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Definition. A density matrix is a Hermitian matrix ρ ∈ Mn(C) such that

1. each eigenvalue of ρ is nonnegative,

2. tr(ρ) = 1.

Theorem (K). Let u1, . . . , uk , v1, . . . , vk ∈ Mm×n(C). These are equivalent:

1. a 7→
∑

i v
†
i · a · ui is a unital ∗-homomorphism Mm(C) → Mn(C),

2. for each d ≥ 1 and each density matrix ρ ∈ Mdn(C),

ρ′ =
∑
i

(1d ⊗ ui ) · ρ · (1d ⊗ v †i )

is a density matrix ρ′ ∈ Mdm(C) such that

log n − tr(ρ · log ρ) ≥ logm − tr(ρ′ · log ρ′).
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The setting for this talk consists of four categories:

FinSet FinStoch

FinQuanSet FinQuanStoch

more morphisms

more objects more objects

more morphisms
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Our categories are all distributive symmetric monoidal categories:

1. monoidal products X ⊗ Y ,

2. binary coproducts X ⊕ Y ,

3. distributors X ⊗ (Y ⊕ Z ) ∼= (X ⊗ Y )⊕ (X ⊗ Z ).

Our functors preserve ⊗ and ⊕ up to isomorphism.

Example. The category FinSet of finite sets and maps.

Example. The category Ab of Abelian groups and group homomorphisms.

Example. The category FinQuanStoch of multimatrix algebras and
trace-preserving completely positive maps.
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Definition. A multimatrix algebra is a finite-dim. complex algebra A with
an operation (−)∗ : A → A such that

1. (za)∗ = za∗,

2. (a+ b)∗ = a∗ + b∗,

3. (a · b)∗ = b∗ · a∗,
4. a∗∗ = a,

5. a∗ · a = 0 ⇒ a = 0.

(Our algebras are associative and unital but not necessarily commutative.)

Example. A = Mn(C), with a∗ being the conjugate transpose of a.

Proposition. If A is a multimatrix algebra, then

A ∼= Mn1(C)⊕ · · · ⊕Mnℓ(C).
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Definition. Let A and B be multimatrix algebras.

1. An element a ∈ A is positive if a = r2 for some r ∈ A with r∗ = r .

2. A map φ : A → B is positive if φ is linear and

a is positive =⇒ φ(a) is positive.

3. A map φ : A → B is completely positive if

id⊗ φ : Md(A) → Md(B)

is positive for all d ≥ 1. (Recall that Md(A) = Md(C)⊗ A).

Example. On M2(C), a 7→ aT is positive but not completely positive.

Example. On M2(C), a 7→ vav∗ is completely positive for each v ∈ M2(C).
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Definition. For each multimatrix algebra A, let

tr : A → C

be the unique linear map such that

1. tr(a · b) = tr(b · a),
2. tr(b) = 1 whenever b2 = b = b∗ and b · A · b = Cb.

Example. If A = Mn1(C)⊕ · · · ⊕Mnℓ(C), then

tr : (a1, . . . , aℓ) 7→ tr(a1) + · · ·+ tr(aℓ).
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Definition. The category FinQuanStoch:

1. an object A is a multimatrix algebra,

2. a morphism φ : A → B is a completely positive map such that

tr(φ(a)) = tr(a).

From the perspective of quantum information theory,

1. an object of FinQuanStoch is a finite data type,

2. a morphism of FinQuanStoch is a data channel.

Example. The measurement of a qubit is a morphism M2(C) → C2.

Example. The initialization of two qubits and three bits is a morphism

C → M2(C)⊗M2(C)⊗ C2 ⊗ C2 ⊗ C2.
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FinStoch FinQuanStoch
full

Definition. The category FinStoch:

1. an object X is a finite set,

2. a morphism p : X → Y is a stochastic map,

p(y |x) ∈ [0, 1],
∑
y∈Y

p(y |x) = 1.

Definition. The inclusion functor:

p : X → Y φp : CX → CY

φp(a)(y) =
∑
x∈X

p(y |x)a(x)
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Let µ, φ, and ψ be trace-preserving completely positive maps

µ : C → A⊗ B φ : C2 ⊗ A → C2 ψ : B ⊗ C2 → C2.

The composition

C2 ⊗ C2 C2 ⊗ A⊗ B ⊗ C2 C2 ⊗ C2id⊗µ⊗id φ⊗ψ

is essentially a stochastic map {0, 1} × {0, 1} → {0, 1} × {0, 1}.

Definition.

1. If A and B are commutative, this is a classical correlation.

2. If A and B are arbitrary, this is a quantum correlation.

Theorem (Bell, 1964).

There are quantum correlations that are not classical correlations.
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FinSet FinStoch
same obj.

Definition. The inclusion functor:

f : X → Y pf : X → Y pf (y |x) =

{
1 y = f (x)

0 otherwise

Theorem. Let p : X → Y be a stochastic map.

p = pf for some f ⇐⇒ S(m) ≥ S(p ◦m) for all m : {⋆} → X

Definition. The entropy of m is S(m) = −
∑
x∈X

m(x |⋆) logm(x |⋆).

Can this theorem be generalized from FinStoch to FinQuanStoch?
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FinSet FinStoch

FinQuanSet FinQuanStoch

same objects

full full

same objects

What is FinQuanSet? The answer depends on perspective.

C M2(C) C2prepare superposition measure

This p : C → C2 is not deterministic, i.e., not of the form p = pf .

Which step introduces randomness?
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Definition. The category MulMat:

1. an object A is a multimatrix algebra,

2. a morphism π : A → B is a unital ∗-homomorphism.

Definition.
FinQuanSet ≃ MulMatop

This definition is the core of noncommutative geometry.

This definition is comparable to the proposition that

AffSch ≃ CommRingop.
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FinSet FinQuanSet
full

Definition. The inclusion functor:

f : X → Y πf : CY → CX πf (b) = b ◦ f

FinQuan FinQuanStoch
full

Definition. The inclusion functor:

π : B → A φπ : A → B tr(φπ(a) · b) = tr(a · π(b))
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Theorem. Let p : X → Y be a stochastic map.

p = pf for some f ⇐⇒ S(m) ≥ S(p ◦m) for all m : {⋆} → X

Question. Let φ : A → B be a trace-preserving completely positive map.

φ = φπ for some π
?⇐⇒ SvN(µ) ≥ SvN(φ ◦ µ) for all µ : C → A

Definition. The von Neumann entropy of µ is

SvN(µ) = −tr(µ(1) · logµ(1)).

Answer. No. Measurement φ : M2(C) → C2 is of the form φ = φπ, but
measurement increases von Neumann entropy.
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FinSet CommMulMatop

FinQuanSet MulMatop

≃

full full

≃

The top equivalence is X 7→ CX . Intuitively, so is the bottom equivalence.

No explicit construction of FinQuanSet fully captures this intuition.

Example. There is a finite quantum set Q such that CQ ∼= M2(C).
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For each finite set X , we can prove that dimCX = cardX .

For each finite quantum set X , we define that cardX = dimCX .

Example. We have that cardQ = dimCQ = dimM2(C) = 4.

For each finite set X and each Hermitian a ∈ CX , we can prove that

a : X → R, Ran(a) = Sp(a).

For each finite quantum set X and each Hermitian a ∈ CX , we imagine
that a is a real-valued function on X that has range Sp(a).

Example. We imagine that ( 1 1
1 1 ) ∈ M2(C) ∼= CQ is a real-valued function

on Q that has range {0, 2}.
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We view each Hermitian a ∈ CQ ∼= M2(C) as a real-valued function on Q.

Question. How do we sum its values with multiplicity?

Bad answer. The sum is tr(a).

Example. We imagine ( 1 0
0 1 ) to be a real-valued function with range {1}.

This is the constant function 1 on Q. The sum of its values is cardQ = 4.

Good answer. The sum is 2tr(a). The map

σ : CQ → C, σ(a) = 2tr(a),

is the unique linear map such that

1. σ(π(a)) = σ(a) for each automorphism π : CQ → CQ ,

2. σ(1Q) = cardQ.

Andre Kornell (NMSU) Entropy in multimatrix algebras Colloquium, Spring 2025 19 / 24



Let X be a finite quantum set. An element a ∈ CX is a projection if
a2 = a = a∗ or equivalently if a is Hermitian and Sp(a) ⊆ {0, 1}.

Definition. We define the linear map σ : CX → C by

1. σ(a · b) = σ(b · a),
2. σ(a) = dim(CX · a) for each projection a ∈ CX .

In summary, we imagine the following:

The Hermitian elements of CX are real-valued functions on X .

The projections in CX are {0, 1}-valued functions on X .

The projections in CX correspond to the subsets of X .

The linear map σ : CX → C sums values with multiplicity.
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Let X be a finite set, and let m : {⋆} → X be a stochastic map.

S(m) = −
∑
x∈X

m(x |⋆) logm(x |⋆)

= −
∑
x∈X

φm(1)(x) logφm(1)(x)

= −
∑
x∈X

(φm(1) · logφm(1))(x)

= −σ(φm(1) · logφm(1))

Definition. Let µ : C → A be a trace-preserving completely positive map.
The noncommutative entropy of µ is

SNCG (µ) = −σ(µ(1) · logµ(1)).
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Question. Let φ : A → B be a trace-preserving completely positive map.

φ = φπ for some π
?⇐⇒ SNCG (µ) ≥ SNCG (φ ◦ µ) for all µ : C → A

Answer. No. Reset φ : M2(C) → M2(C) is not of the form φ = φπ, but
reset never increases noncommutative entropy.

Question. What do we do now?

Answer. We follow the slogan

“Everything that must happen must happen completely.”
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Let A and B be multimatrix algebras, and let

φ : A → B

be a trace-preserving completely positive map.

Definition. The map φ is entropy-nonincreasing if

SNCG (µ) ≥ SNCG (φ ◦ µ)

for all trace-preserving completely positive maps µ : C → A.

Theorem (K). The following are equivalent:

1. φ∗ : B → A is a unital ∗-homomorphism,

2. id⊗ φ : Md(A) → Md(B) is entropy-nonincreasing for all d ≥ 1.
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Proposition. For each morphism µ : C → A,

SNCG (µ) = SvN(µ) + Eµ(log ζA),

where ζA ∈ A is defined by σ(a) = tr(aζA) for all a ∈ A.

Proposition. For each morphism µ : C → A,

SNCG (µ) = −SvN(µ||σ∗) + log dimA,

where σ∗ : C → A is the adjoint of σ : A → C.

The morphism σ∗ plays the role of the uniform probability distribution.

The noncommutative entropy SNCG (µ) is maximized when µ = σ∗.

SNCG (σ
∗) = log dimA
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