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Definition. A graph is a pair G = (VG , eG ) such that

1. VG is a set,

2. eG is a symmetric relation on VG .

Definition. A quantum graph is a pair G = (MG ,RG ) such that

1. MG ⊆ B(HG ) is a hereditarily atomic von Neumann algebra,

2. RG ⊆ B(HG ) is an ultraweakly closed subspace such that

M′
G · RG · M′

G ⊆ RG , R∗
G = RG .

Definition. A von Neumann algebra M is hereditarily atomic if

M ∼=
⊕
α∈I

Mnα(C).

Such von Neumann algebras are the quantum generalization sets in NCG.
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Let G and H be quantum graphs.

Definition. A homomorphism G → H is a unital normal ∗-homomorphism

π : MH → MG

such that
k1 · RG · k†2 ⊆ RH

for all k1, k2 ∈ B(HG ,HH) such that aki = kiπ(a) for all a ∈ MG .

This definition generalizes the classical definition when M ∼= ℓ∞(X ).

It “generalizes” the definition of Stahlke when M ∼= Mn(C).

It is probably “equivalent” to the definition of Weaver for arbitrary M.

(Stahlke and Weaver worked with completely positive maps.)
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Definition. The symmetric monoidal category qGph:

1. an object is a quantum graph G = (MG ,RG ),

2. a morphism G → H is a homomorphism,

3. the monoidal unit is the quantum graph (C, 0),

4. the monoidal product G □ H is defined by MG□H = MG ⊗MH and

RG□H = RG ⊗ C+ C⊗RH .

The monoidal product G ⊠H with RG⊠H = RG ⊗RH is less well behaved.
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We can construct qGph from qRel.

Definition. The dagger symmetric monoidal category qRel:

1. an object M of qRel is a hereditarily atomic von Neumann algebra,

2. a morphism from M ⊆ B(H) to N ⊆ B(K) is an ultraweakly closed
subspace R ⊆ B(H,K) such that N ′ · R ·M′ ⊆ R,

3. the monoidal unit is C,

4. the monoidal product is M⊗N ,

5. the monoidal product on morphisms is V ⊗W,

6. the dagger of a morphism V is V∗.
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The category qRel has a more explicit equivalent definition.

Definition. A quantum set is a family of nonzero fin.-dim. Hilbert spaces,

X = (Xα | α ∈ A).

Definition. A binary relation X → Y is a family of operator spaces,

R = (Rαβ ⊆ B(Xα,Yβ) | α ∈ A, β ∈ B).

Definition. If R : X → Y and S : Y → Z, then

(S ◦ R)αβ =
∑
β∈B

Sβγ · Rαβ.
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Definition. The dagger symmetric monoidal category qRel:

1. an object X is a quantum set,

2. a morphism X → Y is a binary relation,

3. the monoidal unit is 1 = (C),

4. the monoidal product is X× Y = (Xα ⊗ Yβ | (α, β) ∈ A× B),

5. the monoidal product on morphisms is

R × S = (Rαβ ⊗ Sγδ | (α, γ) ∈ A× C , (β, δ) ∈ B × D)

6. the dagger of a morphism R : X → Y is R† : Y → X, where

R† = (R∗
αβ | β ∈ B, α ∈ A).

Andre Kornell (NMSU) On the category of quantum graphs Quantum Graphs Workshop 7 / 28



That (qRel,×,1, †) is a dagger symmetric monoidal category means that

1. (qRel,×, †) is a symmetric monoidal category

2. † is a contravariant functor on qRel with (R × S)† = R† × S†,

3. the associators, braidings, and unitors all satisfy R−1 = R†.

Rel qRel
full dagger symmetric monoidal functor

A 7→ A = (C | α ∈ A)

Definition. The dagger symmetric monoidal category (Rel,×, {∗}, †):

1. Rel is the category of sets and binary relations,

2. A× B is the Cartesian product of A and B,

3. r † is the converse of r .
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The graphical representation of symmetric monoidal structure:
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Proposition. Furthermore, qRel is a dagger compact closed category:
For every object X, there is a “dual” object X, and morphisms

ηX : 1 → X× X ηX : 1 → X× X

such that

1. (idX × ηX
†) ◦ (ηX × idX) = idX,

2. (idX × ηX
†) ◦ (ηX × idX) = idX,

3. ηX = βX,X ◦ ηX.

X = (Xα | α ∈ A) =⇒ X = (Xα | α ∈ A)
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The graphical representation of dual objects:
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In effect, the domain and codomain of a morphism are subjective.

X

Y

Z

R
S

†7→

X

Y
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S†
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Proposition. (qRel,×,1, †) is enriched over complete semilattices.

R ◦

(∨
i∈I

Si

)
=
∨
i∈I

(R ◦ Si )

R ×

(∨
i∈I

Si

)
=
∨
i∈I

(R × Si )

(∨
i∈I

Ri

)†

=
∨
i∈I

R†
i

Definition. We define ⊤Y
X to be the maximum binary relation X → Y.

Proposition. Writing ⊤X = ⊤1

X and ⊤Y = ⊤Y
1
, we have the following:

(⊤Y
X)

† = ⊤X
Y (⊤X)

† = ⊤X ⊤Y
X = ⊤Y ◦ ⊤X

⊤X ◦ ⊤X = 0 ⇐⇒ X = ∅
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The graphical representation of maximum morphisms as loose ends:
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Definition. A map in qRel is a morphism F : X → Y such that

X

X

F

F †

≥

X

X

Y

Y

F †

F
≤

Y

Y

Theorem (K). The subcategory qSet of quantum sets and maps is dual to
the following symmetric monoidal category:

1. an object is hereditarily atomic von Neumann algebra,

2. a morphism unital normal ∗-homorphism,

3. the monoidal product is the spatial tensor product.
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Theorem (Vaes). Up to iso., there is a one-to-one correspondence between

1. discrete quantum groups,

2. quantum sets X with maps M : X× X → X and E : 1 → X such that

M

M

=
M

M

M

E

= = M

E

M

•

E †

=

•
M

•

E †

=

•
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Conjecture. Up to iso., there is a one-to-one correspondence between

1. discrete quantum groups of Kac type,
2. quantum sets X with maps M : X× X → X and E : 1 → X and

S : X → X such that

M

M

=
M

M

M

E

= = M

E

M

S

E †

≥ M

S

E †

≥
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Definition. A quantum graph is a pair G = (VG ,EG ) such that

1. VG is a quantum set,

2. EG : VG → VG is a binary relation satisfying

VG

VG

EG
† =

VG

VG

EG

It is simple if

EG = 0
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Definition. A homomorphism G → H is a map F : VG → VH such that

VG

VH

EG

F
≤

VG

VH

F

EH

Definition. The box product G □ H is defined to be VG × VH such that

VG

VG

EG

VH

VH

∨

VG

VG

VH

VH

EH
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Definition. The symmetric monoidal category qGph:

1. an object is a quantum graph G = (VG ,EG ),

2. a morphism is a homomorphism G → H,

3. the monoidal unit is the quantum graph 1 = (1, 01),

4. the monoidal product is the box product G □ H.

Proposition. Moreover, qGph is enriched over Gph, where

F1 ∼ F2 : G → H ⇐⇒

VH

VH

F2
†

F1
≤

VH

VH

EH
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Theorem (K, Lindenhovius). Moreover, qGph is closed: there exists

[−,−] : qGphop × qGph → qGph

such that, equivalently,

1. there is a natural isomorphism

Hom(G1 □ G2,H) ∼= Hom(G1, [G2,H]),

2. for all F : G1 □ G2 → H, there exists a unique F̂ : G1 → [G2,H] with

G1 □ G2

[G2,H]□ G2 H

FF̂□idG2

Eval
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Of course, qGph is a quantum generalization of Gph.

Definition. The closed symmetric monoidal category Gph:

1. an object is a graph (with loops allowed but not muliple edges),

2. a morphism is a homomorphism,

3. the monoidal unit has one vertex and no edges,

4. the monoidal product is the box product, where (x1, y1) ∼ (x2, y2) if

(x1 ∼ x2 and y1 = y2) or (x1 = x2 and y1 ∼ y2),

5. the internal hom from G to H is Hom(G ,H) with

f1 ∼ f2 ⇐⇒ f1(x) ∼ f2(x) for all vertices x of G .
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Gph qGphfull

This “inclusion” is a symmetric monoidal functor.

It comes from the dagger symmetric monoidal “inclusion” functor

Rel qRelfull

We have an adjunction

Gph qGph
Cls

⊥

Cls(G ) = Hom(1,G )

Furthermore, Cls[G ,H] ∼= Hom(G ,H).
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Definition. A coloring of a finite graph G by n colors is a homomorphism

G → Kn.

Let S ⊆ Md(C) be an operator system. Let S0 = {a ∈ V | tr(a) = 0}.

Definition (Paulsen?). A coloring of S by n colors is a decomposition

Cd = A1 ⊕ · · · ⊕ An

such that the compression of S to each subspace Ai consists of the scalars.

Proposition. The colorings of S are in bijection with homomorphisms

(Cd ,S0) → Kn.
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Let G be a finite graph, and let Kn be a complete graph of “colors.”

Definition. The (G ,Kn)-graph-coloring game is played by two players

“Alice” and “Bob”

who cooperate using a strategy but cannot communicate with each other.

1. The players are asked about randomly selected vertices x and y of G .

2. The players respond with colors a and b in Kn.

3. Alice sees only x and a, and Bob sees only y and b.

4. The players win if the following conditions both hold:{
x = y =⇒ a = b,

x ∼ y =⇒ a ̸= b.

The players have a winning strategy iff there is a homomorphism G → Kn.
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Proposition. The chromatic number χ(G ) is the least integer n such that
there exists a winning strategy for the (G ,Kn)-graph-coloring game.

Definition (Avis, Hasegawa, Kikuchi, Sasaki). The quantum chromatic
number χq(G ) is the least integer n such that there exists a winning
strategy for the (G ,Kn)-coloring-game using entangled quantum systems.

Theorem (Galliard, Wolf). There is a graph G such that χq(G ) < χ(G ).

Proposition.

χ(G ) ≤ n ⇐⇒ Hom(G ,Kn) ̸= ∅.

Theorem (K, Lindenhovius).

χq(G ) ≤ n ⇐⇒ [G ,Kn] ̸= ∅.
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Proof. For all d ∈ N, write Cd = (Cd , 0Cd ) and compute that

Hom(Cd , [G ,Kn]) ∼= Hom(Cd □ G ,Kn)

∼= Hom(G □ Cd ,Kn)

∼= Hom(G , [Cd ,Kn])

∼= Hom(G ,Hom(1, [Cd ,Kn]))

∼= Hom(G ,Hom(1□ Cd ,Kn))

∼= Hom(G ,Hom(Cd ,Kn))

Thus, [G ,Kn] ̸= ∅ iff there exists a hom. G → Hom(Cd ,Kn) for some d .

By a theorem of Mančinska and Roberson, this is equivalent to the
existence of a winning strategy that uses entangled quantum systems. □
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We can explicitly compute Hom(Cd ,Kn). Let VKn = {1, . . . , n}.

Homomorphisms Cd → Kn are decompositions Cd = A1 ⊕ · · · ⊕ An.

Decompositions Cd = A1 ⊕ · · · ⊕ An and Cd = B1 ⊕ · · · ⊕ Bn are

adjacent ⇐⇒ Ai ⊥ Bi for all i .

Theorem (Mančinska, Roberson). Let n ∈ N. The following are equivalent:

1. there exists a quantum winning strategy for the (G ,Kn)-g.-c. game,

2. there exists a homomorphism G → Hom(Cd ,Kn) for some d ∈ N.

They proved this theorem for graph-homomorphism games, where Kn is
replaced by an arbitrary finite graph H. Everything works the same way!
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