

Introduction to Probability and Statistics Slides 6 – Chapter 6

Ammar M. Sarhan,

asarhan@mathstat.dal.ca

Department of Mathematics and Statistics, Dalhousie University Fall Semester 2008

Point Estimation

6.1 General Concepts of Point Estimation

Point Estimator

A *point estimator* of a parameter θ is a single number that can be regarded as a sensible value for θ . A *point estimator* can be obtained by selecting a suitable statistic and computing its value from the given sample data.

Notation:

We use $\hat{\theta}$ to denote the point estimator of θ .

Examples: 6.1 and 6.2 p. 229

A point estimator $\hat{\theta}$ is said to be an *unbiased estimator* of θ if $E(\hat{\theta}) = \theta$

for every possible value of θ .

If $\hat{\theta}$ is biased, the difference $E(\hat{\theta}) - \theta$ is called the *bias* of $\hat{\theta}$.

The pdf's of a biased estimator $\hat{\theta}_1$ and an unbiased estimator $\hat{\theta}_2$ for a parameter θ .

Principle of Unbiased Estimation

When choosing among several different estimators of θ , select one that is unbiased.

Examples of Unbiased Estimator

(1) When *X* is a binomial *rv* with parameters *n* and *p*, the sample proportion

$$\hat{p} = \frac{X}{n}$$

is an unbiased estimator of p. This is because:

$$E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{E(X)}{n} = \frac{n p}{n} = p$$

(2) Let $X_1, ..., X_n$ be a random sample from a population with an unknown mean μ . The sample mean is an unbiased estimator of μ .

$$E(\hat{\mu}) = E(\overline{X}) = \mu$$

(3) Let $X_1, ..., X_n$ be a random sample from a population with mean μ and variance σ^2 . The sample variance is an unbiased estimator of σ^2 .

$$E\left(\hat{\sigma}^{2}\right) = E\left(S^{2}\right) = E\left(\frac{\sum\left(X_{i} - \overline{X}\right)^{2}}{n-1}\right) = \sigma^{2}$$

Principle of Minimum Variance Unbiased Estimation

Among all estimators of θ that are unbiased, choose the one that has the minimum variance. The resulting $\hat{\theta}$ is called the *minimum variance unbiased estimator* (*MVUE*) of θ .

Note: Sometimes, MVUE is called as *the best unbiased estimator*.

Graphs of the pdf's of two different unbiased estimators

Dr. Ammar Sarhan

Let $X_1, ..., X_n$ be a random sample from normal distribution with mean μ and variance σ^2 . Then the *sample mean* is the **MVUE** for μ .

In some situation, it is possible to obtain an estimator with small bias that would be preferred to the beast unbiased estimator. This is illustrated in the following figure.

A bias estimator that is preferable to the MVUE.

Dr. Ammar Sarhan

The *standard error* of an estimator $\hat{\theta}$ is its standard deviation

 $\sigma_{\hat{\theta}} = \sqrt{V(\hat{\theta})}$

If the standard error itself involves unknown parameters whose values can be estimated, substitution into $\sigma_{\hat{\theta}}$ yields the *estimated standard error of the* estimator, denoted $\hat{\sigma}_{\hat{\theta}}$ or $s_{\hat{\theta}}$.

Examples: 6.9 and 6.10 p. 238.

The sample mean of a normal distributed sample, with mean μ and unknown variance σ^2 , is the best estimator of μ . The standard error is

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \quad \Longrightarrow \quad \hat{\sigma}_{\overline{X}} = \frac{\hat{\sigma}}{\sqrt{n}}$$

Moments

The sample moments:

Let $X_1, X_2, ..., X_n$ be a random sample from a pmf or pdf f(x). The *kth* sample moment is $1 - \frac{n}{2}$

$$\frac{1}{n}\sum_{i=1}^{n} X_{i}^{k}$$

The population moments:

For k = 1, 2, ... the *kth population moment*, *or kth moment* of the distribution f(x) is

$$E(X^{k}) = \int_{-\infty}^{\infty} x^{k} f(x) dx$$

The 1st and 2nd population moments are $E(X) = \mu$, $E(X^2)$

The 1st 1st and 2nd sample moments are

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} = \overline{X}, \quad \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$$

Dr. Ammar Sarhan

Moment Estimators

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with pmf or pdf $f(x; \theta_1, ..., \theta_m)$, where $\theta_1, ..., \theta_m$ are parameters whose values are unknown. Then the *moment estimators* are obtained by **equating** the first *m sample moments to the* corresponding first *m population* moments and **solving** for, $\theta_1, ..., \theta_m$.

If, for example, m=2, E(X) and E(X²) will be functions of θ_1 and θ_2 . Setting:

$$E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} \text{ and } E(X^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

gives two equations in θ_1 and θ_2 .

The solution then defines the estimators.

For estimating the population mean, the method gives $\hat{\mu} = \overline{X}$ so, the estimator is the sample mean.

Example: 6.12, p. 244

Assume $X_1, X_2, \dots, X_n \sim Exp(\lambda)$, find the moment estimator for λ ?

Example:

Assume $X_1, X_2, ..., X_n \sim Binom(m, p)$, find the moment estimator for m, p?

Likelihood Function

Let X_1, X_2, \dots, X_n have joint *pmf* or *pdf*

$$f(x_1,..., x_n; \boldsymbol{\theta}_1,..., \boldsymbol{\theta}_m)$$

where parameters $\theta_1, ..., \theta_m$ have unknown values. When $x_1, ..., x_n$ are the observed sample values and f is regarded as a function of $\theta_1, ..., \theta_m$, it is called the *likelihood function*.

Maximum Likelihood Estimators

The maximum likelihood estimates (mle's) are those values of the $\hat{\theta}_1, \dots, \hat{\theta}_m$ are those values of the 's that maximize the likelihood function so that

$$f(x_1, \cdots, x_n; \hat{\theta}_1, \cdots, \hat{\theta}_m) \ge f(x_1, \cdots, x_n; \theta_1, \cdots, \theta_m)$$

for all $\theta_1, ..., \theta_m$ When the X_i 's are substituted in the place of the x_i 's, the *maximum likelihood estimators* result.

Example: 6.16, p. 246 Assume $X_1, X_2, \dots, X_n \sim Exp(\lambda)$, find the mle for λ ? **Example:** 6.17, p. 247 Assume $X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$, find the mle's for μ and σ^2 ?

The Invariance Principle

Let $\hat{\theta}_1, \dots, \hat{\theta}_m$ be the mle's of the parameters $\theta_1, \dots, \theta_m$. Then the mle of any function $h(\theta_1, \dots, \theta_m)$ of these parameters is the function $h(\hat{\theta}_1, \dots, \hat{\theta}_m)$ of the mle's.

Desirable Property of the Maximum Likelihood Estimate

Under very general conditions on the joint distribution of the sample, when the sample size *n* is large, the maximum likelihood estimator of any parameter θ is approx.

unbiased $[E(\hat{\theta}) \approx \theta]$ and has variance that is nearly as small as can be achieved by any estimator.

$$m le \hat{\theta} \approx MVUE \text{ of } \theta$$