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1 INTRODUCTION
We shall review systems of ordinary differential equations (DEs) of the form
| 2 = f(z) (1)
where 2’ = €5, & = (21, -+, 2,) € R” and f : R* — R™. Since the right-hand-side of (1)
does not depend on ¢ explicitly, the DE is called autonomous. If f1s a hnear function, i.e.,
flz) = Az (2)

where A is an n X n matrix of real nwmbers, the DE is linear. In general f will be non-linear.
The vector z € R" is called the siate vector of the system, and R™ is called the state space.
The function f can be interpreted as a vector field on the state space R™, since it associates

~ with each ¢ € R an element f(z) oo R”, which can be interpreted as a vector

fle) = (Hlz), -+, falz)) (3)

situated at 2.
Definition. A solution of the (DE) (1) is a function 4 : R — R"™ which satisfies

W) = [P (4)
for allt € R (the domain of ¢ may be a finite interval («, 3)).

The image of the solution curve ¢ in R”™ is called an orbit of the (DE). Equation (4)
implies that the vector field f at z is tangent to the orbit through z. The state of Lhe
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physical svstem that is being analyzed is represented by a point z € R™. The evolution of
the system tn time is described by the motion of this point along an orbit of the DE in R,
with 2 as time. In this interpretation, the DE implies that the vector field [ is the velocity
of the moving point in state space (this should not be confused with the physical velocity of
a physical particle).

One cannot hope to find exact solutions of a non-linear DE (1) for n > 2 {except in
very special cases). One thus has to use either qualitative methods, perturbative methods,
or numerical methods, 11 order to deduce the behavior of the physical system. We shall be
interested in qualitative methods {in conjunction with ‘numerical experimentation’). The
aim of gualitalive analysis is to understand the qualitative behavior of typical solutions of
the DI, for example the long-term behavior as t — oo of typical solutions. One is also
interested in exceptional solutions such as equilibrium solutions or periedic soluitons, since
such solutions can significantly influence the long-term behavior of typical solutions. One is
also interested in questions of stability and the possible existence of bifurcations.

The starting point in the qualitative analysis of an autonomous DE (1) in R" is to locate
the zeros of the vector field, i.e., to find all a £ R™ such that

fla) =0 (5)
([ f{a) =0, then () = a, for all t € R, and it is a solution of the DE, since
) = FH() (5)

is satisfied trivially for all £ € R. A constant solution ¥(t) = a describes an equilibrium state
of the physical system, and hence the point ¢ € R"™ is called an equelibrium point of the DE.
Iere is the official definition.

Definition. Given a DE ' = f(z) in R™, any point a € R® which satisfles f(a) = 0, is
called an equilibrium point of the DE.

We are interested 1n the stability of equilibrium states. In order to-address this question
1t is necessary to study the behaviour of the orbits of the DE close to the equilibrium points.
The idea 1s to consider the linear approximation of the vector field f : R® — R"™ at an
equilibrium point. We thus assume that the function f is of class C'(R™) (i.e., that the
partial derivatives of f exist and are continuous functions on R™.)

Definition. The derivative matrix of f: R" — R" is the n x n matrix D f(z) defined by

BB ] = (Crm) , =1, n, (7)

6;1:}-
where the [; are the component functions of f.
The linear approzimation of f is written in terms of the derivative matrix:

flz)= fla)+Df(a){z —a)+ Fi(z,a), (8)



where D f(a)(z — a) denotes the n x n derivative matrix evaluated at a, acting on the vector
(z — a), and Bi(z,a) is the error term. An important resulf from advanced calculus is that
if fis of class €', then the magnitude of the error || Ri(w, a)|| tends to zero faster than the
magnitude of the displacement ||z — af|. Here |-+ - || denotes the Buclidean norm on R™ (i.e.,
lz)] = V12 + -+ + 2,7). This means that in general, Ri(z,a) will be small compared to
Df(a)(z — a), for z sufficiently close to a.

If ¢ € R™ is an equilibrium point of the DE @' = f(z), we can use (8) to write the DIS in
the form

(NL): ¢ =Df(a)(z —a)+ Hi(z,a) (9)
assuming that f is of class C''. We let w = # — a, and with the non-linear DE (NL) we
associate the linear DE

(L) : uw' = Df(a)u (10)
which is called the linearization of (NL) al the equilibrium pownt a € R™. The question 1s
when do solutions of (L) approximate the solutions of (NL) near © = a? lLe., under what
conditions can we neglect the error term Ri(z,a)? In general the approximation is valid,
but in special situations, the approximation can fail. We thus begin with a systematic study
of linear DEs.

2 TLINEAR AUTONOMOUS DIFFERENTIAL
EQUATIONS

The initial value problem in one dimension (ie., A is a 1 x 1 matrix or equivalently a

constant):

¥ = Az, z(0)=aeR (11)

has the unigue solution
z(t) = eta, allte R (12)

By analogy, we define the matriz series:

s

1 1 2
A _ L L T
e *I+A—|—.2!A + V—E_O

31 e )

o

called the exponential e* of A, where A is an 1 x n real matrix, [ 1s the n x n identity matrix
and A% = A A ete. (matrix product). A matrix series is said to converge it the n? infinite
series corresponding to the n? entries converge in R. The exponential matrix e” converges
for all n % n matrices A [cf. Hirsch and Smale, page 83, [1]].

We recall that

Tt = ef &, for all 5,1 ¢ R (14)

(which is proved by using the Taylor series as the definition of €’ and application of the
Binomial Theorem and the Cauchy product for absolutely convergent series). The result (14)
does not go over to n X n matrices due to the general non-commutativity of such matrices.
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Proposition 1. If A and B are n X n real matrices, and AB = B A, then

AT o P (15)

o]
Corollary. [f A is an n x n real malrix, then e’ Is invertible and (eA) = e A

In order to be able to calculate e for any matrix, it is necessary to simplify 4 by

performing a similarity transformation:
B=PTAPR (16)

where P is a non-singular matrix (this corresponds to a change of basis).
Proposition 2. [f B = P~V AP then e = P~} et P
Proaf. Simplify (P~' A P)~. | 0

Proposition 3 {(Jordan Canonical Form). For any 2 x 2 real matrix A, there exists a

non-singular matrix P such that

J=PTAF (17)

and J is one of the following malrices:

MO Aol a B ]
(5o ) (aa) (5 2) &

Proof. We give an algorithm for constructing P iv three mutually exclusive cases, which
inchude all possible 2 x 2 real matrices; as follows

cast It A has two linearly independent. eigenvectors fi, fo with eigenvalues Ay, Az. Choose
P = (f1, f2), i-e., f1, fo are the columns of P. Then AP = (Af,Afy) = (M A, Ao fa) =

A S s Pl A0
F ( 0 AQ).H(_.H(_.GP AP_( 0 )\2).

casi 1T A has only one eigenvector, with eigenvalue A. This implies that (A4 — A)* = 0.
Choose fy such that (A — A} fa # 0, and let fy = (A — A1) f;. Then {f, fa} is a
basis of R?, and (A — A)A = 0. Choose P = (f1,f2). Then AP = (Af1,Afy) =

: LA ]
(Afi, Ao+ ) =F (O )\). .

caske III: A admits no real eigenvector, but admits a complex eigenvector: A(f1 +1/5) =
(0 iBY s +ifa), Lo Afy = afs — sy Afs = fy+ s, Choose P = (43, f3). Then

AP ={(A[AR)=(ah—-PfulBhi+ afp)=F ( .,CY[;’ i ) -



We now have a complete algorithm for calculating e for any 2 x 2 real matrix A:
(a) find the Jordan cancnical form J = P~ AP,
(b) calculate e,

(c) then et = Pel P71,

The Flow of a Linear DE

Theorem (Fundamental Theorem for Linear Autonomous DEs). Let A be ann X1
real matrix. Then the initial value problem

2= Aw, z(0)=a € R" (19)
has the unique solution
z(t) = e"a, for all t € R. (20)
Proof. 1) Existence: Let z(t) = "%« then
% = d—(—iﬁ)— = Ae"'a = Ax (21)
2(0)=e’a=la=a (22)

shows that z(%) satisfies the initial value problem (19).
2) Uniqueness: Let z(t) be any solution of (19). It follows that

d

—tA _ -
- [e (@) =0 (23)
Thus e~*z(t) = C, a constant. The initial condition implies that C' = a and hence w(t) =
e“a. o
The unique solution of the DI (1-9) is given by (20) for all ¢. Thus, for each i € K, the

A

matrix e maps
a — e {(24)
(where a is the state at time ¢ = 0 and et is the state at time ¢). The set {e“‘}teR is a
1-parameter family of linear maps of R™ into R, and js called the linear flow ot the DE.
We write

gt _ etA (23)

to denote the flow. The flow deseribes the evolution in time of the physical sysiem for all
possible initial states. As the physical system evolves in tine, one can think of the state
vector z as a moving point in state space, its motion being determined by the flow gt = o',

The linear flow satisfies two important properties, which also Lold for non-luear fows (to
follow).



£

Proposition 4. The linear flow g* = e A satisfies

F. g =] (identity map) (26)
F2: ghitiz = gl g g2 (compeosition)

Proof. Basy consequence of Proposition 1. O

Clomment: Properties Fland F2 imply that the flow {gﬁ}tER forms a group under cornposi-
tion of maps.

The flow gt of the DE (19) partitions the state space R” into subsets called orbits, defined

by
v(a) = {glalt € B}. (27)

The set y(a) is called the orbit of the DE through a. It is the image in R™ of the solution
cnrve z(t) = e4a. It follows that for a,b € R”, either y(a) = () or y(a) Ny(b) = &, since

otherwise the uniqueness of solutions would be vielated.

0 1

10 ), the linear flow is e =

Example. Consider @' = Az, z € R?, and A = (

cost st i _
( L f ) The action of the flow on R?, o — ea corresponds to a clockwise
—gii L. GOBY,

rolation about the origin. Thus if @ # 0, the orbit y(a) is a circle centered at the origin
passing through a. The origin is a fixed point of the flow, since &40 = 0, for all t € R.
The orbit v(0) = {0} is called a point orbit. All other orbits are called periodic orbits since
02 = o) fe., the flow maps onto itsell after a timet = 27 has elapsed.

1 0
0 -1

A

Example. Consider ' = Az, z & R? and A = ( ), then the linear flow is e** =

0 et
a, exponentially, leaving the product aqay constant. Thus if @ is not on one of the axes, the
orhit y(a) is a hyperbola. If a % 0 lies on one of the axes, then the orbit v(a) is a half-axis.
The origin is again a point orbit, and all other orbits are non-periodic, ie., e“a # a for all
t 540, and a # 0. Note that the zq-axis is the union of three orbits

£
et 0 . ; )
( > . The action of the flow on R?*, ¢ — ¢, expands a1 exponentially and contracts

{{e1,0)|z1 > 0} U {0} U {(1,0)]z1 < O}

(Classification of orbits of a DE.

I Ifsta = o for all t € R, then v(a) = {a} and it is called a point orbit. Foint orbits
correspond to equilibrium points.

2. If there exists a T > 0 such that g¥a = a, then vy(a) is called a periadic orbit.. Periodic
orbits describe a system that evolves periodically in time.
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3. If gta # a for all t # 0, then y(a) is called a non-periodic orbit.

Clomment:

1. Non-periodic orbits can be of great complexity even for linear DEs if n > 3 {for non-
liear DEs if n > 2). :

2. A solution curve of a DE is a parameterized curve and hence contains information about
the flow of time t. The orbits are paths in state space {or subsets of state space). Orbits
which are not point orbits are directed paths with the direction defined by increasivg
time. The orbits thus do no provide detailed information about the flow of time.

For an autonomous DE, the slope of the solution curves depend ouly on @ and heuce the
tangent vectors to the solution curves define a vector field f(z) in z-space. Infinitely many
solution curves may correspond to a single orbit. On the other hand, a non-autonomons Dl
does not define a flow or a family of orbits.

Canonical Linear Flows in R? under Linear Equivalence.

To what extent can a linear DE in R” be simplified by making a linear change of coordi-
nates and a linear change of the time variable? Given a linear DE 2’ = Az in R, introduce
new coordinates by y = Pz, where F 15 a non- smgulcu matrix, and a new time variable

= ki, where k is a positive constant. It follows that y" = By, where B = 1}3 A FE,

Definition. The linear DEs 2’ = Az and z' = Bz are said to be linearly equivalent if there
exists a non-singular matrix P and a positive constant k such that

A—EP1BP (28)

Proposition 5. The linear DEs
al = A, v = B, (29)

are linearly equivalent if and only if there exists an invertiblematrix F and a positive constan!.

k such that
Pett = eME p for allt € R. (30)

Proof. Exponentiation of (29) and differentiation of (30). =

The condition (30), which characterizes linear equivalence, ensures that the linear map
P maps each orbit of the flow ¢4 onto an orbit of the flow etP.



Definition. Two linear fows et and ¢'® on R” are said to be linearly equivalent if there

exists a non-singular matrix P and a positive constant k such that
P e gl B for all t € R. (31)

et us consider three cases corresponding to the three Jordan canonical forms for any

9 % 9 real matrix A (see Proposition 3.)
cASE T: TWO EIGENDIRECTIONS. By Proposition 3, there exists a matrix P such that

J=PAPY where
[ A0
of = ( 0 A ) .

It follows that the given DE is linearly equivalent to " = Jy. The flow is

¢ 0 e*t )

y 1 0 :
and the eigenvectors are ey = ( 0 ) and e = ( ] } The solutions are y(t) = eb, b € R?,

e, y1 = e and yp = e™b;. On eliminating 4, we obtain

(Eh)W - (Eﬁ)*_ if byby £ O (32)
b] bg

y1 =0, ifb =0 (33)
ya=10, ifby=0 (34)

These equations define the orbits of the DE y' = Jy.

Ia. A, = Ay < 0: Attracting Focus (See Fig. 1.)

Ib. A < Ay < 0: Attracting Node (See Fig. 2.)

Ic. Ay < Ay = 0: Attracting Line (See Fig. 3.}

Id. Ay < 0 < Ay Saddle (See Fig. 4.)

Te. ) =0 < Xy Repelling Line {time reverse of Fig 3.)

If. 0 < A < Ay Repelling Node (time reverse of Fig 2.)

Ig. 0 < Ay = Ay Repelling Focus (time reverse of Fig 1.)



Ia ) Ib i

2
N R

Figure 1: Xa. Attracting Focus

Figure 2: Tb. Aftracting Node

Ic _ % Y,

A
= <7

Figure 3: Ic. Attracting Line

Figure 4: Id. Saddle
cask II: ONE EIGENDIRECTION. By Proposition 3, there exists a matrix £ such thal

J =P AP, where
Al
4= ( 0 )\)'



It follows that the given DE is linearly equivalent to y' = Jy. The flow 1s

1 ¢
£ _ L Ab
g’ =e (0 1).

. : : 1 : : .
and the single eigenvector 1s e; = ( 0 ) We note that if A # 0, the orbits are given by

po= oy B4 Hlog2, ik #0

¥

iy, 2 0, ifby=0 (35)
TTa. X < 0: Attracting Jordan Node (See Fig. ‘5)
IIb. A = 0: Neutral Line (See Fig. 6.)

IIc. » > 0: Repelling Jordan Node {time reverse of Fig. 5.)

ITa e vertical 115 )
isocline

Y=oy >

\
eigendirection

yl — 308000 00eeONDe IS — y]

Figure 5: ITa. Attracting Jordan Node
Figure 6: IIb, Neutral Line

GASE 111: NO EIGENDIRECTIONS. By Proposition 3, there exists a matrix P such that

F = AT e
_( « P
Jie= ( g ) _

It fellows that the given DE is linearly equivalent to y' = Jy. The simplest way to find
the orbits is to introduce polar coordinates (r,8): y3 = rcosd, and yp = rsin . The DE
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becomes ' = ar and & = —8. It follows that ‘i—}) = 3" which can be integrated to yield
afg_ - . . ; o )

7= TOe_ﬁ(g %) Without loss of generality, we can assume 4 > 0, since the DE is invariant

under the changes (8,11) — (=8, —y1). Thus lim;_ § = —co {counterclockwise rotation as

¢ increases).
Hla. « < 0: Attracting Spiral (See Fig. 7.)
IITh. = 0: Centre (See Fig. 8.)

IIIc. o > 0: Repelling Spiral (time reverse of Fig. 7.)

ia Y b Y2

horizontal/‘f 1
isocline

%=Eﬂ

vertical

isocline
_

%=

B

Figure 7: IITa. Attracting Spiral
Figure 8: TLIb. Centre
In terms of the Jordan canonical form of two matrices A and B, the corresponding D s
are linearly equivalent if and only if
o 4 and B have the same number of eigendirections.
» The eigenvalues of A are a multiple (k) of the eigenvalues of 5.

This implies that if the DEs have different canonical forms (i.e., belong to different classes
la—g, 1Ja—c, Hla—c) then the DI%s are not linearly equivaleat. On the ofber hand, if the DISs
have the same canonical form, they will be linearly equivalent if and ounly if the cigenvatues
of A are a multiple of the eigenvalues of B.
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Example.

Given DE (lanonical DE

—4 =3 -2 0
o = A, A:( 24 l)> ' = Jy J:( 0 _1>
(See Fig. 9a) (See Fig. 9b)

Figendirections:

N D R I O

Change of variables:

B 1 ]
y = Pz, Pf(z 3), A=P1JP

The flows e and et are related hy Pet* = e P. This implies that the map of the
iy vy plane into the yi yo-plane that is defined by the matrix P, maps orbits of the flow e
fo et

%5 ¥y

\

¥y

\_ / K weakly attracting
#77\ weakly attracting eigendirection
ewendn ection .9
strongly attracting
cigendirection

Qp=-1}

sirongly atfracting
eigendirection
(hy=-1

a) Given DE b) Canonical DE

Figure 9: Phase portraits for the Given DE and for the Canonical DE.

Topological Equivalence

We have seen that under linear equivalence, 2-D flows can be simplified to the extent
that they can be parameterized by one real-valued parameter and severa} discrete parameters
(e.g., number of independent Plgenvectom) Linear equivalence thus acts as a filter, which
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retaing only certain essential features of the flow 1e., the behavior of the orbits near the
equilibrium point (0,0). On the other hand, if one is primarily interested in long-term
behavior, one can use a finer filter, which eliminates more features, and hence leads to a
much simpler (but coarser classification}. This is the notion of Topological Equivalence ol
linear flows. _

For examnple, cases la, Ib, Ila, and Illa have the common characteristic that all orbits
approach the origin (an equilibrium point) as £ — oo. We would like these [lows to be
“equivalent” in some sense. We shall show that in fact for all flows of these types, the orbils
of one flow can be mapped onto the orbils of the simplest flow Ia, using a (non-linear) map
B R* — R% which is a homeomorphism on R’

Definition. A map h: R® — R* is a homeomorphism on R™ if and only if.
1. h is one-to-one and onto,
2. h is continuous,
3. k71 is continuous.

Definition. Two linear flows e'* and e on R” are said to be topologically equivalent if
there exists a homeomorphism h on R™ and a positive constant k such that

h (em;z:) = "B hlz), for all # € R™ and for all t € R. (36)

Example. The linear flows ', A = ( BZ f}l ) and ¥, B = ( —Ol _Ul ) are topolog-

ically equivalent. The homeomorphism /i : R* — R? is given by y = h(x) = ( fl%%‘l% )-,
IDARLD)
where by : R — R and hy : R — R are defined by

Z1, ifz, 20
hl(;ﬂl)—{ %’ Ifl1<0 3 hz(:ﬂ2)=$2,

Definition. A hyperbolic linear fow in R? is one in which the real parts of the cigenvalies

are all non-zero (i.e., Re(N) #0, 1=1,2).

Proposition 6. Any hyperbolic linear fow in R? is topologically equivalent to the linear
flow e, where A is one of the following matrices:

1. A= ( _01 Bl ), the standard sink.
. 10
2. A= NERE the standard source.
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% A= ( 101 [1] ), the standard saddle.

Proof. Bstablish appropriate homeomorphisims. O

As regards to the non-hyperbolic linear flows in ®? one can infer by inspection of the
portraits that none of the § canonical flows [i.e., the centre, the attracting and repelling
line, and nentral 2-space (A = 0)] are topolog,lmlly cqmve&emt (their asymptotic behavior
ag 1 — oo differs). Thus, two non-hyperbolic linear flows in R? are topologically equivalent
if and only if they are hnea.t:ly equivalent.

Proposition 7. Any non-hyperbolic linear flow in R? is linearly (and hence topologically)
equivalent to the flow e, where A is one of the following matrices:

B0 (0 ) (3) (20 (3Y) e

These five [lows are topologically inequivalent.

Linear Stability and Linear Sinks in K"

Suppose that a physical system in an equilibrium state is disturbed. Does it remain close
to (stable) or appreach (asymptotically stable) the equilibrium state as time passes (f — oo)?

Definition.
I. The equilibrium point 0 of a linear DE &’ = Az in R is stable if for all neighborhoods

(7 of 0, there exists a neighborhood V of 0 such that gV C U for all t > 0, where
ot = e js the flow of the DE.

2. The equilibrium point 0 of a linear DE »’ = Az in R™ js asymptotically stable if it 15
stable and if, in addition, for all z € V, lims_.., ||g*zl] = 0.

tA

Proposition 8. Let 4 € M,(R). Then each entry of the mabrix e Is a unique linear

commhination of the Mnctions
15 e™ cos(Bt), the sin(pt), (38)

where o+ i3 runs through all eigenvalues of A with § = 0 (f = 0 gives the real eigenvalues)
and k iakes on all values 0,1,2,--+,n — 1 less than the multiplicity of the corresponding
eigenvaluc.

Proof. [cf. Hirsch and Smale, page 135, [1]] O
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Proposition 9 (Characterization of a Sink). Let A € M,(R). Then
lim e*a =0 for all « € R* {39)

L—o0
if and only if Re(A) < 0 for all eigenvalues of A.

Proof. = Suppose that Re(A) < 0, then (39) follows from Proposition 8. < Suppose (39)
and that A = o + i is an eigenvalue of A with a > 0, then we obtain a contradiction using
Proposition 8. O
Equation (39) means that if Re(A) < 0 then all solutions x(¢) of the DE z' = Az approach
the equilibrium 0 in the long term, i.e.,
Jim z(t)=0¢eR" (40)
Thus if A € M,,(R) issuch that Re()) < 0 for all eigenvalues, then we say that the equilibrium
point 0 of the DE 2’ = Az is a sink in R™. If we replace A by —A and ? by —¢, we obtain the
time reverse of Proposition 9. Thus if A € M,(R) is such that Re(}) > 0 for all eigenvalues,
then we say that the equilibrium point 0 of the DE 2’ = Az is a source in R™.

Proposition 10 (Exponential Attraction to a Sink). Let A € M (R). I there exists a
constant k such that all eigenvalues of A satisfy Re(A) < —k < 0 then there exists a positive
constant M such that

}em;z:H < Me ™|z for all z € R™, forallt =0 (41)

Proof. From Proposition 8 and the fact that for any € > 0and n > 0, there exists a constaut
¢ such that t® < Ce® for all ¢ > 0. O

Corollary. If the equilibrium point 0 € R™ is a sink of the DE 2/ = Az, then 0 is au
asymptotically stable equilibrium pomt.

Although Proposition 10 guarantees that any initial state is altracted al an exponential
rate in time to a linear sink {the equilibrium point 0}, it does not mmply that the distance
from 0, 1e., He”xi' decreases monotonically with ¢. In other words, as the orbits approach
0, they do not necessarily cut the spheres {|z]l = R in the inward direction. However, as one
might expect, one can find a family of concentric ellipsoids, such that as the orbits approach
0, they intersect the ellipsoids in the inward direction.

Proposition 11. If the equilibrium point 0 of the DE o' = Az in R" is a sink, then there
exists a positive definite quadratic form

Vie) =T Qux o (42)

which is monotone decreasing along all orhits, except for the equilibrium point 0. (Note: ()
is an % n symmetric matrix such that V{z) = «TQx > 0 for all 2 # 0 € R". The level sels
V{z) = C > 0 are ellipsoids in R").

Proof. Differentiate (42) and use Liapunov’s Lemma. u

Let us state Liapunov’s Lemma without proof.
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Tiapunov’s Lemma. Let A € M (R). If all eigenvalues of A satisfy Re(A) < 0, then there
exisls a symumetric positive definite matrix (J such that

ATQ+QA=-1 (43)

Comments:

1.

AN

3

The matrix Q in Liapunov’s lemma can be found explicitly by solving the linear system
of equations (43) for Q.

The function V in Proposition 11 is an example of a Liapunov funciion for the equilib-
riwn point 0. Such functions will play an important role when we discuss non-linear
stability later.

Proposition 11 can also be used to prove that any linear sink in R" is topologically
equivalent fo the standard sink.

NON-LINEAR DIFFERENTIAL EQUATIONS

For non-linear DEs, one does not expect to be able to write down the flow explicitly. Indeed
the aim of the subject of dynamical systems is to describe the qualitative properties of a
non-linear low withoul knowing the flow explicitly.

Example. We shall illustrate a quick way to draw the orbits for a 1-D DE. Consider the
1-D DE 2’ = f{z) = =(1 — z), it is the sign of f(z) that determines the direction of each

orhit

which corresponds to increasing t. (See Fig. 10)

¥
y={x=x1x
5 1
i
1
I
X
I
1
! I
I
<0 1 >0 fE)<0
d cgp ) &g r o dx g
o " b

Figure 10: Quick way to draw orbits for a 1-D DE.
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Example. Consider the non-linear DE in R’, #' = f(z) whera
. ’21']_(1 — 331) o T
fla) = ( B ) and z = ( £ )

zi = 2 (1 = 1), o =~

The 2-D flow {g'} is defined by
1 . etet:a+1 f . 1 A 4
gty = 1 , wherea = | |- (44)

i
e ‘tag 2

or equivalently

{g*} is a one-parameter family of non-linear maps of R* — R*. Since the set of values of ¢
for which {g'a} is defined depends on a, {g'} is called the local flow. We note that the flow
satisfies the same group properties as in the linear case. Because the DEs are un-coupled,
one can also obtain an explicit expression for the orbits in R?. By eliminating t we obtain

dzy 7;1:1'(1 — Z1)

= for z, 0
dzs 7 o 25 2 0

and hence
2izy = k(1 — 2:)%, k = constant. (45)

There are two equilibrium points, i.e., f{z) = 0:
0 1
( 0 ) and ( g )
These are necessarily fixed points of the How:
f 0 0 cf 1 1
glo) o) ®lo) " Lo)

as may be verified using (44). By studying the flow (44), and equation (45) for the orbits,
one can obtain a qualitative sketch of the orbits (see Fig. 11). Note that the behavior of the
orbits near the equilibrium points can be inferred by approximating equation (45):

if 21 = 0, then 2%z, ~ k

if 2, &= 1, then 2y = k(1 — ;E1)2

Note that if the initial state a satisfies ay > 0, then

. o 1
}3}&%0’—(0)

5 1
i.e., the long term behaviour of the system s to approach the equilibrium state ( 0 ) .



Figure 11: Phase portrait for the system zf = z:(1 — 21), 2} = —2a,.

Hamailtontan DEs in 8-D.

We now discuss a class of DEs in R* whose orbits can be studied directly, even though
the flow cannot be found explicitly. Consider a particle moving in 1-D under the influence
of a force which depends only on position. If g denotes the position of the particle, and m
its mass, then Newton’s Second Law states that

d?g :
m—d? = (G {46)

Sivce ' = F(g), by assumption, there exists a function V(g) defined up to an additive
constant, called the potential function, such that

Flg) = —V'9)- (47)
In general, we introduce the linear momentum
n= m—g. (48)

Then the equation of motion {46}, with (47}, leads to the 2-D DE

’ i ;o 7
¢=—p = V'iq). (49)

The stale vector of the system (mass moving subject to the force) is (¢, p) € R”. The energy
of the svstem is the sum of kinetic and potential energy:

L (dz{) + V(g). (50)



When expressed in terms of ¢ and p, the energy is referred to as the Hamiltonwan of e
system, denoted by H:

1 .
H(q,p) = 5—p" + Vla). (51)
m
In terms of H, the DE (49) assumes the form
OH dH ;
= - I— 52
=7 P B (52)

These equations are called Hamilton’s equations for the mechanical system. An important
consequence of (52) is that H is constant along any solution curve:

dH 9Hdg OHdp OHOH OH ( dH) (53

G T hgat Ty d ag 0p T op \ 9g

This expresses conservation of energy, and is expected in view of the physical situation.
Let us make some comments on the orbits of a Hamiltonian DE (52), with H of the form

(51),

e Since H is constant along any solution curve, the orbits in ¢ p-space are contained in
the level sets of the Hamiltonian function, given by H(g,p) = C.

» The equilibrium points of the DE are given by p = 0 and V'(¢) = 0, i.e., they awe
determined by the critical points of V{g).

¢ The isocline corresponding to ¢’ = ( (vertical tangent lines) is given by p = 0, and the
isocline(s) corresponding to p’ = 0 (horizontal tangent lines) are given by V'(g) = 0.

o For orbits with H{q,p) = C, the g-values are determined by the inequality Vig) <O,
as fellows from equation (ol).

Example: A magneto-elastic beam. [cf. - Guckenheimer and Holmes, page 83 [2]] The

Ham:ltonian is :

T
H - 2 S p22 .
(6,9) = 59" —58°0" + 74",
and the Hamiltonian DE (the equations of motion) is

1 ) .
¢d=—p, ¢=p5q-¢
T

where ¢ denotes the displacement of the beam from line of symmuetry and the force gives rise
to the potential V(g) = —38%¢* + 3¢* The phase portrail is given by Fig. 12.

Terminology: Any 2-D DE of the form (52) is called a Hamaltontan DE, irrespective ol
whether the Hamiltonian H (g, p) is of she form (51}, If H is of the form (51), the resulting
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Figure 12: Phase portrait for the magneto-elastic beam.

DI describes a mechanical system, and will be called a classical Hemilionion DE. The
concept, of a Hamiltonian DIS can be generalized to higher dimensions:

oH oH ,
f ! =
“=%  PT T (54)
where the state vector is = = (g1, -, qu. D1, ", Pn) € R**. The motion of a spherical

pendulwn, or motion of a particle in a plane under a central potential (e.g., planetary
motion) leads to a Hamiltonlan DE with n = 2 i.e., state space is R?.

The Flow of a Non-Linear DE

We begin by stating the standard existence uniqueness theorem for the initial value prob-
Jem (IVP) for a DE in R

Theorem (Existence-Uniqueness). Consider the VP
2Fes e s z(0) =a € R*™ (55)

If f:R" — R™ is of class C '(R™), then for all a € R, there exists an interval (—¢,6) and 2
nnique function i, : (=6,6) — R™ such that

P8 = [ty al0) = @ (56)

Proof. The idea is to rewrite the IVP as an integral equation, and use Picard iterates. [ef.
Hirseh and Smale, page 162, [1]] -
Comment: 1 (e hypothesis (f be of class C'1) is weakened, then uniqueness may fail, (e.g.,
the DE #' = 25 in R, has two solutions which satisfy the initial condition z(0) = 0, namely
2(1) = 0 and z(t) = %t Note that f(z) = z% is continuous but not C'.
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The existence-uniqueness theorem is a local result — it guarantees existence of a solution
in some interval (=4, §) centered at ¢ = 0. Since we are interested in the long-term behaviow
of solutions, we would like the solutions to be defined for all £ > 0. We can extend the mterval
of definition of the solution +,(t) by successively reapplying the theorem, and in this way
obtain a ‘mazimal interval of definition of the solution 1,(¢). We shall denote this maximal
interval by (a, §). o

Definition. We say that the solution ,(t) has finite escape time S, if

S
LA
—

Jim (0]l = +oo (:

Theorem (Maximality). Let ¥,(t) be the unique solution of the DE z' = f(z), where
f € CYR™), which satisfies, 1,(0) = a, and let («,,f.) denote the maximal interval on
which +),(t) is defined. If B, is finite, then

i [[)] = oo (5%)
=07, .
Proof. [cf. Hirsch and Smale, pages 171-172, [1]] 0

Corollary. Consider the DE z' = f(z), f € C Y{R"). If a solution 1.{t) is bounded for
t > 0, then the solution is defined for all t = 0.

Comment: One can always modify a given DE z’ = f(z), z € R”, and f € C'(R")}, so that
the orbits are unchanged, but such that all solutions are defined for all ¢ € R. The idea 15
to re-scale the vector field f (the velocity of the state point z):

Hz) = A=) f(=z), (59)

where A(z) : R® — R is a ¢’ *-function (a scalar) which is positive on R” (in order to prescrve
the direction of time). This rescaling does not change the direction of the vector field, hence
the orbits are unchanged. However, one can choose A so that [|Af]| is bounded c.g.,

1

TTREN o

@)

Proposition 12. If f: R® — R* is CY(R"), and A : R" — R is C'(R™) and positive, then
z' = f(z) and 2’ = Mz) f(2) have the same orbits, and A can be chosen so that all solutions
of the sacond INE are definad for all + = R.

Proof. [cf. Nemytskii and Stepanov, Theorem 3.22, page 19, and Theoremn 1.31, page 9, [3Y]
O
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Definition. Consider 2 DE a2’ = f(z), where f is of class C'Y(R"), whose solutions are
defined for all t € R. Let 1.(t) be the unique maximal solution which satisfies ) =
The flow of the DE is defined to be the one-parameter family of maps {g'}, g such that
gt i R™ — R™ and gla = o, {t) for all a € R™.

The flow {g*} is defined in terms of the solution function o(t) of the DE by
ga = Bald). (61)
It i¢ important to understand the difference between ,(t) and gla conceptually:
o For a fized a € R™, 3, : R* — R" gives the state of the system Pu(t) for all t € R,
with 1,(0) = @ imtially.
o Forafizedt € R, gt : R* — R" gives the state of the system gla at time t for all indtial
stales a.
The solution function ¥.(#) satisfies ¥.(¢) = f(¥a(t)), ¥a(0) = a. Hence 1,(0) = f(a).
By definition of the flow, it follows that

d

Sga)| = /@), (62)

=0
which is situply a statement of the fact that the vector field f is tangent to the orbits of the
QFE.

Proposition 13. Let {g'} be the flow of a DE z' = f(x), then

Fl: gl = T (identity map) ;
. ) . - (63)
F; g Tl = gh g p=a {composition)
Froof. Use the translational property of solutions of an autonomous DE. _ O

Theorem (Smoothness of a Flow). If f € C*R"), then the flow {g'} of the DE 2’ = Fflz)
consists of C'1 maps.

Proof. [ cf. Hirsch and Smale, pages 298-300, [1]] CJ
Comineni: The significance of this result is that the solutions of the DE depend smoothly
on the initial state.

Definition. The orbit through e, denoted y{a) Is defined to be

1la) = {‘1: € R*z = gta, forallt c R} (64)

Asin the linear case, orbits are classified as point orbits, periodic orbits, and non-periodic
orbits. Sometimes it is convenient to work with the positive ordil through o deputed v (o)

and defined by
v*(a) = {z € Rz = g'a, for all t > 0} (65)
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Long-Term Behaviour and Limat Sets

Consider a physical system with initial state vector z € R", whose evolution is described
by a DE z' = f(z), which determines a flow {¢*},.g- A fundd,mental cquestion is: What is
the long-term behaviour of the system as ¢ — oo, starting at an mitial state ¢ when £ = 07
Inn other words, what happens to the positive 01b1t through « defined by (65} as { — +oc?

The simplest behaviour is that the system, starting at state a, approaches an equilibrium
state as t = 00, i.e., liMyg g'a = p. In this case, we say that the w-limit set of the mnitial
point a is the equilibrium point p, and write

w(a) = {p} (66)

The next simplest behaviour is that the system, starting atb state a, approaches periodic
evolution, 1.e., the orbit approaches a periodic orbit 4. In this situation, lim e gha does not
exist, since the orbit does not approach a unique point. However, for any point p & 7, we
can choose & sequence of times {#,}, with lim, e tn = o0, such that lm,.. gha = p. In
this case we say that the w-limit set of the initial point @ is the periodic orbit 7, and write

wla) = 7. (G7)

These examples motivate the definition to follow.

Definition. Consider the DE &' = f{z) in R”, and the associated flow {g'},.g. Given an
initial point @ € R", a point p € R" is said to be an w-limit point of a if there exisls a
sequence {t,} with im,_ . t, = oo such that lim, .. g™a = p. The set of all w-points of «
is called the w-limit set of @, denoted by w(a).

Example. Consider the system:

2 = w2y [ =y T, = —Iy.
The equilibrium points are (0,0) and (1,0). For a = (a1, a3) we have
ap >0, wla)=(1,0};
i =0, wla) = (0,0)
ap < 0, w( ) = {.

To help in identifying the w-limit set of an initial state a, we consider the following
question: What subsets of R™ can be w-limit sets for a flow {g'}? This is a difficuls question.
and is unsolved if n > 2. But there is a simple necessary condition which is indispensable in
identifying w(a).

Proposition 14. An w-limit set w(a) of a flow {g'} is a whole orbit of the flow, or is the

union of more than one whole orbit.

Proof We simply prove that if y € w{a), then the orbit through y given by

1(y) = {g'ylt € R} (68)

is contained in w(a). 0

It is also important to know that an w-limit set is non-trivial (i.e., not the empty set).
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Proposition 15. If the positive orbit through «,
7*(a) = {g'alt > 0} o (89)

is bounded, then w(a) # 0.

FProof. By the Bolzano-Weierstrass theorem, the bounded set {g"a|n € N} has at least one

limit point. a

Trapping Sets and the Global Liapunov Theorem

In this section we discuss a method for locating the w-limit sets of a certain class of DEs,
namely those which admit a so-called Liapunov function.

of the DE, is called an invariant set for the DE.

Definition. Given a DE 2/ = f(z) in R*, a set § C R™ which is the union of whole orbits

For example if we have a Hamiltonian DE in R?, then the level sets H(w1,2;) = k are
invariant sets, since H is constant along any orbit. More generally, we have the concept of a
first integral.

Definition. A function H : R™ — R of class C'*, that is not constant on any open subset
of R*, is called a first integral of the DE &' = f(x) if H is constant on every orbit:

d
EH(w(t)) =1{ for all £. (70)
Since ;
—H(=(t) = VH((#) - f(=(2)), (71)

using the chain rule and the DE, it follows that H(z) is a first integral of the DE 2’ = f(z)
if and only 1f

VH(z) f(z)=10 for all z € R", (72)

and H(z) is not identically constant on any open subset of R™. If one has a first integral
(e.g., a Hamiltonian function) then the orbits of the DE are contained in the one-parameter
family of level sets H{z) = k.

It sometimes happens that one has a function F' : R® — R such that only a particular
level set of F' is an invariant sef. For example look at the DE, 2} = z3(1 —z1), 2= —2x,,
and consider the functions F(zy,z2) = zy and G(zy,z2) = x3. The level sets F = 0 and
I = 1 are invariant sets since z; = 0 and z; = 1 satisly the DE; but F' is not a first integral.
Similarly the level set G = 0 is an invariant set. These invariant sets play a major role n
determining the povirait of the orbits.
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Proposition 15. Civen a DE z’ = f(z), in R", and a function G : R — R of class . Ar
VG(z) - f{z) = 0 for all = such that G(x) = k, then the level set G(z) = k is an invariant
set, of the DE.

Proof. The vector field f is tangent to the level set G(z) = k, and hence for any initial state
a with G(a) = k, the orbit y(a) lies in the level set. ' =

In order to determine an w-limit set, it is helpful to know that an orbit enters a bonuded
set S and never leaves 7. Such a set is called a trapping set.

Definition. Given a DE z' = f(z) in R", with flow g', a subset S C R" is said to be a
trapping set of the DI if it satisfies

1. S is a clogsed and bounded set,
2. a€ S impliesgta € S for all t > 0.
The usefulness of trapping sets lies in this result; if S is a trapping set of a DE x" = f(z),
then for all a € 3, the w-limit set w(a) is non-empty and is contained in 5.
Example. Consider the DE
gy =l — 21 —axs)ry, @y = 7(l = Bz — 2)T,

with 1 > 0, 2 > 0, 71,72, and § are positive constants with a < 1 and B < 1. By
inspection we see that the x-axis (z; = 0) and the zy-axis (11 = 0) are invariant sets. By
inspection, for sufficiently large z\ and/or x4, then i < 0 and z} < 0. Thus the sel

Sk = {{z1,z2) |z + 22 < k2 2 0,25 2 0}

15 a trapping set for the DE.

The Global Liapunov Theorem

Consider a DE z' = f(z) in R” and let V : R* — R be C''{R"). We can calculate the
rate of change of V along a solution of the DE:
d aV dﬁ,"] aV dl’n
—Viz(t)) = ——+---
i (=(2)) Jxzq dt Tt oz, di
= VV(z(t))- f(z(t)) = V(z) (73)

by the Chain Rule

using zt = f; and the definition of scalar product i K™, Suppose that Viz) < 0 for all
z € R”. Then for any orbit v(a) in a trapping set 5, V{(z) will keep decreasing along v{a)
until the orbit approaches its w-limit set w(a). One thus expects that w(a) will consist of
points for which V{z) = 0. In this way, one obtains a strong restriction on the possible

w-l1mit seis.
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Theorem {Global Liapunov Theorem). Consider the DE z' = f(z) in R*, and let

vV R" = R be a (! function. If S C R™ is a trapping set, and V(z) <0 for all z € 5, then
for all o € 5, 0(a) C {z € S|V(z) = 0}.
Proof. [cf. Hale, Theorem 1.3, page 290, [4]] O

Clomments:

1. A function V : R* — R which satisfies the above theorem for £ € § C R™ is called a

Liapunov function on 5.

9 One can often use the level sets of the function V' to define the trapping set S in the

theorem.

3. In applying the theorem, we note that we simply have to find whole orbits that are
contained in the set {.12 € SiV(=z) = U} to obtain the w-limit set w(a).

Example. Consider the DE
N P 3 .
By ==y zh = —axs —zy, o >0

We note thal when a = 0, the DE is Hamiltonian, with i = 122 4+ 1ut. So we let V(z) =

L

Yal 4 el Tt follows that V(z) = —az? < 0 on R®. The level sets V(z) = k are simple
closed curves and VV (1) points outwards. Thus 5 = {m e R*|V(z) < 0} is a trapping set.
Thus for all a € S, w(a) C {m € SilViz) = 0} = {z € Si|zy = 0}. However, when z; = 0,
the DE implies that ) # 0 unless z; = 0. Thus the equilibrium point (0,0) is the only
whole orbit with zs = 0, and hence w(a) = {(0,0)}, for all a € S. Finally, note that for all
ac R? ac b, for some k. Thus wla) = {(0,0)}, for all z € R

4 LIAPUNOV’S STABILITY THEOREM

The goal is to show that the stability of an equilibrium point can be ascertained, subject to
a condition, by studying the linearization of the DE. The basic definitions are the same as

in the linear case, with the linear flow et being replaced by gf
Definition. '

7. The equilibrivin point & of a DE 2’ = f{z) in R" is stable if for all neighborkoods U
of 7, there exists a neighborhood V' of @ such that gV C U for allt > 0, where g' s
thie flow of the DE. ’

2. The equilibrium point # of a DE 2’ = f(z) in R™ is asymptotically stable if 1t 15 stable
and if, in addition, for all x € V, lIm¢ee gtz — 2| =0
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Now, consider a non-linear DE 2’ = flz) m R Let V:R" = Rbea CY(R™). The rate
of change of V along a solution of the DE is given by

%V(m(t)) = UV (2(t)) - [(=(D) = V() (74)

Thus, it V(a:) < 0 for all t then V(z) decreases with time along the corresponding orbit. I'rom
a geometrical point of view, the orbits cut thelevel sets V(z) = k in the direction away from
VV(z). Suppose thal Z is an equilibrium point of the DE. If V(Z) = 0 and Viz) > 0 lor
all z € U — {3}, where U 1s a neighborhood of Z, then we expect the level sets of Voin U
to be concentric curves (n=2) or concentric spheres (n=3); consequently when Vo< 0 for all
w ¢ U — {&}, any orbit in U — {7} will cut the level sets of V in the inward direction, and
we expect that this will continue until the orbit is forced to approach the equilibrium point
% as t — oo, showing that the equilibrium point is asymptotically stable. 11, instead, ¥V <0
for all z € U — {Z}, then U may contain periodic orbits, and we only obtain the weaker
conclusion that  is stable. Finally, if V > 0 for all 2 € U — {Z}, then the orbits are forced
away from Z, which is thus an unstable equilibrium point.

Theorem (Liapunov Stability Theorem). Let & be an equilibrium point of the DE
z = f{z) mnR* LetV: R" = Rbea Ol function such that V(8) =0, V(z) > 0 for all
¢ € U — {&}, where U is a neighborhood of T.

1. IfV(z) <0 forall z € U — {2z}, then T i3 asymptotically stable.
2 I[fV <0 for all 2 € U — {&}, then @ is stable.
3. IfV{z)>0forallz € U~ {Z}, then Z is unstable.

Proof. This can be proved as a corollary of the Global Liapunov Theorem. 0O
A function V' : R* — R which satisfies V(Z) = 0, V(z) > 0 for all 2 € U/ — {z}, and
V(z) €0 (respectively < 0) forallz € U — [z}, is called a Ligpunov function (respectively,
a strict Liapunov function) for the equlibrium point Z. Hence we obtain the following:
Theorem (Criterion for Asymptotic Stability). Let @ be an equilibriuni point ol Lhe
DE ' = f(z) in R". If all eigenvalues of the derivative matrix Df(z) satisfy Re(A) < 0,
then the equilibrium point Z is asymptotically stable.

Proof. Consider the linear approximation of f(z) at Z, Az —Z), where A = Df(E) Sinee
Re()) < 0 for all eigenvalues of A, by Liapunov’s Lemma there exists a symmetric positive
definite matrix ¢ such that AT @+ QA= —1. To complete the proof, we note that V{z) =
27 0 2 is a strict Liapunov function for Z. [
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Linearization and the Hartman-Grobman Theorem

Consider the DE, 2§ = ay(1 — 1), @y = —2s, studied earlier. We consider the orbits
of the linearizations at the equilibrium points (0,0) and (1,0). At (0,0}, A = Df(0,0) =
( E) ’OZ )., a saddle. At (1,0), A = Bl O == <—01 o |
cach equilibrium poict, there is a homeomorphism 2 which maps the orhits of the linearized
flow in a neighborhood of O onto the orbits of the non-linear flow in a neighborhood of
the equilibrivin point. In other words, the linearizations give a reliable description of the

an attraciing node. For

non-linear orbits near the equilibrium points.

Let ¢ - B? = R be a C? function. Suppose that 7 is a critical point of g, i.e., Vyg(z) = 0.
g P1 I

I_y("‘;t
Hy(z) = { 28 9y (75)
g (2) gn(T)
be the Hessian matrix of ¢ at Z. The second derivative test determines whether Z is a local
maximum (respectively local minimum, saddle point) of g, subject to a certain restriction,
namely det[Hy(E)] # 0, where the second derivative test may fail. In a similar manner, the

lnearization of 2 non-linear DE can fail to give reliable information about the orbits, 1t &
certain resiriction does not hold.

Example. Consider the non-iinear DE 2} = —zq, b =}, which describes & non-linear
. . 10 < o :
saddle with orbits zq = ke?®2. The linearization at (0,0) is v = Au, A4 = Df(0,0) =

—1 . : L iz
( 0 8 ), which describes an attracting line,

The linear and non-linear flows are not topologically equivalent in a neighborhood of the
equilibrium point, and bence the linearization fails. The source of the failure is that the
matrix 1/(0,0) has ¢ zero eigenvalue.

Example., Consider the BE s = wmy— '1:1(“1:% 4 Ely, Bl g = Lz(,tf + x3), a non-linear

spiral. The linearization at (0,0) isv = Au, A= Df(0,0) = ( ? —01 , Tepresenting a

centie.

Again, the linear and non-linear flows are not topologically equivalent in a neighborhood
of the equilibrium points, hence the linearization fails. The source of the failure is that the
matrix Df(0,0) has eigenvalues with zero real parts.

Theorem {Hartman-Grobman). Let & be an equilibrium point of the DE ' = (=) in
R". where [+ R® — R" is of class C 1. Jf all the eigenvalues of the matrix Df(Z) satisfy
Re(A) #£ 0, then there is a homeomeorphism h : U — U of a neighborhood U of O onto a
neighborhood U of & which maps orbits of the linear flow /) onto orbits of the non-lmear
fAow of of the DE, preserving the parameter ()

Proof. [cf. Hartman, pages 244-250, [5]] O
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The Hartman-Grobman Theorem can be stated more concisely using the concept of
topological equivalence, which can be generalized to non-linear flows.
Definition. Two fows gt and g on R™ are said to be topologically equivalent if there 5 a
Lomeomorphism b : R* — R"™ which maps orbits of gt onto orbits of g, and preserves the
direction of the parameter .

Then we can state: If Z is a hyperbolic equiltbrium poind, then the flow of the DE &’ = f(x)
and the flow of its linearization u' = Df(Z)u, are locally topologically equivalent.
Comment: An equilibrium point Z of a non-linear DE is said to be hyperbolic if all eigenvalues

of the matrix D (%) satisfy Re()) # 0.
Saddle Points and the Stable Manifold Theorem

Definition. An equilibrium point z of a DE ' = f(z) in R* is a saddle point if the real
parts of the eigenvalues of the matrix D f(z) are all non-gero, and 1ot all of one sign. [i.e,
a saddle point is a hyperbolic (all Re(}) # 0) equilibrium point which is neither a sink (all
Re(A) < 0) nor a source (all Re(A) > 0).]

The Hartman-CGrobman theorem gives a qualitative local description of a (non-linear)
saddle. In particular in R* we have (see Fig. 13}

u
| A

B

Linear Mon-linear
Figure 13: The linear and non-linear flows in a neighborhood of a saddle point.

The 1-D subspace [ that is spanned by the eigenvector which corresponds to the eigen-
i

value Ay < 0 is called the steble subspace of the equilibrium point, and the 1-D subspace [
that is spanned by the eigenvector which corresponds to the eigenvalue Ay > 0 is called the
unstable subspace.

Definition. Let z be a saddle point of the DEz’ = f(z) inR", and let U/ be a neighborhood
of 1. The local stalble manifold of & in U is defined hy

WHE ) = {;s e Ulgle fg z,glz e U forallt> 0}. (76)

We can now state the following theorem (without proof).
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Theorem (Stable Manifold Theorem). Let & be a saddle point of ' = f(z) in R,
where f is of class ¢, and let E¢ be the stable subspace of the linearization af I. Then

there exists a neighborhivod U of & such that the local stable manifold W*(z,U) is a smooth

(C1) curve which is tangent o E’ at 3

Comanent: One can define, in an analogous way the local unstable manifold of z in U denoted
Wz, U), aud similarly there is an “Unstable Manifold Theorem.”

Local Behaviour Near a Non-linear Sink

Suppose that T is an equilibrium point of a non-linear DE 2’ = f(z) in R?. Suppose
that all eigenvalues of the matrix D f(Z) satisfy Re(A) < 0, (i.e, T is a sink). The Hartman-
Grobman theorem asserts that in some neighborhood of Z, the flow of the non-linear DE 1s
topologically equivalent to the flow of the linearization u' = Df{F)u, where u = ¢ — Z. In
this section we give a more detailed description of the non-linear orbits near a sink.

Let Z = (Z1,%2) be an asymptotically stable equilibrium point of the DE 2’ = f(z). In
order to describe the orbits near T, we introduce polar coordinates

G =iy = n cosl
Fy—ily =2rsin @ (77}
Sinee 7 18 agymptotically stable,
im r(t) =
i, =0 (78)

if »(0) is sufficiently close to zero. We say that the equilibriuni point Z is a non-linear spiral
il
tkgloo Bt = =68 {79)

for any solution (r(t),8(¢)) for which (78) holds.

Proposition 16. Consider the DE

(NL): ol = flz) (80)
in R?, where f is of class C*. Consider the linearization

(L) : o =Df(Z)u (81)

at the equilibriumn point 3. If O is an altracting spiral point of (L), then T is an attracting
spiral point of (NL),

Praof. |ef. Coddington and Levingon, Theorein 2.2, page 376 {6]] M
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Proposition 17. If O is an attracting node of (L) then & is an attracting node of (NL).

Proof. [cf. Coddington and Levinson, Theorem 5.1, page 384, 6] 0

Comment: A similar result holds for Jordan nodes. [cf. Coddington and Levinson, page 387,
[6]]

An asymptotically stable equilibrium point Z is said to be an attracting non-linear focus
£ 211 orbits sufficiently close to Z approach Z in & definite direction as t — oo, and given any
direction there exists an orbit which tends to Z in this direction.

Comment: If O is afocus of (L), it does not necessarily follow in general that T is a nou-luoear

focus of (NL).

Proposition 18. Suppose that the vector field [ ig of class C*. If O is an attracting locus
of (L) then % is an attracting focus of (NL).

Proof. {cf. Coddington and Levinson, page 377, 6]} O

A stable equilibrium point Z is said to be a non-linear centre if in some neighborhood of
#, the orbits are periodic orbits which enclose Z. Recall that the Hartman- Grobman theorem
does not apply if O is a centre of (L}, L.e., one cannot conclude that & s o centre of (NL).
But one can still draw a useful conclusion.

Proposition 19. If O is a centre of (L}, then & is either a cenlre, an aliracting spiral, or a
repelling spiral of (NL).

Proof. [cf. Coddington and Levinson, Theorem 4.1, page 382, [6]] a

5 PERIODIC ORBITS AND LIMIT SETS IN THE
PLANE

We have seen that a linear DE can admit a family of periodic orbits, correspondiug Lo a
physical system whose motions are undawmped oscillations. Of greater interest is the case
where a DE admits an isolated periodic orbit, 1.e., the orbit has a neighborhood (7 which
contains no other periodic orbits. This is in fact only possible for a non-linear DE. In this
situation, the periodic orbit -y may attract neighboring orbits, thereby describing a physical
system which has an oscillatory steady state which is stable. We say that such a system
undergoes self-sustained oscillations. The main goal in this section 1s to discuss isolated
periodic orbits of DEs in the plane.

It should be noted that the question of existence of periodic orbits is a difficult one. in
1900, as part of problem 16 of his famous list, David Hilbert posed the question: What 1s the
maximum number of isolated periodic orbits of an autonomous DE 2’ = [({x) n R il the
components of the vector field f ave polynomial functions? This problem is still unsolved
even for the case of quadratic polynomials (degree 2). For awhile the upper bound was
thought to be 3 but an example with 4 isolated periodic orbits has been found.
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Non-Eristence of Periodic Orbits

Dulac’s eriterion for excluding periodic orbits for a DE in R? is based on Green’s theorem.

2 . -
Theorem (Green’s). If ;1 and g; are of class OV on an open set D C R* and Cis 2 simple
closed curve in D, whose interior R is in D then

agz aql
?g Ty = it P b il 89
c‘(h dzq + g2 dze //R (83;1 8:62) dz, daog (82)

where (' is oriented counter-clockwise.

Recall that the line integral is evaluated as an ordinary integral by introducing parametric

equations for C-

b :

jﬂ g1dzy -+ godzy = /ﬁ (g1 (22(2), 22(0))24(2) + g2 (@2 (£), 2(£))75(2)] At (83)
where (2;(D), 22(b)) = (z1(a), z2{a)). Dince («, ) is tangent to C' 1t follows that if the
vector field (g1, gq) 1s orthogonal to ¢ at each point of U then

‘%c-gldml + ggdﬂ’,‘z =10 (84)

The idea is to apply Green’s theorem to a periodic orbit v of the DE =’ = f(z) in R?, where
J(xy = (file), falx)). The essential point is to note that the vector field (folz), - fi(z)) is
orthogonal to the periodic orbit v, since (f1, fo) is tangent to v, and (fr, f2)  (fe,—F1) =0
We apply Green’s theorem to a periodic orbit 7, with (gl,gg) sl s —-f1). It follows that

o | Of B

Thus, if the DE is such that div(f) = V- f = % + g—g% >0 (< 0),for all z € D, where D 1s
a simply connected open set, then a contradiction arises, and we conclude that D contains
no periodic orbits. The requivement that D) be gimply connected is necessary in order to
ensure that the interior of v is contained in L.

The preceding argument may be generalized by noting that for any scalar function B, the
vechor field (B fy, —B f1) is orthogonal to the periodic arbit . The condition which excludes

periodic orbits becomes div(Bf)=V-Bf = % + %Bé% >0 (< 0).

Proposition 20 (Dulac’s Criterion). If D C R? is a simply connected open set and
div(Bf) = (B fi)+ o (Bfy) >0, (<0)forallz € D where Bisa (! function, then the

By Gz
DE #' = f(x) where f € C'! has no periodic orbit which is contained in ).

Proof. Tossentially given above. O

Comment: The function Bz, %s) is called a Dulac function for the DE in the set L.
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Example. A classical Hamiltonian DF in 2-D,
a5 == By wh = —V'(z1)
typically admits a family of periodic orbits. Modify the DI by adding linear damping:
oy ST, wh = —axy— V()  a<i

It follows that g 9
div(f) = &:—1(3?2] + 5 (—ors - Viz)) = —a < 0

for all z € R?. Thus the damped DE admits no periodic orbits, irrespective of the form of
the potential V(zq).

The second criterion for excluding periodic orbits, which 1s valid in R®, n > 2, follows
from the observation that if a function V{x) is monotone decreasing along an orbit of o DE,
then that orbit cannot be periodic,

Proposition 21. Let V : R* — R bea U U function, If Viz) = VV(z)- f(z) £ 0 ona
subset D) C R”, then any periodic orbit of the DE o' = f(x) which lies in D, belongs to the
subset {.‘L"V($) = O} L

Self-Sustained Oscillations—An Ezample

We consider the DI

it e
Ty = Lo,

1 2 : /
2 O 3 '
x + (T )2‘ + 0 oL { ;1;{2 = — — (JI}? — 1)2[2-3.

This DE, the famous Van der Pol DE, arises in the study of electrical circuits. 1t admits an
isolated periodic orbit which is not easy to locate. So we begin by considering a modification
of the DE, for which the periodic orbit can be found explicitly.

Consider the DE, z = 23, 2§ = —z1 — (2] + 22 — 1)a,. the origin (0,0) is the
only equilibrium peint. In order to determine whether orbits approach (0,0) we consider
V{zy,x2) = 2§ + z2. Along any solution

Ly a9 = = V(1) 22(0) = 2 (55)
V{z1(t), 23(t)) = 1 satisfies this DE; and hence the circle z¥ + 22 = 1 is a periodic orbit.
Further any annulus 1 < z? + 2 < R is positively invariant, and V is & Liapunov function
e, V <0 by (86). It follows from the Global Liapunov theorem that for any initial state
@ exterior to the circle z¥ 4+ z} = 1, the w-limit set w(a) is the periodic orbit 2+ 23 = 1.
Similarly, the annulus 0 < 22 + 23 < 1 is positively invariant, and it follows from equation
(86) that V is a Liapuncv function. Thus, for any initial state a £ 0 dnside the cordle
g2 ad =1, the w-limit set w(a) is the periodic orbit 22 +f = 1. This type of periodic orbit

is called a limit cycle.
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Definition. An isolated periodic orbit ¥ of a DE z' = f(z) in R?, is called & stable limit
cycle if there exists a neighborhood U of y such that w(a) = for alla € U.

The Poincaré-Bendizson Theorem

(Consider t‘fhe DE &) = =y, 5= —%1+ (1—22— ia:%)a:g. Let V(zg,22) = z+zi. It
follows that V{(z1,z2) = (1 — zi — %Ié)lg On the cirele Cy @ o2 + 22 = 1, it follows that
V(i 22) = 225 2 0. On the circle Cy ; 23 + a3 = 4 we have that V(zy,x) = —32fa3 <0

It follows that the annulus S bounded by C and Oy is a trapping set. Thus for any initial
state o € 5, the w-limit set w(e) must be a whole orbit (or the unjon of whole orbits), we
conjecture that w(a) must be a periodic orbit. The validity of this conjecture constitutes the
Poincaré-Bendixson Theorem.

Before discussing the theorem, we need a few preliminary concepis.

Definition. A local section of the flow of a DE in R? is a smooth curve segment & such

(hat the vector field [ of the DE satisfies n - f#£0on %, where n is normal to .

Clomment: This implies that no equilibrium points of f lie on X, and by continuity, that
orbils pass through ¥ in one direction only.

Defnition. Let @ be a regular (ie, pon-equilibrium) point of the flow Le., Fld =2 0.
Let T be a local section through z. A flow-box for = is a neighborhood of x of the form

I = {gﬁEl 12| < 5} for some ¢ > (.
Finally we need the following ﬁroperties of w-limit sets:
1. w(a) is the union of whole orbits,
2. wla) is a closed set,
3. if w(a) is bounded, then w(a) is connected (i.e., is not the union of disjoint sets),
4. the following Lemma.

Lemma (Fundamental Lemima on w-limit sets in R?). Let w(a) be an w-limit set of
a DE in RY ITy € w(a), then the orbit through u, ¥(y), cuts any local section % In at most
one point. .

Proof. [cf. Hivsch and Smale, Proposition 2, page 246, [1]] also [cf. Hale, Corollary 1.1, page
53, (4] 0
Clomament: The Lomma is not valid for a flow in R? (a local section is a smooth gurface

segment, for a flow on a 2-torus).
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Theorem (Poincaré-Bendixzon). Let w(a) be a non-empty w-limit set of the DI &' =

flz) mnR?, where f € (', fw(a)isa bounded subset of R? and w(a) contains no equilibrivm

points, then w(a) is a periodic orbit.

Proof. [cf. Hirsch and Smale, Chapter 11, [1)] &
In applications it is often convenient to use the following Corollary of the Poincare-

Bendixson theorem.

Corollary. Let I be a positively invariant subset of the DE 2’ = f(a) in R, where f € O

If K is a closed and hounded set, then K contains either a periodic orbit or an equilibriumn

point.

There is one Turther result which can help to locate isolated periodic orbits.

Propaosition 21. Any periodic orbit of a 1 DE on R? encloses an equilibrium point.

The Van der Pol DE and Liénard,’s Theorem

Tn 1922, a Dutch scientist, Balthasar van der Pol, published a paper concerning oscilla-
tions in radio circuits containing triode valves (now obsolete). The analysis was based on
the DE

" 4+ p(z® — D' + 2 =0, p>0 (87)
now known as the van der Pol DI, and used as a simple model for systems which can
undergo self-sustained oscillations. The French scientist Alfred Liénard, was also interested
i1 selfsustained oscillations and in 1928 published an analysis of a DE with a more general
dissipative term:

" 4+ glz)z' + 2 =0, (38}

now known as Liénard’s DE.
If we let Gi(z) = [ g(s) ds then the Liénard DI s equivalent to

= oy = Bl gl = =iy (89)

where, in the case of the van der Pol DE, Gy(z) = p{i2® — z). The existence of an isolated
periodic orbit of (89} depends on the shape of the vertical isocline, which is given by @ =
G(z1). The requirement is that this curve should be qualitatively the same as the van der
Pol isocline, i.e., zy = Gp(2y) for large =1 and for zy close to 0.

Following Liénard, consider the following conditions:

L1: G is an odd function,
L2: lim, o Glz) = ‘oo, and there exists § > 0 such that G(z) » 0, G'(x) > 0 for & > J.
L3: There exists an ¢, with 0 < a < A, such thaf Gz) <Ofor 0 <z <

The corollary to the Poincaré-Bendixson theorem can then be used to prove the existence of
o periodic orbit of the DE (89).
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Theorem (Liénard). Jf G satisfies conditions Li-L3, then the DE (88) admits a periodic
orbit. ‘
Proof. lcf. Hale, pages 57-59, [4]] 0

Commment: 1f o = 8, in conditions L2 and L3, it can further be shown that there is a unique
periodic orbit, which attracts nearby orbits. [cf. Hale, Theorem 1.6, page 60, [4]]

The Pundamental Theorem for w-limit sets in R?

The {fundamental property of an w-limit sel is that it consists of one whole orbit, or that
‘(i the union of more than one whole orbit. The simplest situations are

o w(a) is an equilibrium point, 1.e., the system approaches an equilibrium state as ¥ -

+o0;

s w(a) is a periodic orbit, i.e., the system approaches an oscillatory steady state as
t — oo

Iy order to motivate the fundamental theorem for w-limit sets in R?, we begin by dis-
cugsing an example in which the w-limit set is the union of two orbits, giving an example of
a cycle-graph.

Consider the DE

, . 1
 ih =.m, zl = 2ay — 32l — pxa(xd — i + §x§)7 (90)

For = 0, this reduces to a Hamiltonian DE with

ff(iﬂl ) 3.’52) =

We wish to sketch the portrait of the orbits when p is positive but close to 0, so that the
DE (90) can be thought of as a perturbation of the Hamiltonian DE. The portrait for the
case ji = 0 is given in Fig. 14.
We use H as given by equation (91) as a Liapunov function for the DE (90). It follows
that
H(zy,x0) =VH-[= —2uzy H (21, T2). (92)

Hence, since H = 0 when H = 0, the Jevel set H = 0 consists of orbits of the DE (as is
the case when g = 0), Thus the set S = {{z1,29) {H £ 0,21 2 0} is a closed and bounded
posilively invariant set. Also, it follows from equation (92) that if g >0, then H > 0in S
and hence the orbits in S cross the level sets H{zy,m) = C < 0in the outward direction.
Farther we can apply the Global Liapunov theorem to H on the set S to conclude that for
any initial state a 1 the interior of 5 (except for the equilibrium point), the w-limit sot is
the wnion of the homochnic orbit and the equilibrium point (0,0). This justifies the second

plase portrait in Fig. 14 This w-limit set, which is the union of two orbits, is an example

of a cycle-graph.
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w(a)

N P

N ~/ 1
K H <0 \

homoclinic orbit

Figure 14: Phase portraits for =0 and p # 0.

Comment: [t is of interest to describe the behaviour of a solution which corresponds to the
above orbit v(a), as ¢ — +oc. The functions z1(1), 22(1) are not asymptotically periodic.
The reason for this is that at an equilibrium point, the velocity of the point (z, (1), z2(1))
in state space (ie., the vector field f) is zero, and thus (1(t), z2(t)) lingers pear (0,0) for

successively longer time intervals as & — +00.

The Fundamental Theorem

[t us give some more examples of invariant sets (i.e., unions of orbits) which can arise
as w-limit sets in R?, (See Fig. 15). and some Invariant sets which cannot arise as w-limit
sets. (See Fig. 16). The four invariant sets in Fig. 15 are examples of cycle graphs.

o B OO0

{4 orbits) (6 orbits) (3 orbits) (4 orbits)
Figure 15: Examples of unions of orbits which can arise as w-limit sets in RZ.

Definition. A cycle graph 5 of a DE =’ = f(z) in R? ig a connected union of orbits such
that

1 forall z € 5, w(z) = {p} and a(z) = {¢}, where p and ¢ are equilibriumn points in 5.
2. for all equilibrium points p € 5, there exists points ©,y € S such that w(z) = {p},

afy) = {¢}, and the number of equilibriunt points i S is finite.
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e ) (OO
(3 Orbits) (4 orbits} (4 orbits) (5 orbits)

Figure 16: Examples of unions of orbits which cannot arise as w-limit sets in R”.

9 the orientations of the orbits define a continuous closed path in S.

Comment: Tn 1 and 2, oz) denotes the o-limit set of the point z, which is the set of past

limit points of z, 1.e.,

. n :
a(r) = {y]y = lim gtz and t, - ~oo}. (93)
We can now state:

Theorem. Consider a DE 2’ = f(z) in R?. Let a € R? be an initial point such that
olalt > 0} lies in a closed bounded subset K  R% If K contains only a finite number of
equilibrium points then one of the following holds:

7. wla) is an equilibrium point
2. w(a) is a periodic orbit
3. w(a) is a cycle graph.

Proof. The proof is based on the faundamental lemma of w-limit sets 1n R? [cf. Hale,
Theorem 1.3, page 230, [4]] also [¢f. Lefshetz, page 230, [7]]. O

Clomment: This theorem does not generalize to DEs in B, n > 3, or to DEs on the 2-torus.
Indeed, the problem of describing all possible w-limit sets in R, n = 3, is presently unsolved.

6 STRUCTURAL STABILITY AND
BIFURCATION THEORY

Structural Stability

[n the theery of DEs, the word “stability” arises in two contexts, distinguished by the
names Liapunov Stability and Structural Stability. Liapunov Stability Question: If a given
physical system is perturbed from an equilibrinm state, or from an oscillatory steady state,
does the system remain close? M athematically, one is concerned with the behaviour of orbits
i a neighborhood of an equilibrium point, or of periodic orbit.

On the other hand, the second concept arises from the Structural Stability Question:
Consider the NE 2/ = f(z) in R", with flow gt. Suppose that the vector field f(x) is
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perturbed, giving a vector field f(z), and the DE 2’ = F(z), with flow gt Is the low ot
topologically equivalent to the dow g*? In particular is the long-term behaviour of solutions
of the two DEs the same? If the answer is NO, we say that the given vector field is structurally
unstable (formal definition to follow).

We now give three examples of vector fields which are structurally unstable, thereby

motivating three necessary conditions for structural instability.

Example.
Given DE: By = &, iy = e (one singular point)
Perturbed DE: ) = —p + 1y, 25 = —z? with z > 0 (two singular points)

As g — 0% the flow g' of the perturbed DE reduces to the flow g' of the given DE. However

for ¢ > 0, &' is not topologically equivalent to g. This shows that the given vector field

DE) is not structurally stable. The instability is due to the fact that the equilibreum poind
Y Y q i

(0,0) of the given DE 1s not hyperbolic, i.e., Df(0,0) = ( 8 _{}1 )

Example.

Giiven DE: r' = —r{r? —1)7, 9 = —1

Perturbed DE: 7' = [u— (r* — 1)*r, & = -1 with p >0,
in polar coordinates (r,0). The flow g° of the perturbed DE is not ¢ pologically equivalent
to the flow gt of the given DE (since &' has two periodic orbits, and gf has ouly one). This
shows that the given vector field (DE) is not structurally stable, The instability is due o
the fact that the periodic orbit r = 1 does not atlract or repel orbits 4n some neighborhoods.

Example.
Given DE: 1= —al+1, zp=2m2s
Perturbed DE: 27 = —z2 + 1, b = 212y — {1 — x7), with ¢ > 0.
The orbit which “joins” the two saddle points in the phase protrait of the given DE is called
o saddle connection. Since the saddle conmection is broken when g > 0, the flow of the
perturbed DE is not topologically equivalent to the flow of the given DE. This shows thal
the given vector field (DE) is not structurally stable. The instability is due to the presence
of the saddle connection.

Definition of Structural Stability

The statement “a vector field § is a perturbation of a vector field 7 means that the
difference f — f is small in some sense. [n order to make this precise, one needs to define the
norm of a vector field. For simplicity, we restrict our considerations to a bounded subset of
R™

Let C'1{D) denote the set of 1 vecior fields which are defined on the subscsy 7 C R™
where D = {x c R x|l < R}, i.e., the solid sphere of radius R. We define a norm on

C'Y(D), called the C' '—norm, by
£l = max| ) + max DS (=),
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where

df;(x)
83%- )

If1l = f}gj@g‘; | (2 iDf{z)|| = max

1<5,k<n

We now use this norm to define structural stability.

We resirict our consideration to vector fields in C YD) which point inwards on the
boundary of D; so that D 1s a positively mmvariant set for the DE 2’ = f(z). It is not
essential that D be a solid sphere. We could use any subset of R™ that is homeomorphic to

D.

Definition. A vector field f € C'(D) which points inwards on the boundary ng is said to
bestructurally stable on D if there exists an € > { such that for all vector fields f(z) € CY(D),
U_f - ;FH < ¢, then the flow determined by f is topologically equivalent to the flow determined

Y E

Structural Stability in 2-D

The previous three examples suggest that the following conditions are necessary for
[z} € CY(D) to be structurally stable on D:

6G1: All equilibrium points are hyperbolic

§52: All periodic orbits are hyperbolic

§453: There are no saddle connections.

i the above, equilibrium points ete., refer to the DE determined by the vector field, i.e.,

p = [(a). These three conditions are m fact also sufficient in two dimensions as stated 1n

the following theorem.

Theorem. Suppose that the discD = {”ch \z|| < R} C R? is a positively invariant set for

the DE z' = f(x). Then the vector ficld f(z) is structurally stable on D if and only if

conditions S51, S52, and 553 are satisfied.

Proof. [cf. Andronoy and Pontrijagin, pages 247-251, [8]] 0
The next question that arises is: Arve “rmost” vector fields structurally stable, or are

only a small subset structurally ctable? In the 9-I) case it was proved by Peixoto in 1962

fhat “most” vector fields are in fact structurally stable [9], where “most” has the following

meaning. .
Let (' 3{D) be the set of O vector fields on D = {’E € Rzl kel < R} which point inwards
on the houndary of D. Then we can state

Theorem. The subset C 3(D) which consists of all vector fields which are structurally stable
on D is an open and dense subset of G,

Proof, [cf. Peixoto, pages 101-120, [9]] ' O
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Comments:
1. “Open” and “Dense” are defined n terms of the (' lonorm'in O A (D).
P §

9 We have not defined formally the term hyperbolic periodic orbit. A periodic orbit s
hyperbolic if it attracts (or repels) all orbits 1o some neighborhood, at an exponential
rate. This can be expressed analytically in terms of el genvalues of a certain matrix. [cf.
Hirsch and Smale, Theorem 2, page 277, [1]]. (They use the term “periodic attractor
(repellor)” for hyperbolic periodic orbit.)

Bifurcetions of Equilibria

“onsider a DE in R™ of the form 2’ = f(z, u) where u is a real parameter. Here f maps
R* xR — R", and hence, for each value of 1, defines a vector field on R™. Bifurcation theory,
as applied to DEs, is the study of how the portrait of the orbits change as p varies. One 1s
interested in finding the values of p for which a qualitative change in the orbit occurs. One
thus considers values of u for which the vector field Flz, 1) is not structurally stable.

Definition. A value po for which the vector field fla, ¢} is not structurally stable (on a

suitable disc) is called a bifurcation value of 4.

The simplest bifurcations are those for which the lack of structural stability is due to the
presence of a non-hyperbolic equilibrium point. Let us consider a simple bifurcation in one
Jimension that occurs when an equilibrium point has a zero eigenvalue.

Example. Consider the DE &' = pz—x> where z € R and p is a parameter. The equilibrium
points are given by w(u — z?) = 0 (See Fig. 17).

X

p=py<0 n=0 p=py >0

Figure 17: Bifurcation diagram for the DE o' = px — a°.



Clomments:

1 The result of this bifurcation is the creation of two new equilibrium points, and a
transfer of stability to the two new points. For obvious reasons, this is called a pitchfork

bifurcation.

59 Other kinds of bifurcation in 1-D include the creation of two equilibrium points from

one (called a saddle-node bifurcation in 2-D) [eg, 2 =p—2* TE€ R], or the transfer

of stability between two equilibrium points (called a transcritical bifurcation), [e.g.,
/ 2

o= pr—x x€R]

3. Often, the problem of identifying these bifurcation values in higher dimensional DEs

can lead to lengthy algebra.

The Hopf Bifurcation

Consider the DE in polar coordinates r' = (1 — P, 8 =11 R?. There is an
equilibrium point at » = 0. For p > 0, r = /p defines a periodic orbit of the DE. in
addition, the linearization at the equilibrium point r = 0 1s Df(0,u) = ,ul v ) which

implies that r = 0 is an attracting spiral if ¢ < 0 and a repelling spiral if 4 > 0. Also note
that if & < 0 then ' < 0 for all 7 > 0. The portraits in the cases g < 0, p = 0, and p > 0 are
shown in Fig. 18. The information m these portraits can be presented more concisely 1 a
bifurcation diagramin the pr-plane. (See Fig. 19.) Note that p=01s the biurcation value.
The result of this bifurcation is 1) the creation of a stable equilibrium point, 2) the transfer
of stability from an equilibrium point to a periodic orbit. This is the simpliest example of a
Hopf bifurcation.

Ope can rotate the previous diagram about the -axis (to include the angular variable
0) to obtain a bifurcation diagram which shows the actual orbits. (See Fig. 20.)

A %

.

1
\\
)

D 8

w<h p=l B

\\

Figure 18: Phase portraits for the DE ' = (g — r?)r for differing values of ji.



l_,[ = 1‘2
attracting (
spiral 6 attracting periodic orbit
L=<0)
el repelling spiral (L < 0)
- -~ B

n=u,<0 =0 L=y >0
Figure 19: Bifurcation diagram for the DE = (- r?)r.

X3

2
PRSI T S

\\\——-}.L=].L2>0

Figure 20: 3-D Bifurcation diagram for the Hopf bifurcation.

Theorem (Hopf). Consider the DEz' = f(z, 1) in R?, where f € C'3. Suppose f(0, 1) =0
for all € I C R, and that D (6, u) has eigenvalues alp) +1ip(p). If

H1: there exists po € I such that a{pe) =0, B(uo) # 0, o' (ko) # 0

ﬁZ: the equilibrium point x = 0 is not a noulinear center when pt = po

then

C: there exists a § > 0 such that for each g € (po, po -+ 8) or p C (o — & pio), the DE has a
unique periodic orbit (when restricted to a sufficiently small neighborhood of @ = 0).

Proof. [cf. Hopf, vol. 94 , pages 1-22 and vol. 95, pages 3-22, [10]] 0
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Comments:
1. The hypothesis H1 guarantees that the equilibrium point z = 015 non-hyperbolic when
= jio, and changes stability at g = po.

2. The hypothesis H2 excludes the degenerate case, in which all the periodic orbils oceur
al jo = jtg, as in the linear case (for example T7 = pzy + 22, xh = —x1 + pry.)

The Hopf theorem can be generalized 1o higher dimensions. The essential requirement is
that the derivative matrix has one pairof pure imaginary eigenvalues and no other eigenvalues
with zero rcal part. [cf. Guckenheimer and Holmes, page 151 [2]]

7 HIGHER DIMENSIONS

Invariant Tori and Quasiperiodic Orbits

Consider the motion of an undamped symmetric 9-mass oscillator, whose motion can be
deseribed by the DIS

! 7 ! }
o) = wizy, @y = —wiTy, I3 T WSy, T4 T —WweTa. (94)
Our goal is to describe the w-limit set w(a) for a given initial state a € R*. We let

ry =risindy, xy=ricosdy, Zg=T2 sin 0y, 24 = 71 c080;, (95)

where 0, aud 0, assume values befween 0 and 27, and the values 0 and 27 are identified
since they describe the same points in R*, The DE becomes

P=0, #=uw, rp=10 0, = w,, {(96)
The solutions are
™ = C-l’ § = oy + wlt, Ty = C:Z 92 — ¥y -+ tUgt, (97)

where the constants Ch, O, ary, o are determined by the initial state. The orbits of the DE
thus lie in the 2-surfaces ry = Cy, vz = Ca. Since these surfaces are parameterized by two
variables @ and @3 which have values modulo 27 (0 and 27 are identified), each 2-surface
with € > 0 and Cy > 0 15 a 2-torus. We note that these tori are invariant sets of the DE
since they are unions of orbits. The nature of the orbits on each 2-torus depends on the
values of the two constants w; and ws, which are the two natural frequencies of oscillation
of the physical system. In order to illustrate this suppose that w; = %, wy = 1. (See Fig.
21.)

More generally, suppose that %= = o where m,n are positive mtegers without common
factors, I T = &2 = %, then the solutions (97) satisfy

ey

0,(t +T) = 0 (t) + 2rm = 0.(t) (mod2r)
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Figure 21: Plane representation of a 2-torus (= and [f identified). The diagram shows an
orbit corresponding to ayp = oy = 0 in the solution. The points with the same number are
identified, which shows that the orbit is periodic.

0:(t +T) = 61(t) 4 2mrn = 8,(¢) (mod2w)

Thus the solutions are periedic of period T. The corresponding orbit on one of the invanant
tori is thus periodic, and eventually closes up as it winds around the torus.

On the other hand, if 2> 1s irrational, then the orbits are not periodic, and hence do not
close up as they wind around the invariant tort. What is not immediately obvious is that as
the orbit winds around the torus, it passes arbitrarily close to cach poiné of the torus. We
say that the orbit js everywhere dense on the torus. [cf. Arnold, [11]]

We summarize the results as follows.

Proposition 22. Consider the DE on the 2-torus defined by 8 = w1, 82 = wa.
1o e s rational, then the orbits are periodic.

2. if ¥ js irrational, then the orbits are everywhere dense on the 2-torus.

We can now draw the following conclusion concerning the w-limit sets of the original DIS
(94). Consider an initial state a = (a1, 02,03, a5) € R* and let Gy = al+ad, Ch=d3+ai.

1. JE2k I8 rational, and Cq, 02 > 0, then w(a) is the periodic orbit ~(a) which lies on the
2-torus r, = Cq e = Ch.

2. If & is irrational, and b, Gy > 0, then w(a) is the 2-torus r = Oy 7y = G

Note that in case 2, w(a) is the union of an uncounbable infinity of whole orbits, inchiding

the orbit through a.



Quasipertodic orbils

We now discuss the type of functions which describe the solutions of a DE for which the
w-limit set s a 2-torus.
Definition. Suppose that W : R? s R” js periodic of period 2w In each argument. Suppose

thal wy,wy € R are rationally independent, i.e., niwy -+ N2z +£ ( for all non-zero integers
ny,ny. LThen the function f : R — R" defined by f(t) = W{wt,wat) is said to be 2-

gnasiperiodic.

Example. Consider the DI == A in R* where

0 Ly 0 0
. —LlN G 0 0
ae= 0 0 0w

0 0 Ll 0

Note the DE is linear and we can write the the solution 2(t) = e** where

A ( B(wlt) 0 )
¢ 0 Blwt) |

cosf  sind )

—sinf cost

B(8) = (

Thus we can write z(t) = U{wit,wpt)a with ¥ R? — R*

; _{ Blui) 0
\I(u17ug)w( 0 B(uz))

and is periodic of period 2w In each argument. Thus if wy,w; are rationally independent,
and the imitial siate a satisfies af + a3 # 0, al + a} # 0 then the solution z(t) is a 2-
quasiperiodic function. The orbit through a, v(a) is dense on the two torus defined by
2t tal= a?+ a3, 2+ zi = al + aj, and is called a 2-quasiperiodic orbit.

Attracting Sets and Long-Term Behaviour

Intuitively, an attracting set is a generalization of an asymptotically stable equilibrium
point or periodic orbit.

Definition. Given a DE o = f(z) in R", a closed invariant set A C R™ is said to be an
attracting set if there exists & neighborhood U of A such that

1. gt QU forallt 20

2. wla) CAforallael,

where gt is the flow of the DE, and w(a) is the w-limit set of the point a.
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Definition. The basin of attraction of an attracting set A 1s the subset of R" defined by
p(A) = {x € RM"w(z) C A}.

Tf & DE has an attracting set A, then for all initial states a in the basin of attraction p(A)
the physical system approaches a “steady state” of some sort. The nature of the steady state
is determined by the orbits which form the attractor. Some possibilities are summarized 1n
the table to follow.

Attracting Sets Long-term steady-state behaviour
Hquilibrium Point Equilibrium State
Periodic Orbit Periodic

Invariant 2-Torus with dense orhits | 2-Quasiperiodic
Invariaut k-Torus with dense orbits | k-Quasiperiodic
“Strange Attractor” “Chaotic” (none of the above)

Comment: Chaotic behaviour and Strange attractors are subjects of current research, and
as vet there is no agreement on the definitions of the concepts. A Strange attractor is not
a piecewise smooth surface, and can have a structure like that of a Cantor set. Chaotic be-
haviour occurs when neighboring orbits diverge (separate) from each other at an ex ponential
rate, while remaining bounded, a phenomenon that is referred to as “sensitive dependence
on initial conditions”. [cf. Milnor, pages 177-195 [12]; Auslander, Bhatia, and Siefert, pages
55-56 [13]]

The previous example which admits invariant 9-tori does not admit an attracting set
the invariant 2-tori do not atiract neighboring orbits. Likewise, a linear DE in R* with «
centre does not admit an attracting set. But just as one can use non-linearity to create an
attracting periodic orbit, one can also create an attracting 2-torus.

Example. Consider the DE in R*,

2l = wzy+ (g —r?)
oh = —wzy b za(p— 1)
zh = vzq+ 2s(A - &%)
zh = wvzsz+ za{A— B

with r? = 22 + 22 and R? = z} -z}, and w,v, p, A constants.
In terms of “polar coordinates”
2y =rsind, xz;=rcosl, xz3=Rsing, 4= Hcost,
the DI bevomes ,
v = (u—rr, 8! =ty
R’l = ()\ —= RQ)R’ 'lp" = /.

It follows that if 2 > 0 and A > 0 then the equations r = and = VX define an attracting
set which is an invariant 2-torus. If in addition, w and v are rationally independent, then the
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orhits on the 2-torus are dense on the 2-torus. Thus the long-term behaviour of the system
wonld be quasiperiodic (with two frequencies).
The next step in understanding the Jong-term behaviour 1s to study examples which

exhibit chaotic behaviour.
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