UNIVERSITY OF CALGARY
FACULTY OF ARTS
Department of Philosophy

The Epsilon Calculus in Non-classical Logics
Recent Results and Open Questions

Richard Zach
(joint work with Matthias Baaz)
11 July 2023
WoLLIC 2023



The classical epsilon calculus

€ and 7 in intermediate logics

Conservativity and non-conservativity

Epsilon theorems

Open questions



What is the epsilon calculus?

> Formalization of logic without quantifiers but with the e-operator.
> If A(x) is a formula, then g, A(x) is an e-term.
> Intuitively, £, A(x) is an indefinite description:
£, A(x) is some x for which A(x) is true.
> € can replace 3: Ix A(x) & A(e, A(x))
> Axioms of e-calculus:
* Propositional tautologies
* A1) - A(e, A(x))
> Predicate logic can be embedded in e-calculus.



Why should you care?

> Alternative basis for proof-theoretic research: proof theory without
sequents.
> Interesting logical formalism:
¢ Trades logical structure for term structure.
¢ Suitable for proof formalization.
> Other Applications:

¢ Use of choice functions in provers (e.g., HOL, Isabelle).
¢ Applications in linguistics (choice functions, anaphora).
¢ Connections to Fine’s “arbitrary object” theory.

* Propositions-as-types for dynamic linking.



The classical epsilon calculus



Axiomatisation of the epsilon calculus

> C (axioms of the elementary calculus): all propositional tautologies

> Ce (the pure epsilon calculus): add to C all substitution instances of
A(t) = A(g, A(x)) . (1)

An axiom of the form (1) is called a critical formula.

> QC (the predicate calculus), QCe (extended predicate calculus): C and Ce,
respectively, together with all instances of A(t) — Ix A(x) and Vx A(x) —» A(¢)
in the respective language, and quantifier rules.



Embedding QCe¢ in Ce

Map ¢ of expressions in QCe to expressions in Ce as follows:

> xf =x
> P(t,...,1,)° =P(t$,...,tf1)
> (mA)F = nA°

> (AV B)f = A® Vv B¢

> (A A B) = A® A B

> (A > B)f = A® > B*

> (g, A(x))* =&, A(x)*

> (Ix A(x))* = A®(e, A(x)®)
> (Vx A(x))* = A(e, 7A(x)%)



The embedding lemma

> A¢ is of the form:
[A(®) —» Ix A(X)]* = A°(t°) = A®(e, A(X)),

which is a critical formula.

> Af is of the form:
[Vx A(x) = A@)]* = A®(e, ~A(x)) = A®(tF)
This is the contrapositive of, and hence provable from, the critical formula

SAS(F) = A% (e, ~A)



The embedding lemma

> Translations of axioms provable

> Modus ponens preserved under ¢:

A A-> B At Af —> Bf
B > B¢

> Applications of generalization rule redundant:
: T

A —>:B(x) zle, B(x)/x]
A—->VxB(kx) +— Af — Bf(e, B*(x))



The First Epsilon Theorem

First Epsilon Theorem
If Ais a formula without bound variables (no quantifiers, no epsilons) and
QCe I A then CF A.

Second Epsilon Theorem
If A is a formula without epsilons and C* I A¢ then QC F A.



Herbrand Theorem

Herbrand Theorem for 3,
If Ix; ... Ix,A(xq, ..., x,) is a purely existential formula

QCF Ix ... 3Ix,A(xy, ..., x,,),
then there are terms 7;; such that

CrH\/ At ....1;).

From the last formula, the original formula can be proved in QC.

> Can be extended to prenex formulas (by “Herbrandization”)
> Can be extended to all formulas, since QC proves every formula equivalent
to prenex form.
> Herbrand Theorem is a consequence of Extended Epsilon Theorem 10



Extended First Epsilon Theorem

Extended First Epsilon Theorem

Suppose D(ey,...,e,) is a quantifier-free formula containing only the e-terms e,
..,e,,and

m’

Ce -, D(ey,....e,),

then there are e-free terms tj. such that

n
crH\/Dd.....1)
i=1

. 23-cc(m)
(Moser & Z 2006: n < 2% }stack of 3-cc(r) 2's.)
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€ and 7 in intermediate logics



Intermediate Logics

> In classical logic, 3 and V are interdefinable
> Not true in intuitionistic logic and its extensions (intermediate logics)

> Epsilon operator seems intuitively related to choice, so intuitionistically
suspect

> So: what happens when e added to a intermediate logic?
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Interdefinability of V and 3

> In classical logic:

—dx 1A(x) © Vx A(x)
“mA(e, 1A(X)) & A(e, 7A(X))

> — fails in intuitionistic logic
> Cannot define V as =3—
> Cannot faithfully translate Vx A(x) to A(e, 7A(x))

13



Intermediate logics

H Intuitionistic logic

KC | Logic of weak excluded middle: H+ J = -AV A

LC infinite-valued Gddel logic, linear Kripke frames

H+ Lin=(A—-> B)V(B - A)

m-valued Goédel logic, linear Kripke frames of length < m
H+B,=(A, = A)V--V(A4, = A4,

C Classical logic: H+ Av -A, H+ B,

LC
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Quantified intermediate logics

Intuitionistic logic

Weak excluded middle: QH + J

Linear Kripke frames: QH + Lin

QH + B,

Gddel logic on [0, 1], constant-domain linear Kripke frames
QLC+CD =Vx(A(x)V B) » (Vx A(x) V B)

Godel logicon {0} U [1/2,1]

QLC+ CD + K = Vx—A(x) > Vx A(x)

m-valued Goédel logic: QH + B,, + CD

Classical logic
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> Introduce dual operator z: 7, A(x)
> Critical formulas now:
* A(t) = A(e, A(x)) and
* A(r, A(x)) = A(1)
> er-translation just like e-translation, except for:
* (FAx AX))T = AT (g, A(X)T)
* (Vx A(x))*" = A" (7, A(X)T)
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Conservativity and
non-conservativity




Conservativity questions

> In classical logic, addition of € is conservative.

> Question: Does addition of € and 7 to intermediate logic have effect on
theorems?

> Results by Bell and DeVidi suggest yes: under certain assumptions, even
excluded middle A v -A becomes provable.

> However, these results rely on presence of = and need axioms.

> What about pure logic?

* No effect on propositional level.
¢ All quantifier shifts become provable.
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Shadows of formulas

Shadow

The shadow A* of a formula is defined as follows:

P(t,....1,)°" = Xp
(AAB)=A°AB*
(A—> B)*'=A°—> B*
(Ax A)’ = A°

where X, is a propositional variable.

The shadow of a proof x = Ay, ..., A, is A}, ...

(AV B = A°V B
(RA)* = —A°
(Vx A)® = A®

18



Logics preserved under shadow

Conservativity of 7
If Ay,..., A, Fr.. B, then A],..., A} F B

Lez is conservative over L for propositional formulas.

> The shadows of critical formulas are of the form A — A.
> Intermediate logics prove A — A.
> The shadow of modus ponens is modus ponens.

> (The shadows of premise and conclusion of universal quantification rules
are identical so also holds for QLez.)

19



Quantifier shifts

Vx(A(x)V B) - (Vx A(x) V B) (CD)

(A(7 (A(x) V B)) vV B) —» (A(r, A(x)) V B) (CD*7)
(B = dx A(x)) = Ix(B - A(x)) (03)

(B — A(e, A(x))) = (B = A(e, (B — A(x)))) (05°)

(Vx A(x) - B) - Ix(A(x) - B) (Oy)

(A(r, A(x)) = B) = (A(¢,(A(x) — B)) - B) (Oy)

> In each case, x is not free in B.
> Note: (fo) is a critical formula.
20



Proving quantifier shifts

C D" (A(r, A)V B) - (A(r,(AV B)) V B)
A = Az, A) A, = A(7 (A V B))
A(r, A) — A(r, (A V B))
(A = A)) - (A vB)—= (A, VB))

05 (B A(e,(B > A)) > (B = Ale, A)
A = A(e, (B = A)) A, = A, A)
A(e (B = A)) = A(g, A)
(A > A) > (B— A) > (B—Ay))

A, — A, is a critical formula
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Epsilon theorems




Extended First sr-Theorem

If D(ey,...,e,) is an ez-formula with e, ..., ¢,, its only er-terms and
Let - A(ey, ... e,),

then there are terms 7;; such that

LE\/ DG, ....1,,).
i
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No Extended First cr-Theorem in intermediate logics

Theorem
Suppose Lf* has the extended first epsilon theorem. Then

Lt B,=(A = A)V...V(A, > A,

for some m.
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Proof sketch

> Consider AxVy(P(y) » P(x)).

> (Equivalent over QH to Q5 so er-translation provable.)

> Herbrand form: 3x(P(f(x) — P(x))).

> er-Translation: P(f(e)) — P(e) where e =€ (P(f(x) = P(x)).

> Herbrand disjunction of formulas of the form P(f"(s)) — P(f"~1(s))
> Rearrange, substitute to get B,
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Epsilon Theorems and intermediate logics

> Extended first theorem holds for Lez only if L - B,, for some m.

> L B,, exactly for the finite valued Gédel logics LC,,.
> In particular, no extended first ez-theorem for

* intuitionistic logic H,

¢ (infinite valued) Godel logic LC,

* logic of weak excluded middle KC.
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Epsilon elimination

> Classical epsilon theorem proceeds by iterated elimination of critical
formulas

> A proof of D(e) with critical formulas
A(t)) — Ale), ..., A(t,) — A(e)
belonging to e-term e yields proofs of
A(t)) — D(t)), ..., A(t,) = D(,), and (nA(t)) A ... 7A(t,)) = D(e)
which combine to a proof of
D(t,)V ...V D(t,) V D(e)

by excluded middle.
> But of course, excluded middle can’t be used in intermediate logics.
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Epsilon elimination sets

> We analyze and refine Hilbert’'s approach:

> In a proof of D(e) we divide the critical formulas involved into:
* I" where e is not the critical er-term;
* A(e) U A'(e) where e is the critical ez-term

> §q,..., 8 is an e-elimination set for A(e) if

[[s,/el, ..., Tls;/el, A'(e) = D(sy) V -+ V D(s;,)

> InC, if

* A(e) = {A(t;) = A(e)} are all the critical formulas belonging to e and
¢ T" are all other critical formulas

thent, ..., 1, eis an e-elimination set for A(e).
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Elimination sets for Lin and B,

> Let A(e) be all the critical formulas belongin to e of the form A(¢) — A(e)
where t does not contain e.
> Let A’(e) be all those where t does contain e.

> Then:
¢ A(e) has e-elimination sets if L  Lin.
* A’(e) has e-elimination sets if L + B,, for some m.
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Extended First ez-Theorem for G,

Pick e of maximal rank and maximal degree.
Eliminate A(e) using Lin.
Eliminate remaining A’(e) using B,,.

Repeat.

v v v VvV V

Proper order (rank, degree) ensures termination.

29



Summary of results

Conservativity over Yes | Any
propositional logic
Extended First e-Theorem | No | Any except LC,,

Yes | LC, KC (for negated formulas)
Yes | LC,,

Second er-Theorem No | Gy, QLC,,

Yes | G

m
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Open questions




> The second ez-theorem: when is the extended ezr-calculus conservative
over a quantified logic?

> Characterize proofs for which ez-elimination works with just Lin.
> Semantics of intuitionistic €'s and 7’s.
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Intuitionistic Kripke semantics

> Worlds W with (reflexive, transitive) accessibility relation R
> Domain D(w) foreachw e W
> Domains must be monotonic: wRv = D(w) C D(v)

> Predicates must be monotonic:

wRvAwlFPW@d) = vl P@)

32



Intuitionistic satisfaction

wl-AAB<S wl-Aand w - B
wl-AVBsS wl-Aorwl-B
wl-A-> Bs whk Aorwl- B
wl-3dx A(x) & forsomed € D,w I~ A(d)

wl-Vx A(x) foralld € D,w I+ A(d)
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Intuitionistic satisfaction

wl-AAB<S wl-Aand w - B
wlkAVBs wlAorwl-B
wlkA—-> B« forallvstwRv, v Aorvi- B

wl-3dx A(x) & forsomed € D,w I~ A(d)

wl-Vx A(x) < forallvstwRv, foralld € D,vI- A(d)
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Epsilons in Kripke semantics

D(c0)

D(c0o — 1)
D(o - 1)
D(co —3)

S oo @
—_ e
NN NN
W W W W

D(0) 01 2 3

> 0 W 3x P(x)

> oo —il 3x P(x)

> no n can be ¢, P(x) in all worlds co —i
> W 3Ix P(x) - P(e, P(x))

> W Jy(3x P(x) —» P(y))
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Taus in Kripke semantics

D@3)
D2)
D(1)
D(0)

[l -]
— e
DN NN
W W W W

> i ¥ Vx P(x)

> for every n there is an i so that i I P(n)
> no n can be 7, P(x)

> # P(r, P(x)) = Vx P(x))

> # 3Ix(P(x) = Vy P(y))
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Boxes and > Looking for high-quality, free teaching materials on logic?
Diamonds . .
> Check out the Open Logic Project (openlogicproject.org)!

An Open Introduction to
Modal Logic

\

About 1,000 pages on anything classical and non-classical
logic, computability theory, incompleteness, set theory

\

Completely free and open source
> Customizable and remixable

> Donations (of IATEX) welcome
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> Ever deal with n-valued logics? Multlog (logic.at/multlog)
can help!

> Computes sequent and tableaux rules from truth tables

> Now with interactive mode: find homomorphisms between
logics, ways to express a connective using others, show
that things are or aren’t tautologies, etc.

> Richard Zach (2023). “An Epimorphism between Fine and
Ferguson’s Matrices for Angell’s AC”. Logic and Logical
Philosophy 32, pp. 161-179. DOI: 10.12775/LLP.2022.025
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