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My primary field of research is commutative algebra. I am especially interested in
problems in commutative algebra which can be translated into the language of combinatorics
or algebraic geometry. One of the most useful techniques applied to connect commutative
algebra to combinatorics is assigning a squarefree monomial ideal to a graph or a simplicial
complex to make a dictionary between their algebraic and combinatorial properties.

A squarefree monomial is a product of distinct variables, for example z1x3x4 in the poly-
nomial ring k[x1,...,x4]. A squarefree monomial ideal is an ideal generated by squarefree
monomials. The central theme of my research is the study of squarefree monomial ideals
from a combinatorial perspective.

Here are some specific areas which I am currently studying. A more detailed description
for each follows after.

e Path ideals:
path ideals are a generalization of edge ideals of graphs. I investigate the arithmetic
rank of these ideals for cycles.

e Rees algebra of squarefree monomial ideals:

The equations of Rees algebra of quadratic squarefree monomial ideals are known.
The focus of my work is to find a combinatorial interpretation for equations of Rees
algebras of squarefree monomial ideals of higher degrees.

e j-multiplicity of edge ideals:

j-multiplicity is a generalization of Hilbert-Samuel multiplicity for ideals which are
not primary. I am working on j-multiplicity of edge ideals of a graph. This is joint
work with J. Validashti.

o Regularity of powers of edge ideals:

In [3] with collaboration with A. Banerjee we investigated the asymptotic behavior of
regularity of a class of bipartite graphs. Banerjee and Ha and I plan to do more with
improving the asymptotic formula for the edge ideals of trees and cycles in [25] to a
more general case.

Below I describe the principal themes and techniques for each of these projects.
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1 Path Ideals

Path ideals were first introduced by Conca and De Negri in [12]. We define the path ideal
of a graph G, denoted by I;(G) to be the ideal of R, generated by monomials of the form
of z;, i, ... x;, where x;,,%;,,...,2;, is a path in G. The case t = 2 defines the edge ideal
of a graph, first introduced by Villarreal in [27]. For the following tree we have
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Let I be an ideal in R, then the minimum number of elements of R that generate I up
to radical is called the arithmetic rank of I. More precisely the arithmetic rank of I is

ara(I):min{r:Elal,...,arGR;\ﬁz \/(al,...,ar)}.

Finding the arithmetic rank of squarefree monomial ideals is inspired by work of Lyubeznik [22]
in the 1980’s, who used Taylor’s resolution of monomial ideals to study questions about co-
homological dimensions.

The computation of the arithmetic rank of an ideal is a challenging problem. For this
reason researchers are developing bounds for the arithmetic rank of classes of ideals. The
simplest upper bound for the arithmetic rank of an ideal I is p(I), the minimal number of
generators of I. Also, by using Krull’s Principal Ideal Theorem [29], one can find a lower
bound; it is the height of the ideal I. Thus

ht(I) < ara(I) < p(I).

According to Lyubeznik’s result in [22], one can find a less obvious lower bound for
the arithmetic rank of squarefree monomial ideals. To state this lower bound we need to
introduce the free resolution of an ideal.

For any homogeneous ideal I of the polynomial ring R = K [z1,...,z,] there exists a
graded minimal finite free resolution

0— PR(-d)r* — - — PR(-d)"* - R — R/T — 0
d d

of R/I in which R(—d) denotes the graded free module obtained by shifting the degrees of
elements in R by d.

The numbers (; 4, which we shall refer to as the i-th N-graded Betti numbers of
degree d of R/I, are independent of the choice of graded minimal finite free resolution.

The length of the minimal free resolution is unique up to change of basis and it is defined
as the projective dimension of R/I, and denoted by pd(R/I). The following is a well
known theorem by Lyubeznik.
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Theorem 1.1 (Lyubeznik, [22]). Let I C R be a squarefree monomial ideal then pd(R/I) <
ara(l).

So for a squarefree monomial ideal I we have the following
ht(I) < pd(R/I) < ara(I) < p(I).
In 2000, Zhao Yan [30] showed that the inequality in Theorem 1.1 is sharp in some cases.
The following question arises immediately.
Question 1. For which classes of squarefree monomial ideals does pd(R/I) = ara(l)?

This is a broad question. Some classes of squarefree monomial ideals in which the
equality holds have been investigated (see for example [7], [8], [9], [10], [11]).

The edge ideals of cycles have also been investigated. Barile, Kiani, Mohammadi and
Yassemi [10] showed that

ara(Iz(Cn)) = pd(R/I2(Cr)),

where C), is a graph cycle with n vertices. Now we can ask what happens for ¢ # 27 In my
thesis [2] and in [4], I computed the projective dimension and all Betti numbers of the path
ideals of a cycle.

Furthermore, in collaboration with S. Faridi, I proved the following result which can be
found in [5].
Theorem 1.2 (Projective dimension of path ideals of cycles). Let n, t, p and d be
integers such thatn > 2,2 <t <mn,n= (t+1)p+d, wherep >0, 0 <d <t. Then the
projective dimension of the path ideal of a graph cycle C, is given by

2p+1 d#0

pd(R/1(Cr)) = { % i—0

1.1 Further Work

Regarding the arithmetic rank of path ideals of a cycle, Macchia [23] in his unpublished
work showed the following.

Lemma 1.3. Let C, be a cycle graph over n vertices and let 2 < t < n. Then we have
ara(Iy(Cp)) € {pd(R/1;(Cy)), pd(R/1:(Cy)) + 1} .

Since it is proved for ¢ = 2 in [10] that ara(l2(Cy)) = pd(R/I2(Cy)), we have the
following open question.
Question 2. Let C), be a graph cycle over n vertices and 2 < t < n. Is it true to say
ara(l;(Cy)) = pd(R/I;(Cy))?

I have shown that for some values of ¢ and n this equality holds. However, there are
still lots of unexamined cases.
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2 Rees Algebra of Squarefree Monomial Ideals

Let I = (fi,...,f;) be a monomial ideal in a polynomial ring R = k[z1,...,z,] over a
field k. We denote the Rees algebra of I by R[It] = R[fit,..., f4t] and consider the
homomorphism v of algebras

Wi R[Ty,...,T,) — R[It], T; s fit

where T; are indeterminate. If J is kernel of v, then R[It] = S/J where S = R[T1,...,T].
The ideal J is called defining ideal of R[[t] and its minimal generators are called the Rees
equations of /. The defining ideal J of R[It] is graded. In other words, we have

where Jg for s > 1 is R-modules. These equations carry a lot of information about R[It];
see for example [26], for more details.

An ideal I is said to be of linear type if J = (J1); in other words, the defining ideal of
R[It] is generated by linear combinations of variables T1,...,Ty.

Rees algebras and ideals of linear type have been investigated by many authors (see for
example [12], [13], [16], [19],]20])

We can define T, 3(I) € Js as a redundant Rees equation of I, if we have

Taﬁ(l) e LS+ + Js1S.

To identify ideals of linear type, it is enough to characterize redundant equations.

I am interested in giving a combinatorial interpretation of irredundant 7, g(I) for a
squarefree monomial ideal I. The simplest case of a squarefree monomial ideal is an edge
ideal.

In 1995 Villarreal gave a combinatorial characterization of irredundant generators for
edge ideals of graphs [28] by attributing irredundant generators of Js to closed even walks.
Motivated by this work I defined simplicial closed even walks in my thesis for simplicial
complexes to generalize graph case.

Faridi and I proved in [6] that if T}, g(I) is an irredundant generator of Jy, then the
generators of I involved in T, g(I) form a simplicial even walk. Our class of simplicial even
walks includes even special cycles (see [17]) as known in hypergraph theory.

By using the concept of the simplicial closed even walks, we can give a necessary condi-
tion for a squarefree monomial ideals of linear type [6].

Theorem 2.1. Let I be a squarefree monomial ideal and suppose the facet complex F(I)
has no simplicial closed even walk. Then I is of linear type.
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Also in my thesis I showed that every simplicial closed even walk contains a simplicial
cycle (not necessarily of the same length).

By using this new result we can conclude every simplicial tree is of linear type. (Simpli-
cial trees are generalization of trees in graph theory. For more details see [15].) This fact
can also be deduced by the concept of M-sequences [12].

2.1 Further Work

Generally the converse of Theorem 2.1 is not correct. My goal is to further investigate
the structure of simplicial closed even walk so that I can give a more effective criterion to
replace Theorem 2.1.

Question 3. Find a more effective criterion for squarefree monomial ideals of linear type.

Fouli and Lin [16] used the line graphs of squarefree monomial ideals to give a simple
test for ideals of linear type. In my thesis I improved their test as demonstrated in the
following theorem.

Theorem 2.2. Let I be a squarefree monomial ideal and A be its facet complex. If L(A)
(line graph of A) contains no even cycle, then I is of linear type.

One can ask what happens for line graphs which contain an even cycle. In general we
can say nothing about linearity of I by using these line graphs. I am currently working on
improving Theorem 2.2.

3 j-Multiplicity of Edge Ideals

Hilbert-Samuel multiplicity is one of the most important invariants in homological algebra,
commutative algebra and algebraic geometry. This notation was defined in 1954 by D.
Northcott and D. Rees [24]. The Hilbert-Samuel multiplicity is defined in a local ring for
m-primary ideals where m is the maximal ideal. In 1993 j-multiplicity was defined by R.
Achilles and M. Manaresi [1] to extend Hilbert-Samuel multiplicity notation for an ideal
that is not necessarily m-primary.

We are ready to state the definition of j-multiplicity of an ideal.

Definition 3.1. Let (R, m, k) be a Notherian local ring of dimension d and I be an ideal
in R. We call the positive integer given by

S0 — i 4 DAER )

n—o00 nd_l

the j-multiplicity of I in R.
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We have the following properties for j-multiplicity (see [1])

e j(I) #0 < ((I) = dim(R) where ¢(I) denoted the analytic spread of I (The Krull
dimension of the fiber cone of I).

e If ] is an m-primary ideal in R, then we have
j(I) = e(l, R) = e(Gri(R))
where e(—) denotes the Hilbert-Samuel multiplicity.

e For a monomial ideal I in the polynomial ring R = k[z1, ..., x4, we have

J(I) = dwol(pyr(l)).

where pyr(I) is a union of pyramid of bounded faces of Newton polyhedron of I. (see
Theorem 3.2 in [21])

In general computing j-multiplicity of an ideal is not easy. In my work with J. Validashti,
we have studied j-multiplicity of edge ideal of a graph. Our results are described below.

3.1 Edge Ideals

Let G be a simple graph and P(G) be the Newton Polyhedron of the edge ideal I(G). To
compute j-multiplicity of the edge ideal of G from Theorem 3.2 in [21] we need to consider
bounded faces of P(G). The convex hull of the vertices of P(G), called the edge Polytope
F(G) of G, is the only bounded face.

By using this fact I in collaboration with Validashti proved the following theorem to
classify graphs with non-zero j-multiplicity.

Remark 3.2. j(I(G)) # 0 if and only if no connected component of G is bipartite.

To compute j-multiplicity we first consider connected unicycle graphs in which obviously
the number of vertices and edges are the same. For a unicycle graph we have the following
formula to compute j-multiplicity of its edge ideal. This formula has been computed by
Jeffries and Montano in [21] by using different method.

Corollary 3.3. If G is a graph which its components are unicycle, then
JI(G)) =2°a(G)

where ¢ is the number of connected component of G and a(G) = 1 if G has no bipartite
connected component, and zero otherwise .
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By using K[G], the edge subrings of a graph G, Validashi and I showed the following
theorem.

Theorem 3.4. If G is a simple graph with ¢(G) connected components, then
J1(@)) = 29De(K[G)).

By using this theorem we have the following interesting formula for j-multiplicity of
complete graphs.

Corollary 3.5. If G is a complete graph with n vertices, we have

J(I(G)) =2(2"! —n) =2" - 2n.

3.2 Further Work

Question 4. We gave formulas to compute j-multiplicity for some classes of graphs (trees,
unicycles, bipartite and complete). Is there any other classes of graphs which their j-
multiplicity can be given by a formula?

Question 5. What is the interpretation of 2" — 2n for complete graphs with n vertices?

Question 6. If /(I(G)) # dimR, can we say e(K[G]) is the next generalized Hilbert
coefficient of I(G)?

4 Regularity of Powers of Edge Ideals

The Castelnuovo-Mumford regularity of R/I, written as reg(R/I), is given by
veg(R/T) = max{j — il (R/T) # 0},

Asymptotic behavior of the regularity is one of the interesting ongoing research areas in
commutative algebra. The following theorem by Cutkosky, Herzog and Trung is very mo-
tivating for many researchers.

Theorem 4.1 (Theorem 1.1, [14]). Let I be a homogeneous ideal, the regularity I™ is a
linear function for n > 0.

Determining the exact linear function of reg(I™) and evaluating n for which reg(I™)
becomes linear, have been studied by many researchers.

In my research I consider this question for edge ideal of a simple graph. More precisely
if G is a simple graph whose edge ideal is denoted by I(G), I am interested in finding values
b and ng for which we have

reg(I(G)") =2n+0b for n > ng.
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The values b and ng have been computed for a few classes of graphs. These classes are as
follows

e Herzog, Hibi and Zheng [18]: If reg(/(G)) = 2 (I(G) has linear resolution), then
reg(I(G)") =2nfor alln >1 (b=0,n9 =1).

e Alilooee and Banerjee [3]: If G is a bipartite graph and reg(/(G)) = 3, then
reg(I(G)") =2n+1foralln>1 (b=1,n9=1).

e Beyarslan, Ha and Trung [25]: If G is a forest, then reg(/(G)") = 2n+v(G)—1 for
alln > 1 (b=v(G)—1,n9 = 1) where v(G) denotes the maximum induced matching
number of G.

e Beyarslan, Ha and Trung [25]: reg(/(Cyn)") = 2n + v(Cyp,) — 1 for all n > 2
(b=v(Cy) —1,n0 = 2).

4.1 Further Work:

In [25] the authors raised the following question.

Question 7. If G is a simple graph whose edge ideal is I = I(G), then is it true that
reg(I(G)") =2n+v(G) — 1 for all n > reg(I(G)) — 1.

In [25] Beyarslan, Ha and Trung showed that this question is true for forests and cycles.
Banerjee, Ha and I are working to see if this question is also true for bipartite and unicycle
graphs.
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