Herbrand form: $\exists x (P(f(x) \rightarrow P(x))).$
- $\triangleright \ \epsilon \tau$ -Translation: $P(f(e)) \rightarrow P(e)$ where $e = \epsilon_x (P(f(x) \rightarrow P(x)))$.
- ▷ Herbrand disjunction of formulas of the form $P(f^n(s)) \rightarrow P(f^{n-1}(s))$
- \triangleright Rearrange, substitute to get B_m

- \triangleright Extended first theorem holds for $\mathbf{L} \varepsilon \tau$ only if $\mathbf{L} \vdash B_m$ for some *m*.
- \triangleright **L** \vdash *B_m* exactly for the finite valued Gödel logics **LC**_{*m*}.
- \triangleright In particular, no extended first $\epsilon \tau$ -theorem for
 - intuitionistic logic H,
 - (infinite valued) Gödel logic LC,
 - logic of weak excluded middle KC.

Epsilon elimination

- Classical epsilon theorem proceeds by iterated elimination of critical formulas
- \triangleright A proof of D(e) with critical formulas

$$A(t_1) \to A(e), \dots, A(t_n) \to A(e)$$

belonging to ε -term e yields proofs of

$$A(t_1) \rightarrow D(t_1), \dots, A(t_n) \rightarrow D(t_n), \text{ and } (\neg A(t_1) \land \dots \neg A(t_n)) \rightarrow D(e)$$

which combine to a proof of

$$D(t_1) \lor \ldots \lor D(t_n) \lor D(e)$$

by excluded middle.

▷ But of course, excluded middle can't be used in intermediate logics.

Epsilon elimination sets

- ▷ We analyze and refine Hilbert's approach:
- \triangleright In a proof of D(e) we divide the critical formulas involved into:
 - Γ where *e* is not the critical $\varepsilon \tau$ -term;
 - $\Lambda(e) \cup \Lambda'(e)$ where e is the critical $\varepsilon \tau$ -term

 $\triangleright s_1, \ldots, s_k$ is an *e*-elimination set for $\Lambda(e)$ if

$$\Gamma[s_1/e], \dots, \Gamma[s_k/e], \Lambda'(e) \vdash D(s_1) \lor \dots \lor D(s_k)$$

⊳ In C, if

- $\Lambda(e) = \{A(t_1) \rightarrow A(e)\}$ are all the critical formulas belonging to e and
- Γ are all other critical formulas

then t_1, \ldots, t_n , *e* is an *e*-elimination set for $\Lambda(e)$.

- ▷ Let $\Lambda(e)$ be all the critical formulas belongin to *e* of the form $A(t) \rightarrow A(e)$ where *t* does not contain *e*.
- ▷ Let $\Lambda'(e)$ be all those where *t* does contain *e*.
- ⊳ Then:
 - $\Lambda(e)$ has *e*-elimination sets if $\mathbf{L} \vdash Lin$.
 - $\Lambda'(e)$ has *e*-elimination sets if $\mathbf{L} \vdash B_m$ for some *m*.

- \triangleright Pick *e* of maximal rank and maximal degree.
- \triangleright Eliminate $\Lambda(e)$ using *Lin*.
- ▷ Eliminate remaining $\Lambda'(e)$ using B_m .
- ▷ Repeat.
- ▷ Proper order (rank, degree) ensures termination.

Conservativity over propositional logic Extended First ϵ -Theorem

Second $\epsilon \tau$ -Theorem

Yes Any

NoAny except LC_m YesLC, KC (for negated formulas)YesL C_m No $G_{\mathbb{R}}$, QLC_m Yes G_m

Open questions

- ▷ The second $\epsilon\tau$ -theorem: when is the extended $\epsilon\tau$ -calculus conservative over a quantified logic?
- \triangleright Characterize proofs for which $\varepsilon \tau$ -elimination works with just *Lin*.
- \triangleright Semantics of intuitionistic ε 's and τ 's.

- \triangleright Worlds W with (reflexive, transitive) accessibility relation R
- ▷ Domain D(w) for each $w \in W$
- ▷ Domains must be monotonic: $wRv \Rightarrow D(w) \subseteq D(v)$
- ▷ Predicates must be monotonic:

$$w Rv \wedge w \Vdash P(\vec{d}) \Rightarrow v \Vdash P(\vec{d})$$

 $w \Vdash A \land B \Leftrightarrow$ $w \Vdash A \lor B \Leftrightarrow$ $w \Vdash A \to B \Leftrightarrow$ $w \Vdash \exists x A(x) \Leftrightarrow$ $w \Vdash \forall x A(x) \Leftrightarrow$

 $w \Vdash A \text{ and } w \Vdash B$ $w \Vdash A \text{ or } w \Vdash B$ $w \nvDash A \text{ or } w \Vdash B$ for some $d \in D, w \Vdash A(d)$ for all $d \in D, w \Vdash A(d)$

Epsilons in Kripke semantics

 $\triangleright 0 \not\Vdash \exists x P(x)$

 $\triangleright \infty - i \Vdash \exists x P(x)$

▷ no *n* can be $\varepsilon_x P(x)$ in all worlds $\infty - i$

 $\triangleright \not\Vdash \exists x \ P(x) \to P(\varepsilon_x \ P(x))$

 $\triangleright \not\Vdash \exists y (\exists x \ P(x) \to P(y))$

Taus in Kripke semantics

 $\triangleright i \not\Vdash \forall x P(x)$

- ▷ for every *n* there is an *i* so that $i \Vdash P(n)$
- \triangleright no *n* can be $\tau_x P(x)$
- $\triangleright \not\Vdash P(\tau_x P(x)) \to \forall x P(x))$
- $\triangleright \not\Vdash \exists x (P(x) \to \forall y P(y))$

Boxes and Diamonds

An Open Introduction to Modal Logic

- ▷ Looking for high-quality, free teaching materials on logic?
- Check out the Open Logic Project (**openlogicproject.org**)!
- About 1,000 pages on anything classical and non-classical logic, computability theory, incompleteness, set theory
- ▷ Completely free and open source
- Customizable and remixable
- ▷ Donations (of LATEX) welcome

Advertisements

- Ever deal with *n*-valued logics? Multlog (logic.at/multlog) can help!
- Computes sequent and tableaux rules from truth tables
- Now with interactive mode: find homomorphisms between logics, ways to express a connective using others, show that things are or aren't tautologies, etc.
- Richard Zach (2023). "An Epimorphism between Fine and Ferguson's Matrices for Angell's AC". Logic and Logical Philosophy 32, pp. 161–179. DOI: 10.12775/LLP.2022.025

Thanks!

Jeremy Avigad and Richard Zach (2020). "The Epsilon Calculus". In: *Stanford Encyclopedia of Philosophy*. Fall 2020. URL: https://plato.stanford.edu/archives/fall2020/entries/epsilon-calculus/

Georg Moser and Richard Zach (2006). "The Epsilon Calculus and Herbrand Complexity". *Studia Logica* 82, pp. 133–155. DOI: 10.1007/s11225-006-6610-7

Richard Zach (2017). "Semantics and Proof Theory of the Epsilon Calculus". In: Logic and Its Applications. ICLA 2017. Berlin: Springer, pp. 27–47. DOI: 10.1007/978-3-662-54069-5_4

Matthias Baaz and Richard Zach (2022). "Epsilon Theorems in Intermediate Logics". *The Journal of Symbolic Logic* 87, pp. 682–720. DOI: 10.1017/jsl.2021.103

rzach@ucalgary.ca richardzach.org openlogicproject.org