II. THE THEORY OF DYNAMICAL SYSTEMS

We shall begin by presenting a brief review of the qualitative theory of ODE (169, 181, 182, 373], with particular
emphasis on those aspects of the non-linear theory of importance in cosmology. Let us consider the system of ODE,
or more briefly the DE, of the form

z = f(z), (2:1)
dz

where 2’ = G, 7 = (z1,-+-,2.) € R" and f : R® — R", where we shall assume that f is (at least) C'* on R™. Since
the right-hand-side of (2.1) does not depend on t explicitly, the DE is called autonomous. In general f will be a
non-linear function, but if f is linear, i.e., '

f(z) = Az, (22)

where A is an n X n matrix of real numbers, then the DE is said to be linear. The vector z € R™ is called the
state vector of the system, and R" is called the state space or phase space. The function f can be interpreted as a
vector field on R™, since it associates with each z € R™ an element f(z) on R", which can be interpreted as a vector
) =(fulz); -+ fn(z)) at z. A solution of the DE (2.1) is a function v : R — R” which satisfies

¥'(t) = f(¥(t)), (2.3)

for all ¢ € R in the domain of 9 (which may be a finite open interval). The image of the solution curve ¥ in R™ is
called an orbit of the DE. Equation (2.3) implies that the vector field f at z is tangent to the orbit through z. The
evolution of the system in time is described by the motion of a point z € R™ representing the state of the physical
system along an orbit of the DE in R™.

In general we cannot hope to find exact solutions of a non-linear DE (2.1) for n > 2. Consequently qualitative
methods, perturbative methods, or numerical methods, must be utilized to deduce the behaviour of the physical
system. The aim of gualitative analysis is to understand the qualitative behaviour (such as, for example, the long-
term behaviour as t — c0) of typical solutions of the DE. Exceptional solutions such as equilibrium solutions or periodic
solutions, and their stability, are also of interest and can be important for determining the long-term behaviour of
typical solutions.

The zeros of the vector field, or equilibrium points of the DE (2.1), are points a € R™ such that

fla)=0. (2.4)

Equilibrium points are also referred to as singular points or fixed points. If f(a) = 0, then %(t) = a, for all ¢ € R,
and it is a solution of the DE, since

¥ () = F(¥(t)) , (2.5)

is satisfied trivially for all ¢ € R. A constant solution ¥(t) = a describes an equilibrium state of the physical system.
In order to study the stability of equilibrium states it is necessary to study the behaviour of the orbits of the DE
close to the equilibrium points, and hence we consider the linear approximation of the vector field f : R® — R™ at an
equilibrium point. We shall consequently assume that the partial derivatives of f exist and are continuous functions
on R™ (i.e., that the function f is of class C'}(R™)).

The derivative matriz of f:R™ — R" is the n x n matrix Df(z) defined by

Df(ﬂ:):(g?f;), ‘I.,j=1,"',ﬂ., (26)

where the f; are the component functions of f. The linear approzimation of f is written in terms of the derivative
matrix:

f(z) = f(a) + Df(a)(z - a) + Ri(z, a), (2.7)

where D f(a)(z — a) denotes the n x n derivative matrix evaluated at a, acting on the vector (z — a), and Ry (xz, a) is
the error term such that if f is of class C'! then the magnitude of the error ||R;(z,a)| tends to zero faster than the
magnitude of the displacement ||z — a|| (where the Euclidean norm on R™ is defined by ||z|| = vZ12+ -+ + Za2). If
a € R" is an equilibrium point of the DE (2.1), using (2.7) the DE can be written in the form

' =Df(a)(z — a) + Ri(z, a). ' (2.8)



Defining u = z — a, the linear DE
w' =Df(a)u, 9)

which is called the linearization of the non-linear DE at the equilibrium point a € R™, can be associated with the
non-linear DE. In general solutions of the linear DE approximate the solutions of the non-linear DE near z = a
(although in special situations the approximation can fail).

A. Linear Autonomous Differential Equations

The matriz SET‘Z-BS, called the ezponentmt of A, is defined by
=T A - AZ . A3 = E ‘1 Ak 2.10
e“l = + + _! + _' + —— . ._! § ( A )

where A is an n x n real matrix, I is the n x n identity matrix and A2 = A A (matrix product), ete. A matrix series
is said to converge if the n? infinite series corresponding to the n? entries converge in R. The exponential matrix, e,
converges for all n x n matrices 4 [181]. -

A similarity transformation (which corresponds to a change of basis), defined by
B=PlAP : (2.11)

where P is a non-singular matrix, can be effected to simplify A by writing it in a (Jordan) canonical form. Indeed,
for any 2 x 2 real matrix A, there exists a non-singular matrix P such that

J = P_IAP, (2.12)

(32)(22) (5
0 ' \0A) \-Bal

Noting that if B = P~! AP then e? = P~le4 P, we can now calculate e for any matrix. In particular, we now
have a complete algorithm for calculating e for any 2 x 2 real matrix A.
Fundamental Theorem for Linear Autonomous DE. Let A be an n x n real matrix. Then the initial value problem

r' = Az, z(0) = a € R™, (2.14)

and J is one of the following matrices:

has the unique solution
_ z(t) = eta, for all t € R. (2.15)
The unique solution of the DE (2.14) is given by (2.15) for all ¢. Thus, for each t € R, the matrix e** maps
a— eta (2.16)

(where a is the state at time ¢ = 0 and e* is the state at time t). The set {e*},_p is a 1-parameter family of linear
maps of R™ into R", and is called the linear flow of the DE, denoted by

gt = el (2.17)

The flow describes the evolution in time of the physical system for all possible initial states. As the physical system
evolves in time, one can think of the state vector z as a moving point in state space, its motion being determined by
the flow gt = e*#. The linear flow gt = e*4 satisfies the properties g° = I and ghi+t2 = ght o g'2 (which also hold for
- non-linear flows), which imply that the flow {g*} +cR forms a group under composition of maps. The flow gt of the
DE (2.14) partitions the state space R™ into subsets called orbits, defined by

v(a) = {g'alt € R}. (2.18) .

The set y(a) is called the orbit of the DE through a and is the image in R™ of the solution curve z(t) = et4qa. It
follows from the uniqueness of solutions that for a,b € R™, either v(a) = v(b) or v(a) N~(b) = 0.
Orbits of a DE can be classified as follows:
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1. If g'a = a for all t € R, then vy(a) = {a} and it is called a point orbit. Point orbits correspond to equilibrium
points.

2. If there exists a T > 0 such that g7a = a, then 4(a) is called a periodic orbit. Periodic orbits describe a system
that evolves periodically in time.

3. If g'a # a for all t # 0, then (a) is called a non-periodic orbit.

We note that non-periodic orbits can be of great complexity for linear DE if n > 3 and for non-linear DE if n > 2.
In addition, since a solution curve of a DE is a parameterized curve it contains information about the flow of time t.
The orbits are paths in (or subsets of) state space and orbits which are not point orbits are directed paths with the
direction defined by increasing time. Hence, the orbits do not provide detailed information about the flow of time. For
an autonomous DE, the slope of the solution curves depend only on z and hence the tangent vectors to the solution
curves define a vector field f(z) in z-space and infinitely many solution curves may correspond to a single orbit. A
non-autonomous DE does not define a flow or a family of orbits.

Given a linear DE 2/ = Az in R"™, we can introduce new coordinates by y = Pz, where P is a non-singular matrix,
and a new time variable 7 = kt, where k is a positive constant. It follows that y’ = By, where B = tPAP~!, and
the linear DE 2’ = Az and 2’ = Bz are said to be linearly equivalent if

A=kP'BP. (2.19)

This condition ensures that the linear map P maps each orbit of the flow et* onto an orbit of the flow e'B. Two
linear flows €4 and e*® on R™ are said to be linearly equivalent if there exists a non-singular matrix P and a positive
constant k such that

Pet4 =eftB p forall t € R. - (2.20)

We can now consider the three cases corresponding to the three Jordan canonical forms for any 2 x 2 real matrix A.
CASE [: If A has two independent eigendirections, then there exists a matrix P such that J = P AP!, where

A1 0
J= .

It follows that the given DE is linearly equivalent to 4’ = Jy. The flow is

At
tJ _ (> 0
= _( 0 e)‘“‘)'

where the eigenvectors are e; = (1,0)T and e; = (0,1)7. The solutions are y(t) = e!/b, b € R?, i.e., y1 = eMith

; %
and y, = e*%by. By eliminating ¢, we obtain (‘E‘)}T = (g—:*) , ifbiba#0o0ry; =0ifby =0,y =0if by =0.

These equations define the orbits of the DE 3’ = Jy. The various cases are illustrated in Fig. (1): Ta. A\, = Ay < 0
Attracting Focus. Ib. A; < A2 < 0: Attracting Node. Ic. A\; < Ay = O: Attracting Line. Id. A; < 0 < As: Saddle. Ie.
A1 =0 < Ag: Repelling Line (time reverse of Fig. (Ic)). If. 0 < A; < A2: Repelling Node (time reverse of Fig. (Ib)).
Ig. 0 < A1 = A2: Repelling Focus (time reverse of Fig. (Ia)).

CASE II: If A has one eigendirection, then there exists a matrix P such that J = P A P~!, where

(1)

It follows that the given DE is linearly equivalent to ¢’ = Jy. The flow is

ettt 18]
01/

and the single eigenvector is e; = (1,0)T. We note that if A # 0, the orbits are given by y; =
Yo [%;- + 3 log %f—] , ifba#0,0ry; =0if bp = 0. These cases are illustrated in Fig. (2): Ila. X\ < 0: Attract-
ing Jordan Node. IIb. A = 0: Neutral Line. IIc. A > 0: Repelling Jordan Node (time reverse of Fig. (IIa)).
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FIG. 1: The phase portrait of the 2-dimensional linear autonomous DE in (Jordan) canonical form which depicts orbits close to
the equilibrium point at the origin in case I of two independent eigendirections: (a) Attracting Focus, A1 = A2 < 0 (the portrait
in the case of a Repelling Focus with 0 < A; = A2 is the time reverse of this portrait). (b). Attracting Node, A1 < A2 < 0 (the
time reverse is the case of a Repelling Node with 0 < A; < Az). (c) Attracting Line, A1 < Az = 0 (the time reverse is the case
of a Repelling Line with A; = 0 < A2). (d)'Saddle, A1 <0 < Aa.

CASE III: If A has no eigendirections, then there exists a matrix P such that J = P A P~!, where

r={ 52).

It follows that the given DE is linearly equivalent to ¢’ = Jy. The simplest way to find the orbits is to introduce polar

coordinates (r,6): y; = rcosé, and y, = rsinf. The DE becomes ' = ar and ¢’ = —3. It follows that % = --g—r

which can be integrated to yield r = rge™# (%) Without loss of generality, we can assume 3 > 0, since the DE is
invariant under the changes (3,31) — (=3, —v1). Thus lim;—,o § = —co (counterclockwise rotation as t increases).
These cases are illustrated in Fig. (3): IIla. a < 0: Attracting Spiral. IIlb. a = 0: Centre. IIlc. a > 0: Repelling
Spiral (time reverse of Fig. (IIIa)).

1. Topological Equivalence

Under linear equivalence, two dimensional flows can be simplified in that they can be parameterized by one real-
valued parameter and several discrete parameters (e.g., the number of independent eigenvectors). Linear equivalence
thus acts as a filter, which retains only certain essential features of the flow, such as the behaviour of the orbits near
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FIG. 2: The phase portrait of the 2-dimensional linear autonomous DE in (Jorda.ﬁ) canonical form in case II of one independent
eigendirection: (a) Attracting Jordan Node, A < 0 (the case of a Repelling Jordan Node with A > 0 is the time reverse of this
portrait). (b) Neutral Line, A = 0. :
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FIG. 3: The phase portrait of the 2-dimensional linear autonomous DE in (Jordan) canonical form in case III with no indepen-
dent eigendirections: (a) Attracting Spiral, @ < 0 (the case of a Repelling Spiral with o > 0 is the time reverse of this portrait).
(b) Centre, a = 0.

the equilibrium point (0,0). On the other hand, if one is primarily interested in long-term behaviour, one can use a
finer filter, which eliminates more features, and hence leads to a much simpler (but coarser classification). This is the
notion of Topological Equivalence of linear flows. ‘

For example, cases Ia, Ib, IIa, and IIla have the common characteristic that all orbits approach the origin (an
equilibrium point) as t — co. We would like these flows to be “equivalent” in some sense. For all of these flows, the
orbits of one flow can be mapped onto the orbits of the simplest flow la, using a (non-linear) map & : R? — R? which
is a homeomorphism (i.e., h is one-to-one and onto, & is continuous, and A~! is continuous) on R%. Two linear flows
e!4 and e*f on R™ are said to be topologically equivalent if there exists a homeomorphism A on R™ and a positive
constant k such that

h(e*4z) = e**Bh(z),  for all z € R™ and for all ¢ € R. (2.21)

In addition, a hyperbolic linear flow in R? is one in which the real parts of the eigenvalues are all non-zero (i.e.,
Re(Xi) #0, i =1,2). The following result is well-known: Any hyperbolic linear flow in R? is topalogically equivalent
to the linear flow €4, where A is one of the following matrices:
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1. A= ( _01 01 ) standard sink. 2. A= ( (1) 2) ; standard source. 3. A= ( _01 [1)) ; the standard saddle.

For non-hyperbolic linear flows in R?, it is clear that none of the 5 canonical flows [i.e., the centre, the attracting
and repelling lines, the neutral line and the neutral 2-space (A = 0)] are topologically equivalent (their asymptotic
behaviour as ¢ — oo differs). Thus, two non-hyperbolic linear flows in R? are topologically equivalent if and only
if they are linearly equivalent. Therefore, any non-hyperbolic linear flow in R? is linearly (and hence topologically)
equivalent to the flow et#, where A is one of the following matrices:

(20) (1) (33) (33) (53)

These five flows are topologically inequivalent.

2. Linear Stability

It is important to determine whether a physical system that is disturbed from an equilibrium state remains close
to (stable) or approaches (asymptotically stable) the equilibrium state as time evolves (t — co). First, we need the
following definitions

1. The equilibrium point 0 of a linear DE z’ = Az in R™ is stable if for all neighbourhoods U of 0, there exists a
neighbourhood V' of 0 such that g*V C U for all t > 0, where gt = e4,is the flow of the DE.

2. The equilibrium point 0 of a linear DE 2’ = Az in R™ is asymptotically stable if it is stable and if, in addition,
for all z € V, lim;—, [|g*z|| = 0. :

If A€ M,(R), it follows that

lim e*4a =0, forall a € R", (2.23)

t—o0

if and only if Re(A) < 0 for all eigenvalues of A. This means that if Re(\) < 0 then all solutions z(t) of the DE
z' = Az approach the equilibrium point 0 in the long term; i.e., z(t) — 0 € R", as t — oco. Thus if A € M, (R) is
such that Re(A) < 0 for all eigenvalues, then we say that the equilibrium point 0 of the DE 2/ = Az is a sink in R™.
If we replace A by —A and t by —t, we obtain the time reverse. Thus if 4 € M, (R) is such that Re()\) > 0 for all
eigenvalues, then we say that the equilibrium point 0 of the DE 2’ = Az is a source in R™. Finally, we note that if
A € M,(R) and if there exists a constant k such that all eigenvalues of A satisfy Re()\) < —k < 0, then there ezists a
positive constant M such that

l|et4z|| < Me™*|z|, for all z € R™, allt>0. (2.24)

We note that if the equilibrium point 0 € R™ is a sink of the DE 2/ = Az, then 0 is an asymptotically stable equilibrium
point.

B. Non-Linear Differential Equations

For non-linear DE, the flow usually cannot be written down explicitly. Indeed, the aim of dynamical systems is
to describe the qualitative properties of a non-linear flow without knowing the flow explicitly. Let us first state the
standard existence-uniqueness theorem for the initial value problem (IVP) for a DE in R".

Theorem (Existence-Uniqueness) [181] . Consider the initial value problem

z* = f(z); z(0) =a € R™. (2.25)

If f: R® — R” is of class C!(R"), then for all a € R”, there exists an interval (—4,6) and a unique function
e : (—6,8) — R" such that

Yo(t) = f(¥a(t)),  a(0)=a. (2.26)
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We note that if the hypothesis that f be of class C'! is weakened, then uniqueness may fail. The existence-uniqueness
theorem is a local result — it guarantees existence of a solution in some interval (-4, §) centered at ¢ = 0. Since we
are interested in the long-term behaviour of solutions, we would like the solutions to be defined for all ¢ > 0. We can
extend the interval of definition of the solution 14 (t) by successively reapplying the theorem, and in this way obtain
a mazimal interval of definition of the solution 1),(t). We shall denote this maximal interval by (a, B). We say that
the solution Y, (t) has finite escape time (3, if ||q(t)|| — +00 as t — By .

Theorem (Maximality). Let 14 (t) be the unique solution of the DE 2’ = f(z), where f € C 1(R™), which satisfies,
1%a(0) = a, and let (aq, Ba) denote the maximal interval on which v, (t) is defined. If 3, is finite, then [181]

Jim (@) = +oo. (2:27)

Therefore, for the DE (2.1), f € C'(R™), if a solution 14 (t) is bounded for ¢ > 0, then the solution is defined for
all t > 0. ,

A given DE 2/ = f(z), z € R", and f € C'(R™), can always be modified so that the orbits are unchanged, but such
that all solutions are defined for all ¢ € R, by re-scaling the vector field f (the velocity of the state point z):

f(z) = Al2)f(2), (2.28)

where A(z) : R" — R is a C''-function (a scalar) which is positive on R™ (in order to preserve the direction of time).
This rescaling does not change the direction of the vector field, hence the orbits are unchanged. However, one can
choose A so that ||Af|| is bounded; e.g., A(z) = (1 + || f(z)[|~*) [284].

Let us consider the DE 2’ = f(z), where f is of class C !, and the unique maximal solution which satisfies ¥.(0) = a.
The fiow of the DE is defined to be the one-parameter family of maps {g*} +cR such that g* : R" — R" and ga = 9, (t)
for all @ € R™. The flow {g*} is defined in terms of the solution function Ya(t) of the DE by

g'a = va(t). (2.29)

It is important to understand the difference between 1, (t) and gta: For a fired a € R™, v, : R® — R™ gives the state
of the system v,4(t) for all t € R, with ¥4(0) = a initially. For a fired t € R, gt : R® — R™ gives the state of the
system g'a at time t for all initial states a.

The solution function 1, (t) satisfies ¥ (t) = f(va(t)), ¥a(0) = a. Hence ¥,(0) = f(a). By definition of the flow,
it follows that :

%(g‘a) o f(a), ' (2.30)
which is simply a restatement of the fact that the vector field f is tangent to the orbits of the DE. If {g*} is the flow
of a DE z’/ = f(z), then the following two properties are satisfied:

g =1 (identity map) (2.31)
ghitts = gt o gt (composition) -
Thearstn (Smosthnessofa FIDW)[ISII- Iffe CI(R“), then the flow {gt} of the DE z/ = f(z) consists of C! maps.

Therefore, the solutions of the DE depend smoothly on the initial state. The orbit through a, denoted ~(a), is
defined to be ‘

v(a) = {z € R*|z = g'a, for all t € R}. (2.32)

As in the linear case, orbits are classified as point orbits, periodic orbits, and non-periodic orbits. Sometimes it is
convenient to work with the positive orbit through a denoted v+ (a) and defined by

T @)={z € ]R"|:c = g'a, for all t > 0}. (2.33)

Let us consider a physical system with initial state vector z € R™, whose evolution is described by a DE z/ = f (z)
which determines a flow {g*},_p. It is of interest to determine the long-term behaviour of the system as t — co,
starting at an initial state a w%en t = 0. The simplest behaviour is (i) the system, starting at state a, approaches
an equilibrium state as t — oo; i.e., lim;_. g'a = p. The next simplest behaviour is (ii) the system, starting at state
a, approaches periodic evolution; i.e., the orbit approaches a periodic orbit 4. In this situation, lim;_.o gta does not
exist, since the orbit does not approach a unique point. However, for any point p € v, we can choose a sequence of
times {t,}, with limy, . t, = oo, such that lim, .., gt*a = p. This motivates the important notion of a limit set.
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Consider the DE (2.1) in R", and the associated flow {g*} +cR- Given an initial point a € R", a point p € R” is
said to be an w-limit point of a if there exists a sequence {t,} with limy, .o tn = oo such that limp_, gira = p. The
set of all w-points of a is called the w-limit set of a, denoted by w(a). In cases (i) and (ii) above the w-limit sets of
- the initial point a is the equilibrium point p and the periodic orbit v, i.e., w(a) = {p} and w(a) = 7, respectively.
Determining the subsets of R™ which can be w-limit sets for a flow {g*} is a difficult question, and is unsolved if n > 2.
The following two results are useful for identifying w(a): (1) An w-limit set w(a) of a flow {g'} is a whole orbit of the
flow, or is the union of more than one whole orbit. (2) If the positive orbit through a, v*(a) = {gta|t > 0} is bounded,
then w(a) # 0.

1. Liapunov Theory

Given a DE z’ = f(z) in R™, a set § C R™ which is the union of whole orbits of the DE, is called an invariant
set for the DE. For example, for a Hamiltonian DE in R? the level sets H (z1,22) = k are invariant sets, since H is
constant along any orbit. More generally, a function H : R® — R of class C !, that is not constant on any open subset
of R", is called a first integral of the DE &’ = f(z) if H is constant on every orbit; i.e.,

%H(x(t)) = VH(z() - £(=(t)) = 0, | (2.34)

for all ¢ (using the chain rule and the DE). It follows that H(z) is a first integral of the DE 2/ = f(z) if and only if
VH(z) - f(z) =0, for all z € R", and H(z) is not identically constant on any open subset of R". If there is a first
integral (e.g., a Hamiltonian function) then the orbits of the DE are .contained in the one-parameter family of level
sets H(z) = k. - :

It sometimes happens that there is a function F : R® — R such that only a particular level set of F' is an invariant
set. Given a DE 2’ = f(z) in R", and a function G : R® — R of class C?, if VG(z) - f(z) = 0 for all £ such
that G(z) = k, then the level set G(z) = k is an invariant set of the DE. These invariant sets play a major role in
determining the portrait of the orbits.

Given a DE z’ = f(z) in R", with flow g*, a subset S C R™ is said to be a trapping set of the DE if it satisfies: (i)
S is a closed and bounded set, and (ii) a € S implies g'a € S for all t > 0. Hence if an orbit enters a trapping set
S it never leaves it, and for all a € S, the w-limit set w(a) is non-empty and is contained in S. Let V : R® — R be
C1(R™). We can calculate the rate of change of V' along a solution of the DE (2.1) by:

d oV dr,; oV dz, .
—_ T _—e — e —_— = V t . = V 5 2.35
7V E0) = 5T+ 4 2 TR =YV () - £ 0) = V() (2.35)
where (-) is the scalar product in R™. Suppose that f/(.’L‘) < 0 for all z € R™. Then for any orbit v(a) in a trapping
set S, V(z) will keep decreasing along ~(a) until the orbit approaches its w-limit set w(a). Strong restrictions on the
possible w-limit sets can therefore be obtained.
Theorem (Global Liapunov Theorem). Consider the DE z/ = f(z) in R”, and let V: R" — R be a C'! function. If
S C R" is a trapping set, and V(z) < 0 for all z € S, then for all a € S, w(a) € {m €S|V(z) = 0} [169].
A function V' : R" — R which satisfies the above theorem for z € S C R" is called a Liapunov function on S. In
applying the theorem, we note that we simply have to find whole orbits that are contained in the set {x € S|V(z) = 0}
to obtain the w-limit set w(a).

The stability of an equilibrium point can be determined by studying the linearization of the DE. The basic definitions
are the same as in the linear case, with the linear flow et4 being replaced by g:

1. The equilibrium point Z of a DE z’ = f(z) in R™ is stable if for all neighbourhoods U of Z, there exists a
neighbourhood V' of Z such that gV C U for all t > 0, where gt is the flow of the DE.

. 2. The equilibrium point Z of a DE z’ = f(z) in R" is asymptotically stable if it is stable and if, in addition, for
allz eV, limy,o |lgfz — Z|| =0

Now, consider a non-linear DE (2.1) in R™. Let V : R® — R be C !(R™). The rate of change of V' along a solution
of the DE is given by V = VV (z(t)) - f(z(t))V(z). Thus, if V(z) < 0 for all t then V(z) decreases with time along
the corresponding orbit. From a geometrical point of view, the orbits cut the level sets V(z) = k in the direction
away from VV(z). Suppose that Z is an equilibrium point of the DE. If V(Z) =0 and V(z) > O for all z € U — {z},
where U is a neighbourhood of Z, then we expect the level sets of V in U to be concentric curves (n=2) or concentric
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spheres (n=3); consequently when V <0 forall z € U — {z}, any orbit in U — {z} will cut the level sets of V' in the
inward direction, and we expect that this will continue until the orbit is forced to approach the equilibrium point Z
as t — oo, showing that the equilibrium point is asymptotically stable. If, instead, V < 0 for all z € U — {%}, then
U may contain periodic orbits, and we only obtain the weaker conclusion that Z is stable. Finally, if V > 0 for all
z € U — {Z}, then the orbits are forced away from Z, which is thus an unstable equilibrium point.

Theorem (Liapunov Stability Theorem). Let Z be an equilibrium point of the DE 2/ = f(z) in R®. Let V : R® - R
be a C! function such that V(z) =0, V(z) > 0 for all z € U — {Z}, where U is a neighbourhood of z.

1. If V(z) < 0 for all z € U — {Z}, then Z is asymptotically stable.
2. If V <0 for all € U — {Z}, then  is stable.
3. If V(z) > 0 for all z € U — {Z}, then 7 is unstable.

A function V' : R® — R which satisfies V() = 0, V(z) > 0 for all z € U — {Z}, and V(z) < 0 (respectively < 0) for
all z € U — {Z}, is called a Liapunov function (respectively, a strict Liapunov function) for the equilibrium point Z.
Hence we obtain the following Criterion for Asymptotic Stability: Let Z be an equilibrium point of the DE z’ = f(z)
in R™. If all of the eigenvalues of the derivative matrix Df(Z) satisfy Re(\) < 0, then the equilibrium point Z is
asymptotically stable.

2. Linearization and the Hartman-Grobman Theorem

In general the linearizations give a reliable description of the non-linear orbits near the equilibrium points.

Theorem (Hartman-Grobman). Let Z be an equilibrium point of the DE 2/ = f(z) in R", where f : R® — R" is of
class C*. If all of the eigenvalues of the matrix Df(Z) satisfy Re()) # 0, then there is a homeomorphism h: U — U
of a neighbourhood U of O onto a neighbourhood U of Z which maps orbits of the linear flow et®/() onto orbits of
the non-linear flow gt of the DE, preserving the parameter ¢ [172].

Two flows g* and g* on R™ are said to be topologically equivalent if there is a homeomorphism & : R* — R"
which maps orbits of g* onto orbits of g, and preserves the direction of the parameter t. An equilibrium point Z
of a non-linear DE is said to be hyperbolic if all eigenvalues of the matrix D f(Z) satisfy Re(A) # 0. The Hartman-
Grobman Theorem can therefore be stated more concisely: if T is a hyperbolic equilibrium point, then the flow of the
DE z’ = f(z) and the flow of its linearization u’ = Df(Z)u, are locally topologically equivalent.

An equilibrium point Z of a DE (2.1) in R is a saddle point if the real parts of the eigenvalues of the matrix D f(Z)
are all non-zero, and not all of one sign (i.e., a saddle point is a hyperbolic (all Re()\) # 0) equilibrium point which is
neither a sink (all Re(X) < 0) nor a source (all Re()) > 0)). If Z is a saddle point of the DE (2.1) in R*, and U is a
neighbourhood of Z, then the local stable manifold of Z in U is defined by

W3 (z,U) = {2: €U lim g'z = Z,g'z € U for all ¢ > o} . (2.36)

Theorem (Stable Manifold Theorem). Let Z be a saddle point of 2’ = f(z) in R™, where f is of class C?, and let
E? be the stable subspace of the linearization at Z. Then there exists a neighbourhood U of Z such that the local
stable manifold W*(z, U') is a smooth (C!) curve which is tangent to E*® at Z.

We can define in an analogous way the local unstable manifold of Z in U, denoted W*(z,U), and similarly there is
an “Unstable Manifold Theorem.”

Let us give a more detailed description of the local behaviour of non-linear orbits near a non-linear sink. Suppose
that Z = (Z;,%2) € R? is an asymptotically stable equilibrium point of the DE z’ = f(z). In order to describe the
orbits near Z, we can introduce polar coordinates z; — %, = rcosé, z — Z; = rsiné. Since T is asymptotically stable,

lim =(t) =0, (2.37)

t—+co

if r(0) is sufficiently close to zero. We say that the equilibrium point Z is a non-linear spiral if

lim 6(t) = +oo, (2.38)

t—+4+co

for any solution (r(t),()(t)) for which (2.37) holds. A number of results are known [90]. Consider the DE

¢ = f(z), - ' (2.39)
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in R, where f is of class C!, and consider the linearization
' = Df(Z)u, (2.40)

at the equilibrium point Z. If O is an attracting spiral point of the linearization of the DE, then % is an attracting
spiral point of the non-linear DE. Similarly, if O is an attracting node (or Jordan node) of the linearization of the
DE then Z is an attracting node (respectivley, Jordan node) of the non-linear DE [90]. An asymptotically stable
equilibrium point Z is said to be an attracting non-linear focus if all orbits sufficiently close to Z approach Z in a
definite direction as ¢ — oo, and given any direction there exists an orbit which tends to Z in this direction. Note
that if O is a focus of the linearization of the DE, it does not necessarily follow in general that Z is a non-linear
focus of the non-linear DE. Finally, suppose that the vector field f is of class C2. If O is an attracting focus of the
linearization of the DE then Z is an attracting focus of the non-linear DE [90]. A stable equilibrium point Z is said to
be a non-linear centre if in some neighbourhood of Z, the orbits are periodic orbits which enclose Z. Recall that the
Hartman-Grobman theorem does not apply if O is a centre of the linearization of the DE; i.e., one cannot conclude
that T is a centre of the non-linear DE. However, if O is a centre of the linearization of the DE, then % is either a
centre, an attracting spiral, or a repelling spiral of the non-linear DE [90].

C. Periodic Orbits and The Poincaré-Bendixson Theorem in the Plane

A linear DE can admit a family of periodic orbits. Of greater interest is the case where a DE admits an isolated
periodic orbit, i.e., the orbit has a neighbourhood U which contains no other periodic orbits, which is only possible for
a non-linear DE. In this situation, the periodic orbit ~ may attract neighbouring orbits, thereby describing a physical
system which has an oscillatory steady state which is stable. The question of the existence of periodic orbits is a
difficult one. However, a criterion for excluding periodic orbits for a DE in R? was given by Dulac based on Green’s
theorem.

Dulac’s Criterion. If D C R? is a simply connected open set and div(Bf) = B%(Bfl) + 5%(3_;'2) >0(<0), for
all z € D where B is a C? function, then the DE z’ = f(x) where f € C? has no periodic orbit which is contained in
D. The function B(z1,z2) is called a Dulac function for the DE in the set D.

A second criterion for excluding periodic orbits, which is valid in R™, n > 2, follows from the observation that if a
function V(z) is monotone decreasing along an orbit of a DE, then that orbit cannot be periodic.

Monotone Criterion. Let V : R* — R be a C? function. If V(z) = VV(z)- f(z) <0 on a subset D C R™, then

any periodic orbit of the DE z’ = f(z) which lies in D, belongs to the subset {.7:|V(.1:} = 0} nD.

An isolated periodic orbit vy of a DE z/ = f (z) in R?, is called a stable limit cycle if there exists a neighbourhood
U of v such that w(a) = for alla € U. ‘ _

A local section of the flow of a DE in R? is a smooth curve segment ¥ such that the vector field f of the DE
satisfies n- f # 0 on I, where n is normal to £. Note that this implies that no equilibrium points of f lie on T, and
by continuity, that orbits pass through T in one direction only. If z is a regular (i.e., non-equilibrium) point of the
flow (i.e., f(z) # 0) and ¥ is a local section through z, then a flow-boz for z is a neighbourhood of z of the form

N=3g'%| |t| < 5} for some § > 0. Finally we recall the following properties of w-limit sets: (i) w(a) is the union of

whole orbits, (i) w(a) is a closed set, (iii) if w(a) is bounded, then w(a) is connected (i.e., is not the union of disjoint
sets). Then we obtain the following Lemma (which is not valid for a flow in R?).

Lemma (Fundamental Lemma on w-limit sets in R?). Let w(a) be an w-limit set of a DE in R2. If y € w(a), then
the orbit through y, v(y), cuts any local section ¥ in at most one point (169, 181].

Theorem (Poincaré-Bendixson). Let w(a) be a non-empty w-limit set of the DE 2’ = f(z) in R?, where f € C1. If
w(a) is a bounded subset of R? and w(a) contains no equilibrium points, then w(a) is a periodic orbit [181].

In applications it is often convenient to use the following Corollary of the Poincaré-Bendixson theorem.

Corollary. Let K be a positively invariant subset of the DE z/ = f(z) in' R?, where f € C. If K is a closed and
bounded set, then K contains either a periodic orbit or an equilibrium point.

The fundamental property of an w-limit set is that it consists of one whole orbit, or that it is the union of more
than one whole orbit. The simplest situations are: (i) w(a) is an equilibrium point; i.e., the system approaches an
equilibrium state as ¢t — +oc, (ii) w(a) is a periodic orbit; i.e., the system approaches an oscillatory steady state as
t — 4co. Other examples of invariant sets (i.e., unions of orbits) can arise as w-limit sets in R?, such as, for example,
cycle graphs. Let a(z) denote the a-limit set of the point z, which is the set of past limit points of z; i.e.,

a(z) = {y|y = lim g'z, and t, — —oo}. (2.41)
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A cycle graph S of a DE 2/ = f(z) in R? is a connected union of orbits such that: (i) For all z € S, w(z) = {p}
and a(z) = {q}, where p and g are equilibrium points in S. (ii) For all equilibrium points p € S, there exists points
z,y € S such that w(z) = {p}, a(y) = {¢}, and the number of equilibrium points in S is finite. (iii) The orientations
of the orbits define a continuous closed path in S. If we consider the DE z’ = f(z) in R? and let a € R? be an initial
point such that {gfalt > 0} lies in a closed bounded subset K C R?, it then follows that if K contains only a finite
number of equilibrium points then one of the following holds: 1. w(a) is an equilibrium point. 2. w(a) is a periodic
orbit. 3. w(a) is a cycle graph [169, 227]. Unfortunately, this theorem does not generalize to DE in R", n > 3, or to
DE on the 2-torus. Indeed, the problem of describing all possible w-limit sets in R®, n > 3, is presently unsolved.

D. More General Non-Linear Behaviour

The motion of an undamped symmetric 2-mass oscillator, whose orbits lie in invariant 2-tori, depends on the values
of two constants w; and ws, which are the two natural frequencies of oscillation of the physical system. If mw; = nws,
where m, n are positive integers without common factors, the solutions are periodic with period T = 2:—:"' — "”'—: The
corresponding orbit on one of the invariant tori is thus periodic, and eventually closes up as it winds around the torus.
If, on the other hand, £* is irrational, then the orbits are not periodic, and hence do not close up as they wind around
the invariant tori. As the orbit winds around the torus, it passes arbitrarily close to each point of the torus, and the
orbit is said to be everywhere dense on the torus [11]. In this latter case, w(a) is the union of an uncountable infinity
of whole orbits, including the orbit through a, and the invariant 2-tori do not attract neighbouring orbits. However,
an attracting 2-torus can be created, giving rise to so-called quasiperiodic motion, in a similar fashion to that in
which non-linearity can be used to create an attracting periodic orbit. This example illustrates the richness of the
possible dynamical behaviour in non-linear systems and motivates the idea of attracting sets in describing long-term
behaviour. Given a DE z/ = f(z) in R", a closed invariant set A C R™ is said to be an attracting set if there exists
a neighbourhood U of A such that g!U C U for all t > 0 and w(a) C A for all a € U, where gt is the flow of the
DE and w(a) is the w-limit set of the point a. Intuitively, an attracting set is a generalization of an asymptotically
stable equilibrium point or periodic orbit. The basin of attraction of an attracting set A is the subset of R™ defined
by p(4) = {z e R*|w(z) € A}.

If a DE has an attracting set A, then for all initial states a in the basin of attraction the physical system approaches
some kind of “steady state”. The nature of the steady state is determined by the orbits which form the attractor.
In the case that the attracting set is an equilibrium point or a periodic orbit, the long term steady state behaviour
is an equilibrium state or periodic motion, respectively. In the case that the attracting set is an invariant 2-torus
(or k-torus in general) with dense orbits the long-term steady state behaviour is 2-quasiperiodic (k-quasiperiodic).
Finally, there is the possibility of “strange” attractors and chaotic behaviour which is the subject of current research.
A strange attractor is not a piecewise smooth surface, and can have a structure like that of a Cantor set. Chaotic
behaviour occurs when neighbouring orbits diverge (separate) from each other at an exponential rate, while remaining
bounded, a phenomenon that is referred to as “sensitive dependence on initial conditions” (14, 275|.

1. Higher Dimensions

There are many of new features possible in higher dimensions. Although, in general, a qualitative analysis is much
more difficult there are some cases, such as conservative and gradient systems, which have special characteristics that
make their analysis possible (e.g., limit sets of orbits in gradient systems are necessarily part of the set of equilibria).
In addition, Hamiltonian systems often occur in physical applications. Completely integrable systems can be analyzed
successfully. However, an analysis of general Hamiltonian systems for n > 4 is currently out of reach. )

Unlike a linear DE, a non-linear system allows for singular structures which are more complicated than that of
equilibrium points, fixed lines or periodic orbits, particularly in higher dimensions (n > 2). These structures include,
but are not limited to, such things as heteroclinic and/or homoclinic orbits and non-linear invariant sub-manifolds
[373]. Sets of non-isolated equilibrium points often occur in applications (and particularly in cosmology) and therefore
their stability needs to be examined more carefully. A set of non-isolated equilibrium points is said to be normally
hyperbolic if the only eigenvalues with zero real parts are those whose corresponding eigenvectors are tangent to the
set. Since by definition any point on a set of non-isolated equilibrium points will have at least one eigenvalue which
is zero, all points in the set are non-hyperbolic. The stability of a set which is normally hyperbolic can, however, be
completely classified by considering the signs of the eigenvalues in the remaining directions (i.e., for a curve, in the

' remaining n — 1 directions) [13].

The local dynamics of an equilibrium point may depend on one or more arbitrary parameters. parameter When

small continuous changes in a parameter results in dramatic changes in the dynamics, the equilibrium point is said
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to undergo a bifurcation [181]. The values of the parameter(s) which result in a bifurcation at the equilibrium point
can often be located by examining the linearized system. Equilibrium point bifurcations will only occur if one (or
more) of the eigenvalues of the linearized system are a function of a parameter and the bifurcations are located at the
parameter values for which the real part of an eigenvalue is zero.

There are a variety of possible future and past asymptotic states of a non-linear system. In the case of a plane
system the possible asymptotic states can be given explicitly via the Poincare-Bendixson Theorem due to the limited
degrees of freedom and the fact that the flows (or orbits) in any 2-dimensional phase space cannot cross. This theorem
has a very important consequence in that if the existence of a closed (i.e., periodic, heteroclinic or homoclinic) orbit
can be ruled out it follows that all asymptotic behaviour is located at an equilibrium point. As noted earlier the
existence of a closed orbit can be ruled out by many methods. When the phase space is of a higher dimension (than
two) the requirement that orbits cannot cross does not result and the decisive Poincare-Bendixson theorem does not
follow. The behaviour in such higher-dimensional spaces is very complicated, with the possibility of phenomena such
as recurrence and strange attractors occurring [165].” For this reason the analysis of non-linear systems in spaces of
three or more dimensions cannot in general progress much further than the local analysis of the equilibrium points
(or non-isolated equilibrium sets). However, one tool which does allow for some progress in the analysis of higher
dimensional systems is the possible existence of monotone functions.

Theorem (LaSalle Invariance Principle) [332]. Consider a DE i = f(z) on R™. Let S be a closed, bounded and
positively invariant set of the flow, and let Z be a C' monotonic function. Then for all zq € S,

w(zo) € {z € S|Z =0},

where w(zg) is the w-limit set for the orbit with initial value zq.
This principle has been generalized to the following result:

Theorem (Monotonicity Principle) [226]. Let ¢; be a flow on R™ with S an invariant set. Let Z: S — R be a C*
function whose range is the interval (a,b), where a € RU {—c0}, b € RU{co} and a < b. If Z is decreasing on orbits
in S, then for all z € S,

w(z) S {se S\ S| hmZ ) # b}, .
z)g{seS\Sw;gZ(y)#a}, | |

where w(z) and o:(:z) are the w- and o-limit sets of x, respectively.

As noted earlier, in most cases the elgenvalues of the linearized DE will have eigenvalues with both positive, negative
and/or zero real parts. In these cases it is important to identify which orbits are attracted to the equilibrium point,
and which are repelled away, as the independent variable tends to infinity. For a linear DE (2.2), the phase space R™
is spanned by the eigenvectors of A. These eigenvectors divide the phase space into three distinct subspaces; namely,
the stable subspace E°® = span(sy, 82, ...5ns), the unstable subspace E* = span(uy, u2, ...un. ), and the centre subspace
E* = span(cy, €2, ...Cnc), Where s; are the eigenvectors who's associated eigenvalues have negative real part, u; those
who’s eigenvalues have positive real part, and ¢; those who's eigenvalues have zero eigenvalues. Flows (or orbits) in
the stable subspace asymptote in the future to the equilibrium point, and those in the unstable subspace asymptote
in the past to the equilibrium point. g

In the non-linear case, the topological equivalence of flows allows for a similar classification of the equilibrium
points. The equivalence only applies in directions where the eigenvalue has non-zero real parts. In these directions,
since the flows are topologically equivalent, there is a flow tangent to the eigenvectors. The phase space is again
divided into stable and unstable subspaces (as well as centre subspaces). The stable manifold W* of an equilibrium
point is a differential manifold which is tangent to the stable subspace of the linearized system (E*). Similarly, the
‘unstable manifold is a differential manifold which is tangent to the unstable subspace (E*) at the equilibrium point.
The centre manifold, W<, is a differential manifold which is tangent to the centre subspace E°. It is important to note,
however, that unlike the case of a linear system the centre manifold W¢ will contain all the dynamics not classified
by linearization (i.e., in the non-hyperbolic directions). In particular, this manifold may contain regions which are
stable, unstable or neutral The classification of the dynamics in this manifold can only be determined by utilizing
more soph;stlcated methods, such as the Centre Manifold Theorem or the theory of normal forms [373].



