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Definition. A graph is a pair G = (Vg, eg) such that
1. Vg is a set,
2. e is a symmetric relation on V.

Definition. A quantum graph is a pair G = (Mg, R¢) such that
1. Mg C B(Hg) is a hereditarily atomic von Neumann algebra,
2. R¢ € B(Hg) is an ultraweakly closed subspace such that

M/G"RG-MIGQ'RG, ¢ =Re.

Definition. A von Neumann algebra M is hereditarily atomic if

M= P M,,(C).

acl

Such von Neumann algebras are the quantum generalization sets in NCG.
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Let G and H be quantum graphs.

Definition. A homomorphism G — H is a unital normal «-homomorphism
I MH — MG

such that
k- Re -kl SRy

for all ki, ko € B(Hg,Hn) such that ak; = k;jm(a) for all a € M.

This definition generalizes the classical definition when M = £>°(X).
It “generalizes” the definition of Stahlke when M = M,(C).
It is probably “equivalent” to the definition of Weaver for arbitrary M.

(Stahlke and Weaver worked with completely positive maps.)
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Definition. The symmetric monoidal category qGph:
1. an object is a quantum graph G = (Mg, R¢),
2. a morphism G — H is a homomorphism,

3. the monoidal unit is the quantum graph (C,0),

4. the monoidal product G (0 H is defined by Mgoy = Mg ® My and

ReoH=RecR®C+C®Ry.

The monoidal product G X H with Rgxy = Re¢ ® Ry is less well behaved.
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We can construct qGph from qRel.

Definition. The dagger symmetric monoidal category qRel:
1. an object M of qRel is a hereditarily atomic von Neumann algebra,

2. a morphism from M C B(H) to N’ C B(K) is an ultraweakly closed
subspace R C B(H,K) such that N/ - R - M’ C R,

3. the monoidal unit is C,
4. the monoidal product is M@ N,
5. the monoidal product on morphisms is V@ W,

6. the dagger of a morphism V is V*.
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The category gRel has a more explicit equivalent definition.
Definition. A quantum set is a family of nonzero fin.-dim. Hilbert spaces,

X = (X, | o € A).

Definition. A binary relation X — Y is a family of operator spaces,

R= (Raﬁ - B(Xa, Yﬁ) ’ a€ApBe B).

Definition. f R: X =Y and S: Y — Z, then

(SoR)up = Z Sty - Rag-
BEB
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Definition. The dagger symmetric monoidal category qRel:
1. an object X is a quantum set,
2. a morphism X — Y is a binary relation,
3. the monoidal unit is 1 = (C),
4. the monoidal product is X X Y = (X, ® Yz | (o, 8) € Ax B),
5. the monoidal product on morphisms is
RxS=(Rug® Sy | (a,v) € Ax C,(B,0) € Bx D)
6. the dagger of a morphism R: X — Y is RT: Y — X, where

R'=(Ri5 | B € B,acA).
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That (qRel, x, 1, 1) is a dagger symmetric monoidal category means that
1. (gqRel, x, T) is a symmetric monoidal category
2. tis a contravariant functor on qRel with (R x S)T = RT x ST,

3. the associators, braidings, and unitors all satisfy R~! = Rf.

full dagger symmetric monoidal functor .

Rel > qRel

A—-A=(ClacA)

Definition. The dagger symmetric monoidal category (Rel, x, {x}, T):
1. Rel is the category of sets and binary relations,
2. A x B is the Cartesian product of A and B,

3. rf is the converse of r.
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The graphical representation of symmetric monoidal structure:

X Y Y Y Y X

N

[R] R [Re]

X X X X1 X5 X Y

idx R SoR Rl X R2 BX,Y
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Proposition. Furthermore, qRel is a dagger compact closed category:
For every object X, there is a “dual” object X, and morphisms

nx: 1 =X xX ng:l%XxX
such that
1. (idx x mx') o (g x idx) = idx,
2. (idg x ng') o (nx x idy) = idy;,

3. nx = BXX o 7%

(Xo | o € A)

X=Xy |a€A) = X
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The graphical representation of dual objects:

=
=

idg nx nx!
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In effect, the domain and codomain of a morphism are subjective.

Y Y
X X
:
L
Z Z
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Proposition. (qRel, x, 1, T) is enriched over complete semilattices.

Ro (\/5,-) =\/(RoS)

iel icl
T
R x (\/5,-) :\/(RXSI') <\/Ri) :\/ler
iel i€l i€l i€l
Definition. We define T% to be the maximum binary relation X — Y.
Proposition. Writing Tx = T%lg and TY = TV, we have the following:
(TH =T¢  (Tx)f=T7% TE=TY0Tx

TxoT¥=0 «<— X=0
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The graphical representation of maximum morphisms as loose ends:

X X Y X X
b1 %
1<
% %
X X X X X
Tx Tx TX X TY idy T
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Definition. A map in qRel is a morphism F: X — Y such that

X X Y Y
> <
X X Y Y

Theorem (K). The subcategory qSet of quantum sets and maps is dual to
the following symmetric monoidal category:

1. an object is hereditarily atomic von Neumann algebra,
2. a morphism unital normal *-homorphism,

3. the monoidal product is the spatial tensor product.
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Theorem (Vaes). Up to iso., there is a one-to-one correspondence between
1. discrete quantum groups,
2. quantum sets X with maps M: X x X — X and E: 1 — X such that
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Conjecture. Up to iso., there is a one-to-one correspondence between
1. discrete quantum groups of Kac type,
2. quantum sets X with maps M: X x X — X and E: 1 — X and
S: X — X such that
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Definition. A quantum graph is a pair G = (Vg, Eg) such that
1. V¢ is a quantum set,

2. Eg: Vg — Vg is a binary relation satisfying

Ve Ve
Ec'| =
Ve Ve

It is simple if

£ {-@
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Definition. A homomorphism G — H is a map F: Vg — Vy such that

Vu Vu

<
Ve Ve

Definition. The box product G [ H is defined to be V¢ x Vi such that

Ve Vy Ve Vy

Ee] + v 1 [Ed]

Ve Vy Ve Vy
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Definition. The symmetric monoidal category qGph:
1. an object is a quantum graph G = (Vg, Eg),
2. a morphism is a homomorphism G — H,
3. the monoidal unit is the quantum graph 1 = (1,0q),

4. the monoidal product is the box product G O H.

Proposition. Moreover, qGph is enriched over Gph, where

Vu Vu
Fr~F:G—H <~ < EEE

Rl

Vu VH
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Theorem (K, Lindenhovius). Moreover, qGph is closed: there exists
[—, —]: aGph°? x qGph — qGph
such that, equivalently,
1. there is a natural isomorphism
Hom(G; O Gy, H) = Hom( Gy, [Gp, H]),

2. for all F: Gy O G, — H, there exists a unique F:G — [G2, H] with

G OG
Flidg, F
[G2, HIO G, ———— H
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Of course, qGph is a quantum generalization of Gph.

Definition. The closed symmetric monoidal category Gph:
1. an object is a graph (with loops allowed but not muliple edges),
2. a morphism is a homomorphism,
3. the monoidal unit has one vertex and no edges,
4. the monoidal product is the box product, where (x1,y1) ~ (x2, y2) if
(x1 ~ x2 and y1 = y2) or (x1 = x2 and y1 ~ y2),
5. the internal hom from G to H is Hom(G, H) with

hA~fh <= fi(x)~ f(x) for all vertices x of G.
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Gph o ful qGph

This "“inclusion” is a symmetric monoidal functor.
It comes from the dagger symmetric monoidal “inclusion” functor
Rel — ™' gRel

We have an adjunction

Gph I
Cls

qGph
Cls(G) = Hom(1, G)
Furthermore, Cls[G, H] = Hom(G, H).
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Definition. A coloring of a finite graph G by n colors is a homomorphism

G — K,.

Let S € My(C) be an operator system. Let Sp = {a € V | tr(a) = 0}.

Definition (Paulsen?). A coloring of S by n colors is a decomposition

such that the compression of S to each subspace A; consists of the scalars.

Proposition. The colorings of S are in bijection with homomorphisms

(C9, Sp) = Ko
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Let G be a finite graph, and let K, be a complete graph of “colors.”

Definition. The (G, K,)-graph-coloring game is played by two players
“Alice” and  “Bob”

who cooperate using a strategy but cannot communicate with each other.
1. The players are asked about randomly selected vertices x and y of G.
2. The players respond with colors a and b in K.
3. Alice sees only x and a, and Bob sees only y and b.
4

. The players win if the following conditions both hold:

x=y = a=b,
X~y = a#b.

The players have a winning strategy iff there is a homomorphism G — K,,.
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Proposition. The chromatic number x(G) is the least integer n such that
there exists a winning strategy for the (G, K,)-graph-coloring game.

Definition (Avis, Hasegawa, Kikuchi, Sasaki). The quantum chromatic
number x4(G) is the least integer n such that there exists a winning
strategy for the (G, K,,)-coloring-game using entangled quantum systems.
Theorem (Galliard, Wolf). There is a graph G such that x4(G) < x(G).
Proposition.

xX(G) <n = Hom(G, K,) # @.

Theorem (K, Lindenhovius).

Xq(G) <n — [G,K,] # 2.
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Proof. For all d € N, write C¢ = (C9,0¢4) and compute that

Hom(CY, [G, K,,]) = Hom
=~ Hom
= Hom
= Hom
=~ Hom

=~ Hom

CY0G, K,)

GOC? K,)

G,[CY, Ka))
G,Hom(1,[C? K,]))
G,Hom(1 0 CY K,))
G,Hom(C?, K,,))

—~ o~ o~ o~~~

Thus, [G, K,,] # @ iff there exists a hom. G — Hom(C?, K,,) for some d.

By a theorem of Manc&inska and Roberson, this is equivalent to the
existence of a winning strategy that uses entangled quantum systems. [
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We can explicitly compute Hom(CY, K,,). Let Vi, = {1,...,n}.
Homomorphisms C¢ — K, are decompositions CY = A; @ - -- @ A,,.

Decompositions Cl=A®- - ®A,andCI=B, & ---E B, are

adjacent — A; L B; for all i.

Theorem (Man&inska, Roberson). Let n € N. The following are equivalent:
1. there exists a quantum winning strategy for the (G, K,,)-g.-c. game,

2. there exists a homomorphism G — Hom(C¢, K,,) for some d € N.

They proved this theorem for graph-homomorphism games, where K|, is
replaced by an arbitrary finite graph H. Everything works the same way!
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